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Abstract: OBJECTIVE: To explore the effect of physical exercise (EXE), strontium ranelate (SR), or
their combination on bone status in ovariectomized (OVX) rats. DESIGN: Sixty female Wistar rats
were randomized to one of five groups: sham (Sh), OVX (O), OVX+EXE (OE), OVX+SR (OSR), and
OVX+EXE+SR (OESR). Animals in EXE groups were subjected to 10 drops per day (45 cm in height);
rats in SR groups received 625 mg/kg/day of SR, 5 days/week for 8 weeks. Bone mineral density
(BMD) and bone mineral content (BMC, dual-energy X-ray absorptiometry (DXA)), mechanical
strength of the left femur (three-point bending test), and femur microarchitecture of (micro-computed
tomography imaging, microCT) analyses were performed to characterize biomechanical and trabecu-
lar/cortical structure. Bone remodeling, osteocyte apoptosis, and lipid content were evaluated by
ELISA and immunofluorescence tests. RESULTS: In OVX rats, whole-body BMD, trabecular parame-
ters, and osteocalcin (OCN) levels decreased, while weight, lean/fat mass, osteocyte apoptosis, and
lipid content all increased. EXE after ovariectomy improved BMD and BMC, trabecular parameters,
cross-sectional area (CSA), moment of inertia, and OCN levels while decreasing osteocyte apoptosis
and lipid content. SR treatment increased BMD and BMC, trabecular parameters, CSA, stiffness,
OCN, and alkaline phosphatase (ALP) levels. Furthermore, fat mass, N-telopeptide (NTX) level,
osteocyte apoptosis, and lipid content significantly decreased. The combination of both EXE and
SR improved bone parameters compared with EXE or SR alone. CONCLUSION: EXE and SR had
positive and synergistic effects on bone formation and resorption.

Keywords: strontium ranelate; impact exercise; ovariectomized rats; bone status

1. Introduction

Treatment strategies in osteoporosis are based on both pharmacological [1] and non-
pharmacological approaches to treatment, including fall prevention, calcium and vitamin
D supplementation, exclusion of tobacco, and physical exercise (EXE) [2,3].

Pharmacologic treatments for osteoporosis generally target either bone formation or
bone resorption [4,5]. However, one agent, strontium ranelate (SR), acts on both bone
formation and resorption [6–9]. Previous studies have shown that SR administration signif-
icantly reduced the risk of vertebral, non-vertebral, and hip fractures in postmenopausal
women [4]. SR administration reduces bone resorption and stimulates bone formation [10]
by increasing osteoblast differentiation, decreasing osteoclast differentiation, and increasing
synthesis of collagen and non-collagen proteins [10–12]. SR induces a decrease in receptor

Int. J. Mol. Sci. 2021, 22, 3040. https://doi.org/10.3390/ijms22063040 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1244-1033
https://doi.org/10.3390/ijms22063040
https://doi.org/10.3390/ijms22063040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22063040
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22063040?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 3040 2 of 12

activator of nuclear factor kappa-B ligand (RANKL) and an increase in osteoprotegerin
(OPG) concentrations, leading to a modification of the RANKL/OPG ratio in favor of
osteoblast differentiation [8,11,13]. It is interesting to note that SR has been observed to
have no true effect on the intracellular RANKL protein, but to have an indirect influence
via the significant decrease in the membranous localization of RANKL [14].

In 2007, Chattopadhyay et al. showed that SR activates osteoblasts through the
calcium-sensing receptor (CaSR) [6]. The interaction of SR with CaSR induced the acti-
vation of mitogen-activated protein kinase signaling, thereby increasing osteoblast repli-
cation [6,15]. In 2010, Takao et al. demonstrated that SR induces not only osteoblast
proliferation but also its differentiation and mineralization by activating the CaSR [16].
Moreover, they confirmed that the therapeutic efficacy of SR for osteoporosis may be partly
mediated by the CaSR [16]. CaSR activation not only acts on osteoblasts but also leads to
osteoclast apoptosis [17]. However, SR does not only act via the CaSR. In 2009, Fromigue
et al. showed, using CaSR knockout mice, that SR promotes osteoblast replication inde-
pendently of the CaSR/extracellular signal-regulated kinases (Erk1)/2 cascade [15]. These
results confirm two different pathways for SR to modulate osteoblasts.

In parallel, several studies have highlighted that some EXE protocols can increase bone
density and bone mass in both animals [18,19] and humans [20–22]. This mechanical stress
modulates bone cell metabolism by osteocyte stimulation through some mechanosensitive
molecules such as piezo1 or by the key differentially expressed genes (DEGs) [23–25].
Previous studies showed that osteocytes were found to be the most responsive cell type to
interstitial fluid flow in vitro [26], and changes in osteocyte morphology and the direction
of loadings affect the cell stimulation [27]. Various factors monitor the interstitial fluid flow
including loading, frequency, stress distribution, vibration, and recovery phase [27,28]. All
these elements can influence the bone response to exercise.

Previous studies have explored the effects of combined anti-osteoporotic treatment
with EXE on bone health with variable results [29–31]. For example, a combination of EXE
(treadmill exercise: 5% incline, 22–24 m/min, 60 min/day, 5 days/week for 14 weeks)
combined with alendronate was more beneficial in preventing declines in bone mass and
strength [29] than anti-osteoporotic treatment alone. Another study using a bisphospho-
nate (risedronate) combined with EXE (swimming) showed better effects on bone mass
preservation than either treatment alone [32]. However, Lespessailles et al. reported that
EXE (treadmill exercise: 15 m/min, 60 min/day, 5 days/week for 12 weeks) or zoledronate
alone prevented bone loss and ameliorated bone strength while the combination did not
produce any synergetic or additive effects [30]. In 2015, we showed that combination of
EXE (treadmill interval training exercise 1 h/day, 5 days/week for 9 weeks) and sclerostin
(SOST) antibody treatment in glucocorticoid-treated rats did not show additional improve-
ment in bone mass or biomechanical parameters compared with either treatment alone [33].
Herein, we evaluated whether bone EXE and SR treatment together would have synergistic
or additive effects on bone status in an ovariectomized rat model.

2. Results
2.1. Effects of Ovariectomy on Bone

Ovariectomy led to an alteration of several bone parameters. In the O group, whole-
body BMD decreased significantly (−25.64%) compared to the Sh group (Table 1). We also
observed a significant increase in the weight (+43.48%) and the fat and lean mass (+31.66%
and +57.98%, respectively) in the O group compared to the Sh group (Table 1).

Regarding trabecular and cortical bone parameters, the O group showed a significant
decrease in BV/TV (−71.43%), Tb.Th (−10.68%), Tb.N (−68.13%), Ct.Th (−13.05%), and
Po.N (−6.36%) compared to Sh (Table 2), while CSA increased (+15.52%) (Table 3).
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Table 1. Densitometric characteristics and body composition: whole-body bone mineral content (BMC) and bone mineral
density (BMD) increase (difference to W0), fat and lean mass, and weight (difference to W0). Rats in the O group were
ovariectomized. Rats in OE and OESr were subjected to 10 impacts per day, 5 days a week for 8 weeks. Rats in Sr and OESr
groups received 625 mg/kg/day of SR. The critical p-value was p ≤ 0.05; NS: non-significant; a: vs. Sh; b: vs. O; c: vs. OE;
d: vs. OSr and e: vs. OESr.

Variables Sh O OE OSr OESr

Whole body BMC (g) 3.47 ± 0,66
c d e

2.48 ± 0.63
c d e

4.16 ± 0.57
a b

4.22 ± 0.32
a b

4.49 ± 0.99
a b

Whole body BMD
(g/cm2)

0.039 ± 0.009
b

0.029 ± 0.012
vs. all

0.043 ± 0.009
b

0.044 ± 0.016
b

0.047 ± 0.012
b

Weight (g) 78.89 ± 27.56
b c

114.63 ± 16.44
E e

101.55 ± 12.20
a e

94.38 ± 24.79
e

64.53 ± 6.95
vs. all

Lean Mass (g)
(%of weight)

37.48 ± 19.57
46.91%
vs. all

59.21 ± 17.23
51.65%

a

52.13 ± 7.97
51.33%

a

50.47 ± 18.97
53.48%

a

43.65 ± 9.54
67.64%

a

Fat Mass (g)
(% of weight)

38.95 ± 11.47
48.75%

b e

51.28 ± 11.48
44.74%
a d e

44.90 ± 7.28
44.21%

e

39.72 ± 10.86
42.09%

b e

18.02 ± 7.06
27.92%
vs. all

Table 2. Microarchitecture of trabecular and cortical bones at the left femurs. Rats in the O group were ovariectomized. Rats
in OE and OESr were subjected to 10 impacts per day, 5 days a week for 8 weeks. Rats in Sr and OESr groups received
625 mg/kg/day of SR. The critical p-value was p ≤ 0.05; NS: non-significant; a: vs. Sh; b: vs. O; c: vs. OE; d: vs. OSr and
e: vs. OESr.

Zones Variables

Trabecular
Bone

BV/TV (%) 22.002 ± 1.647
b c e

6;287 ± 0.866
vs. all

19.017 ± 3.074
vs. all

22.227 ± 0.631
b c e

26.675 ± 0.534
vs. all

Tb.Th (mm) 0.103 ± 0;115
vs. all

0.092 ± 0.004
vs. all

0.124 ± 0.008
vs. all

0.141 ± 0.006
vs. all

0.154 ± 0.009
vs. all

Tb.N (1/mm) 2.143 ± 0.115
vs. all

0.683 ± 0.099
vs. all

1.522 ± 0.195
a b e

1.577 ± 0.083
a b e

1.739 ± 0.092
vs. all

Cortical Bone

Ct.Po(%) 0.038 ± 0.015
e

0.026 ± 0.012
e

0.031 ± 0.017
e

0.026 ± 0.016
e

0.010 ± 0.007
vs. all

Ct.Th (mm) 0.475 ± 0.038
vs. all

0.413 ± 0.026
a d e

0.398 ± 0.032
a

0.503 ± 0.044
a b

0.512 ± 0.035
a b

Po.N (1/mm) 0.011 ± 0.004
b d e

0.007 ± 0.003
a e

0.008 ± 0.004
a e

0.006 ± 0.003
a e

0.003 ± 0.002
Vs.

For cell bone metabolism, we observed a decrease in ALP in the O group (−21.52%,
Table 4) and an increase in lipid content (+233.87%) and osteocyte apoptosis (+46.04%)
compared to the Sh group (Figure 1A).
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Table 3. Biomechanical testing of left femurs. Rats in the O group were ovariectomized. Rats in OE and OESr were subjected
to 10 impacts per day, 5 days a week for 8 weeks. Rats in Sr and OESr groups received 625 mg/kg/day of SR. The critical
p-value was p ≤ 0.05; NS: non-significant; a: vs. Sh; b: vs. O; c: vs. OE; d: vs. OSr and e: vs. OESr.

Variables Sh O OE OSr OESr

Ultimate strength
(N)

134.193 ± 11.313
d e

144.433 ± 11.040
e

145.163 ± 13.110
e

153.405 ± 11.234
a

157.778 ± 13.046
a b c

Cross-sectional area
(mm2)

3.944 ± 0.258
vs. all

4.556 ± 0.176
vs. all

4.996 ± 0.0440
a b

4.941 ± 0.368
a b

5.274 ± 0.528
a b

Yield point stress
(N)

269.313 ± 34.599
c e

256.185 ± 20.202
NS

232.273 ± 18.045
a d

264.452 ± 21.385
c

243.035 ± 34.0,857
a b

Moment of inertia
(mm4)

4.207 ± 4.459
c e

4.818 ± 0.435
c e

5.555 ± 0.751
a b

4.872 ± 0.585
ns

5.776 ± 0.857
a b

Stiffness
(N/mm)

221.410 ± 25.469
d e

223.143 ± 25.247
d e

227.152 ± 25.271
d e

241.152 ± 25.082
vs. all

256.580 ± 25.469
vs. all

Table 4. Bone remodeling markers of Wistar female rats. Bone alkaline phosphatase (ALP) and osteocalcin (OCN) were bone
formation markers and N-telopeptide (NTX) a bone resorption marker. Rats in the O group were ovariectomized. Rats in OE
and OESr were subjected to 10 impacts per day, 5 days a week for 8 weeks. Rats in Sr and OESr groups received 625 mg/kg/day
of SR. The critical p-value was p ≤ 0.05; NS: non-significant; a: vs. Sh; b: vs. O; c: vs. OE; d: vs. OSr and e: vs. OESr.

Variables Sh O OD OSr OESr

ALP (U/L) 1.686 ± 0.694
d e

2.314 ± 0.844
d e

1.808 ± 0.465
d e

4.189 ± 0.839
vs. all

3.110 ± 0.731
vs. all

OCN (pg/ml) 1.577 ± 0.364
b e

1.222 ± 0.346
vs. all

1.538 ± 0.622
b e

1.658 ± 0.466
b e

1.879 ± 0.698
vs. all

NTX (nm) 0.781 ± 0.152
d e

0.857 ± 0.076
d e

0.745 ± 0.103
d e

0.585 ± 0.086
a b c

0.622 ± 0.083
a b c

Figure 1. Cortical bone staining. (A) Osteocyte apoptosis represented by % of cleaved caspase-3 im-
munostaining. (B) Percent of lipid cell staining by Nile red. Rats in the O group were ovariectomized.
Rats in OE and OESr were subjected to 10 impacts per day, 5 days a week for 8 weeks. Rats in Sr
and OESr groups received 625 mg/kg/day of SR. The critical p-value was * p ≤ 0.05, ** p ≤ 0.005,
*** p ≤ 0.0005, **** p ≤ 0.0001; ns: non-significant.
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2.2. BMD, BMC, and Body Composition

Whole-body BMC and BMD significantly increased in the OE (+46.48% and +48.28%,
respectively), OSr (+48.59% and +51.72%, respectively), and OESr (+58.10% and + 62.07%,
respectively) groups compared to the O group (Table 1). However for BMC and BMD, no
significant difference was observed between the EXE, SR, or EXE + SR groups.

Body weight (BW) decreased significantly for the OESr group compared to the other
groups (−43.71% versus O, −36.45% versus OE, and −31.63% versus OSr) (Table 1). Fur-
thermore, fat mass decreased significantly in the OESr group compared to the O (−64.86%),
OE (−59.87%), and OSr (−54.63%) groups.

2.3. Trabecular Bone Microarchitecture

We investigated the effects of EXE, SR, or EXE+SR on trabecular bone microarchitecture
(BV/TV, Tb.Th, and Tb.N). BV/TV increased in the OE (+202.48%), OSr (+253.54%), and
OESr groups (+324.29%) compared to the O group (Table 2). Tb.Th and Tb.N were increase
in the OE group (+34.78% and +122.84%, respectively), in the OSr group (+53.26% and
+130.89%, respectively), and in OESr (+67.39% and +154.61%, respectively) compared to
the O group. The Fisher LSD test showed a synergistic effect of EXE+SR for BV/TV and
Tb.N parameters.

2.4. Cortical Bone Microarchitecture

Ct.Po and Po.N decreased significantly in the OESr group (−61.54% and −57.14%, re-
spectively) while Ct.Th increased significantly in the SR (+21.79%) and OESr (+23.97%) groups.
The Fisher LSD test showed a synergistic effect of EXE+SR for Ct.Po and Po.N (Table 2).

2.5. Biomechanics

Ultimate strength increased significantly in the OESr group (+9.24%) compared to the
O group. For cross-sectional area (CSA), the OE, OSr, and OESr groups showed a significant
increase compared to the O group (+9.66%, +8.45%, and +15.76%, respectively). For
moment of inertia, only the OE and OESr groups showed a significant increase compared
to the O group (+15.30% and +19.88%, respectively) (Table 3).

For stiffness, a significant increase was observed in the OSr (+8.07%) and OESr groups
(+14.98%) compared to the O group. The Fisher LSD test showed a synergistic effect of
EXE+SR for stiffness (Table 3).

For yield point stress, no significant differences were found for any of the conditions
(Table 3).

2.6. Bone Turnover

ALP concentration increased significantly for the OSr (4.189 ± 0.839 U/L) and OESr
groups (3.110 ± 0.731 U/L) compared to the O group (2.314 ± 0.844 U/L), while the OE
group showed no difference (Table 4). For OCN concentration, all groups, including the
OE (1.538 ± 0.364 U/L), OSr (1.658 ± 0.466 U/L), and OESr (1.879 ± 0.698 U/L) groups,
showed a significant increase compared to the O group (1.222 ± 0.346 U/L). The Fisher LSD
test showed a synergistic effect of EXE and SR on OCN concentration, a bone formation
marker (Table 4).

For the bone resorption marker NTX, we observed a significant decrease in the OSr
(0.585 ± 0.086 U/L) and OESr (0.622 ± 0.083 U/L) groups compared to the O group
(0.857 ± 0.076 U/L) (Table 4).

2.7. Osteocyte Apoptosis and Lipid Cells

We observed a decrease in osteocyte apoptosis for the OE, OSr, and OESr groups
compared to the O group (Figure 1A).

There were significantly fewer cells stained with Nile red in the OE, OSr, and OESr
groups compared to the O group (Figure 1B). Furthermore, we observed that the OSr and
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OESr groups showed a significantly lower number of positive cells compared to the OE
group (Figure 1B).

3. Discussion

There is limited knowledge in postmenopausal women and animal models mim-
icking osteoporosis on the potential associated effects of pharmaceutical activity and
anti-osteoporotic pharmaceutical agents on bone health [8–10]. Herein, to advance further
osteoporosis management, we have explored the synergic or additive effect of SR adminis-
tration and EXE in the ovariectomized rat model. Our results showed that both SR and
impact exercise had beneficial effects on bone tissue in enhancing bone microarchitecture
and strength. Additionally, we found the combined intervention of EXE and SR to be supe-
rior in decreasing weight, fat mass, Ct.Po, and Po.N and increasing trabecular parameters,
stiffness, and OCN level. In the present study, we provided a new insight into the impact
of the combination of both treatments, SR and EXE, on bone status and metabolism.

Consistent with previous studies [11,12], ovariectomy in young female rats resulted
in higher weight body gain (+43.5%), fat, and lean mass (+58% and +31.7%, respectively)
compared to the Sh group, despite receiving a similar quantity of food. In 1987, McElroy
et al. showed that ovariectomy in rats induces rapid weight gain in rats only 5 weeks after
the ovariectomy procedure [13]. Furthermore, we observed that ovariectomy also had a
significantly deleterious effect on whole-body BMC (−25.6%). These negative effects on
bone composition and BMC were associated with deleterious effects on trabecular bone
microarchitecture parameters. Our results showed a decrease in bone microarchitecture
for trabecular and cortical parameters. Trabecular bone loss was also associated with
significant modifications in the bone turnover marker osteocalcin [11]. In the present study,
the ovariectomy induced osteocyte apoptosis, as previously described [14], and a lipid
increase in bone cortical tissue compared to sham rats.

Ovariectomy in rats resulted in a body weight gain. Interestingly, we observed that
the OE group had a higher body weight gain compared to the Sh group. These results
indicate that EXE alone is not efficient to counterbalance the effect of OVX on weight. For
SR treatment and both treatments (SR+EXE), we observed that the OSr group showed
similar body weight gain and the OESr group showed lower body weight gain compared
to the Sh group. SR treatment alone and the combination of SR and EXE suppress the OVX
effects on body weight with a synergic effect of both treatments. Our protocol confirmed
previous findings [13] and showed that fat mass increased after ovariectomy. Herein, SR
treatment prevents these increases, and the combination of SR and EXE leads to a strong
decrease in fat mass. In all groups, a higher lean mass was observed compared to sham rats.
Interestingly, in the OESr group, the lean mass percent was higher compared to all groups.
This result is in line with those obtained by Komrakova et al. in 2016 [15]. They observed
that whole-body vibration could be applied in combination with SR treatment to improve
muscle tissue [15]. However, the direct effects of SR on muscle tissue are still unknown.

Ovariectomy leads to a decrease in whole-body BMC and BMD [16]. EXE, SR, and
combination of EXE and SR counterbalanced the OVX effects on BMC and BMD. Honda
et al. in 2003 showed a similar effect of EXE on BMD [16]. Concerning SR, Ammann et al.
in 2004 showed that SR treatment increased BMC and BMD in intact female rats [1]. The
improved BMC and BMD obtained in the OESr group were similar to those obtained in the
OE and OSr groups, confirming no synergic or additive effect.

Microarchitecture analysis showed that ovariectomy had negative effects on trabecular
and cortical bone microarchitecture: BV/TV, Tb.Th, and Tb.N. We observed that EXE
improves BV/TV; however, this parameter remains lower than the BV/TV of the Sh group.
On Ct.Po and Ct.Th, EXE had no effect. This is in line with a previous study showing
no changes in cortical bone parameters after physical exercise [16]. Furthermore, we also
found no significant effect on biomechanical parameters after EXE. We observed that SR
treatment suppresses the deleterious effect of ovariectomy on BV/TV and both cortical
bone parameters. These results are similar to those obtained by Ammann et al. in 2004
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with SR treatment on bone parameters in the OVX rat model [1]. Note, also, that the
biomechanical properties were also improved by SR treatment. These results are consistent
with the correlation already established between the mechanical properties of bone and
cortical bone parameter changes [17]. The combination of both treatments, SR and EXE,
improved the mechanical properties of bone and cortical bone parameters more than EXE
or SR alone. Furthermore, statistical analysis showed that the combined intervention of
EXE and SR had a synergic effect on BV/TV, Tb.Th, Tb.N, Ct.Po, and Po.N parameters and,
thus, on the stiffness, the ultimate strength, the cross-sectional area, and the moment of
inertia of bone.

Concerning bone turnover markers, EXE led to an increase in OCN level and a
decrease in NTX level. This may suggest an advantage for bone formation. A previous
study showed that EXE after ovariectomy increased OCN and ALP levels and decreased
NTX level [16]. Klein-Nulend et al. in 2005 and then in 2012, suggested that changes in
OCN, ALP, and NTX levels are a consequence of mechanical stress induced by EXE [18,19].
Before these studies, Umemura et al. demonstrated, in 1995, that jump training after
ovariectomy was efficient in bone regeneration [2]. Surprisingly, we observed that EXE
did not decrease osteocyte apoptosis and lipid number in cortical bone. For the SR-treated
group, bone turnover markers were also modified in favor of bone formation: increases in
ALP and OCN and a decrease in NTX. Furthermore, in this group, and in line with previous
reports [20,21], osteocyte apoptosis and lipid number in cortical bone were significantly
reduced. Interestingly, a combination of SR and EXE increased OCN levels with a synergic
effect. However, although ALP increased and NTX level decreased, no synergic effect
was noted. Osteocyte apoptosis and lipids in cortical bone were significantly decreased
in SR+EXE compared to OVX. Furthermore, we observed a higher decrease in this group
compared to the SR group. Surprisingly, only SR treatment decreased osteocyte apoptosis
and lipids in cortical bone while EXE had no impact. This may indicate an additive effect
of EXE to the SR treatment.

The present study is the first showing a synergic effect of SR and EXE treatment in
ovariectomized rats. This is important as it leaves open the possibility that SR and EXE
may act through different signaling pathways in bone. The signaling pathways involved in
SR response in bone are mostly calcium-sensing receptor (CaSR)-dependent [22]. Previous
studies showed that SR, through CaSR, stimulates osteoblast differentiation and prolif-
eration and osteoclast apoptosis [20–22]. SR, by activation of CaSR signaling pathways,
induces a decrease in RANKL and an increase in OPG. These changes in RANKL and OPG
levels lead to a modification of the RANKL/OPG ratio in favor of bone formation [20–22].
In 2010, Fromigue et al. investigated SR’s effects on calcineurin (Cn)/nuclear factor of
activated T cells (NFAT) signaling in osteoblast [23]. Wingless-related integration site (Wnt)
proteins are known to play an important role in the control of cell replication, differentia-
tion, and survival. In conclusion, SR, through CaSR pathways, Cn/NFATc1 pathways, and
Wnt signaling, leads to an increase in bone formation, bone density, and bone strength.

Several studies highlighted that EXE protocols increase bone density and bone mass in
animal models [24,25] and humans [9,26,27]. These bone modifications are due to osteocyte
biological modification, which is the most responsive cell type, compared to osteoblasts,
to interstitial fluid flow [28,29]. Parameters influencing bone remodeling by interstitial
fluid flow responses are loading, frequency, stress distribution, vibration, and recovery
phase [29–31]. Deformation of the bone matrix caused by mechanical loads is detected by
osteocytes, which, in turn, send paracrine signals to osteoblasts and osteoclasts. As already
mentioned, Wnt/lipoprotein receptor-related protein (LRP5) pathways have an important
role in bone cell differentiation, proliferation, and apoptosis [30,31]. Various publications
show that the Wnt/β-catenin signaling pathway is required for bone formation in response
to mechanical loading [31,32]. Wnt/LRP5 pathways can be regulated by a SOST protein,
the protein product of the Sost gene [33]. This protein is, therefore, a potent inhibitor of
bone formation. Interestingly, a publication shows that mechanical loading reduces SOST
levels in bone, suggesting that osteocytes might coordinate the osteogenic response to
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mechanical force by locally unleashing Wnt signaling [34]. However, mechanotransduction
is complex, and diverse molecular cascades activated by mechanical stimuli are involved
in cell bone response to physical exercise [19]. Various studies using a murine model with
ubiquitous or osteoblast/osteocyte-specific deletion of genes highlight altered responses to
mechanical loading in different signaling pathways, such as LRP5 [32], purinergic receptor
P2X7 [35], and connexin 43 [36]. In these models, the defective response to loading could
be due to a failure of the osteocytes to detect mechanical stimuli or to transmit signals to
the other bone cells.

Taking into account the SR and EXE data, we hypothesize that in our model, the
synergic effect of SR and EXE observed could be due to a modification of RANKL and
OPG levels in favor of bone formation and activation of Wnt signaling by SR and EXE
and stimulation of other signaling pathways (MAP kinases, P2X7) by EXE. Therefore,
a combination of SR and EXE resulted in biological modifications in osteoblast and in
osteocyte leading to an increase in the stiffness, ultimate strength, cross-sectional area, and
moment of inertia of bone. Our study demonstrated that SR, EXE, and the combination
of both prevented bone degradation after ovariectomy in the rat model. SR showed more
positive effects on both bone resorption and formation compared to EXE. Yet the best
improvements were noted in the combined group (SR and EXE) and notably on bone
remodeling. These results may open a new therapeutic strategy in the management of
osteoporosis and, in particular, for the treatment of postmenopausal osteoporosis.

Limitations: Note that recently, some adverse reactions have been reported resulting
from the use of SR. This includes skin reactions and cardiovascular disorders including
venous thromboembolism and myocardial infarction. Consequently, restrictions were
made by the European Medicines Agency (European Medicines Agency) In the present
stud, the treatment period was short, which may explain the absence of adverse reactions.
Note, however, that the animal cardiovascular system was not examined.

4. Materials and Methods
4.1. Animals and In Vivo Experimental Design

All experiments were approved by the animal protection committee of the University
of Orleans, France (agreement n◦: CEEA VdL; delivered: 2011-11-2). Sixty female Wistar
rats, aged 5 weeks old at the beginning of the experiment, were purchased from Janvier
Labs (Janvier Animal Production, Le Genet-St-Isle, France). Animals were housed two per
cage with ad libitum access to water and feed (M2,SDS, France). They were maintained in a
controlled temperature (22 ± 3 ◦C) environment and under 12/12 h light–dark cycles for the
duration of the experiment. After one week of acclimation, the rats were randomly assigned
(randomization and blinding method) to one of 5 groups: control/sham (Sh), ovariectomy
(O), ovariectomy + EXE (OE), ovariectomy + SR treatment (OSr), and ovariectomy + EXE +
SR treatment (OESr) (Figure 2). As noted in Figure 2, there were 12 animals per group.

For ovariectomies and sham operations, the rats were anesthetized with a mixture
of ketamine–xylazine (80–10 mg/kg, intraperitoneally, Panpharma, Paris, France) and
received intraperitoneal injection of meloxicam (2 mg/kg, Metacam, Paris, France) and an
injection of buprenorphine (0.05 mg/kg, Burprecare, Paris, France) to prevent infection and
pain. All rats were weighed once a week. At the end of experiments, all animals were euth-
anized with an intraperitoneal injection of pentobarbital sodium chloride (0.1 mL/100 g of
body weight; Ceva santé animal, Bordeaux, France). Each animal was maintained in obser-
vation for a few minutes for security reasons; then, cardiac exsanguination was performed.
The blood was centrifuged and the serum was frozen at −80 ◦C. Femurs and tibias were
dissected free of connective and fat tissues and stored at −20 and +4 ◦C, respectively.
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Figure 2. Study design. After acclimation, 60 female Wistar rats were randomly assigned to one of 5 groups (n = 12): SHAM
(Sh), OVX (O), OVX+EXE (OE), OVX+SR (OSr), and OVX+EXE+SR (OESr). Note: OVX—ovariectomized; EXE—exercise;
SR—strontium ranelate.

4.2. SR Administration

SR (S 12911-2) was supplied by Servier Laboratories (Technologie Servier, Orléans,
France). Carboxymethylcellulose 0.5% (CMC) and SR were mixed in order to obtain a
final concentration of 83.4 mg/mL. Rats were force-fed by stomach tube once daily with
SR + CMC 0.5% at 625 mg/kg or with CMC 0.5% as control, 5 days a week [1]. Dose
quantity was fixed based on previous reports [1].

4.3. Exercise Protocol

Rats performed jumping exercises for 8 weeks. During the first week, the rats were
familiarized with the impact EXE protocol: the initial height was 25 cm, and this was
gradually increased to 45 cm. Rats were submitted to 10 drops per day, 5 days/week for
8 weeks. As previously described, the rats were lifted horizontally for the jump, thus
causing them to land on all four feet [2].

4.4. Bone Densitometry Measurements

Bone mineral density (BMD) and bone mineral content (BMC) were measured by
dual-energy X-ray absorptiometry (DXA) (Discovery, Hologic, Bedford, MA, USA) using a
specific small animal body composition mode [3]. Both measurements were taken once at
week 0 (W0), before surgical operation, and once at week 8 (W8), before sacrifice. The root
mean square coefficients of variation (CVs) of whole-body BMC and BMD were 1.19% and
1.4%, respectively, and were determined from three repeated measures with repositioning
on 30 animals [3].

4.5. Morphological Characteristic of Trabecular Bone

The trabecular microarchitecture of the distal metaphysis of the left femurs was
studied post-mortem using high-resolution micro-computed tomography imaging (µCT)
(Skyscan 1072; Skyscan, Kontich, Belgium as previously described [3]. Briefly, the X-ray
source was set at 80 kV and 100 µA with an isometric pixel size 15.49 µm. For each
sample, 225 slices were selected and analyzed by NRecon and CTan software (skyscan
1072, Skyscan, Belgium). The following parameters were measured: bone volume fraction
BV/TV (%), trabecular thickness Tb.Th (mm), trabecular spaces Tb.Sp (mm), and trabecular
number Tb.N (1/mm).

4.6. Morphological Characteristic of Cortical Bone

The cortical bone of all left femurs was analyzed with the same acquisition characteris-
tics as trabecular bone described above. The cortical porosity Ct.Po (%), pore number Po.N
(number per mm), and pore spacing Po.Sp (mm) were measured as previously described [4].
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Briefly, cortical bone and trabecular bone were separated and then converted to a binary
image using a threshold adapted to each sample to determine cortical bone area. After
reconstruction, the cortical bones (porosity, thickness, marrow area, and total area) were
analyze using the CT analyzer software (MATLAB version R2013b, MathWorks).

4.7. Bone Mechanical Testing

The mechanical properties of all left femurs were assessed by a three-point bending
test with a universal testing machine (Instron 3343, Instron, Bayswater, Australia). Femurs
were secured on the two lower supports separated by a distance of 20 mm with a loading
rate of 1 mm/min. The following mechanical parameters were recorded: ultimate strength
(N), yield point stress (N), moment of inertia (mm4), and stiffness (N/mm). This protocol
was adapted from the method of Maurel et al. [3].

4.8. Biochemical Analysis

Bone turnover markers were analyzed at W0 and W8 (end of the protocol). The
biomarkers analyzed were osteocalcin (OCN) and bone alkaline phosphatase (ALP) for
bone formation and the N-terminal telopeptide of type I collagen (NTX) for bone resorption.
They were assayed in duplicate by ELISA. ELISA kits were obtained from EIAab (Wuhan
Eiaab Science Co., Ltd., Wuhan, Zhangjiakou, Hebei, China) and used according to the
manufacturer’s instructions.

4.9. Bone Immunostaining
4.9.1. Bone Preparation

Bone explants (tibias) were fixed in formalin 4% and cut transversally at the proximal
metaphysis of the left tibia with a high-speed rotary tool (Dremel 300, Dremel, Racine, WI,
USA) without embedding. This method was adapted from the protocol of Vatsa et al. [5] on
mice and used previously by our lab [6]. Bone slices were decalcified in osteosoft overnight
(Merck, Darmsatdt, Germany) and blocked in blocking buffer (Phosphate Buffered Saline
(PBS) containing 5% horse serum, 5% glycine, and 0.1% Triton X-100) for 2 h.

4.9.2. Cleaved Caspase-3 Staining

For cleaved caspase-3 staining, bone sections after the blocking step were incubated
with a monoclonal cleaved caspase-3 antibody (Cell signaling Technology Inc., Danvers,
MA, USA) (dilution 1:200) and then incubated with a secondary antibody DylightTM

488 anti-rabbit (Rockland Immunochemical, Pottstown, PA, USA) (dilution 1:400). Bone
sections were washed and then stained with DAPI for nucleus detection and mounted in
VectashieldTM mounting media (Vector Laboratories, Burlingame, CA, USA).

4.9.3. Nile Red Staining

Bone sections were stained with Nile red (Sigma-Aldrich, Saint-Quentin-Fallavier,
Isere, France). The protocol used was adapted from Fowler SD et al. [7]. Briefly, a stock
solution of Nile red (1 mg/mL) was prepared in acetone and protected from light. A
working solution was freshly prepared by a mix of stock solution (50 µL) and glycerol 75%
(10 mL). A drop of working solution was added to VectashieldTM mounting media (Ve
Vector Laboratories, Burlingame, CA, USA) before imaging.

4.9.4. Image Acquisition

Epifluorescence images were obtained with a Microvision microscope BA400 associ-
ated with an AE21 camera (Motic Biological). The objective magnification was 40x. Images
were analyzed with Image J software. The number of osteocytes was determined by
DAPI, the number of apoptotic cells by cleaved caspase-3, and lipids cells by Nile red and
expressed as stained cells per mm2.
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4.10. Statistical Analysis

All numerical variables were expressed as mean ± SEM. Normality of distribution
was tested. The critical p-value for statistical significance was p ≤ 0.05. Statistical analysis
was performed using GraphPad Prism software (GraphPad Software, San Diego, CA, USA,
www.graphpad.com accessed on 28 February 2021 ).

The effect of ovariectomy was analyzed using a non-parametric Mann–Whitney test
to compare the Sh and O groups.

The separate effects and combined effect of SR and EXE were analyzed using a 2-way
repeated-measures ANOVA test. Significant interactions were analyzed using a Fisher’s
Least Significant Difference (LSD) test (GraphPad Software, San Diego, CA, USA). When
the Fisher LSD test was significant, the effects of SR and EXE were considered as synergistic
and non-significant interactions were not considered different.

Author Contributions: P.A.: Design, experiments, results and writing of the manuscript; A.C.:
Results and writing of the manuscript; M.M.: Experiments and writing of the manuscript; Best
T.M.B.: Results and writing of the manuscript; E.L.: Results and writing of the manuscript; H.T.:
Design, experiments, results and writing of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Servier France.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board of the of the univer-sity of
Orleans and all experiments were approved by the animal protection committee of the Univer-sity of
Orleans, France (agreement n◦: CEEA VdL; delivered: 2011-11-2).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Laurent Benhamou Fro his support and Eric Dolleans from
I3MTO laboratory, for animal experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ammann, P.; Shen, V.; Robin, B.; Mauras, Y.; Bonjour, J.-P.; Rizzoli, R. Strontium Ranelate Improves Bone Resistance by Increasing

Bone Mass and Improving Architecture in Intact Female Rats. J. Bone Miner. Res. 2004, 19, 2012–2020. [CrossRef]
2. Umemura, Y.; Ishiko, T.; Tsujimoto, H.; Miura, H.; Mokushi, N.; Suzuki, H. Effects of Jump Training on Bone Hypertrophy in

Young and Old Rats. Int. J. Sports Med. 1995, 16, 364–367. [CrossRef] [PubMed]
3. Maurel, D.B.; Boisseau, N.; Ingrand, I.; Dolleans, E.; Benhamou, C.-L.; Jaffre, C. Combined effects of chronic alcohol consumption

and physical activity on bone health: Study in a rat model. Eur. J. Appl. Physiol. 2011, 111, 2931–2940. [CrossRef]
4. Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Muller, R. Guidelines for assessment of bone

microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [CrossRef] [PubMed]
5. Vatsa, A.; Semeins, C.; Smit, T.; Klein-Nulend, J. Paxillin localisation in osteocytes—Is it determined by the direction of loading?

Biochem. Biophys. Res. Commun. 2008, 377, 1019–1024. [CrossRef]
6. Maurel, D.; Jaffré, C.; Rochefort, G.Y.; Aveline, P.; Boisseau, N.; Uzbekov, R.; Gosset, D.; Pichon, C.; Fazzalari, N.; Pallu, S.; et al.

Low bone accrual is associated with osteocyte apoptosis in alcohol-induced osteopenia. Bone 2011, 49, 543–552. [CrossRef]
7. Fowler, S.D.; Greenspan, P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in

tissue sections: Comparison with oil red O. J. Histochem. Cytochem. 1985, 33, 833–836. [CrossRef]
8. Lespessailles, E.; Prouteau, S. Is there a synergy between physical exercise and drug therapies for osteoporosis? Clin. Exp.

Rheumatol. 2006, 24, 191–195.
9. Benedetti, M.G.; Furlini, G.; Zati, A.; Mauro, G.L. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients.

BioMed Res. Int. 2018, 2018, 1–10. [CrossRef] [PubMed]
10. Gupta, A.; March, L. Treating osteoporosis. Aust. Prescr. 2016, 39, 40–46. [CrossRef] [PubMed]
11. Aerssens, J.; Van Audekercke, R.; Geusens, P.; Schot, L.P.C.; Osman, A.A.-H.; Dequeker, J. Mechanical properties, bone mineral

content, and bone composition (collagen, osteocalcin, IGF-I) of the rat femur: Influence of ovariectomy and nandrolone decanoate
(anabolic steroid) treatment. Calcif. Tissue Int. 1993, 53, 269–277. [CrossRef] [PubMed]

12. Hara, K.; Kobayashi, M.; Akiyama, Y. Influence of bone osteocalcin levels on bone loss induced by ovariectomy in rats. J. Bone
Miner. Metab. 2007, 25, 345–353. [CrossRef] [PubMed]

www.graphpad.com
http://doi.org/10.1359/jbmr.040906
http://doi.org/10.1055/s-2007-973021
http://www.ncbi.nlm.nih.gov/pubmed/7591386
http://doi.org/10.1007/s00421-011-1916-1
http://doi.org/10.1002/jbmr.141
http://www.ncbi.nlm.nih.gov/pubmed/20533309
http://doi.org/10.1016/j.bbrc.2007.12.174
http://doi.org/10.1016/j.bone.2011.06.001
http://doi.org/10.1177/33.8.4020099
http://doi.org/10.1155/2018/4840531
http://www.ncbi.nlm.nih.gov/pubmed/30671455
http://doi.org/10.18773/austprescr.2016.028
http://www.ncbi.nlm.nih.gov/pubmed/27340321
http://doi.org/10.1007/BF01320913
http://www.ncbi.nlm.nih.gov/pubmed/8275356
http://doi.org/10.1007/s00774-007-0781-9
http://www.ncbi.nlm.nih.gov/pubmed/17968486


Int. J. Mol. Sci. 2021, 22, 3040 12 of 12

13. McElroy, J.F.; Wade, G.N. Short- and long-term effects of ovariectomy on food intake, body weight, carcass composition, and
brown adipose tissue in rats. Physiol. Behav. 1987, 39, 361–365. [CrossRef]

14. Wu, Z.-X.; Lei, W.; Hu, Y.-Y.; Wang, H.-Q.; Wan, S.-Y.; Ma, Z.-S.; Sang, H.-X.; Fu, S.-C.; Han, Y.-S. Effect of ovariectomy on BMD,
micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med. Eng. Phys. 2008, 30, 1112–1118.
[CrossRef] [PubMed]

15. Komrakova, M.; Hoffmann, D.B.; Nuehnen, V.; Stueber, H.; Wassmann, M.; Wicke, M.; Tezval, M.; Stuermer, K.M.; Sehmisch,
S. The Effect of Vibration Treatments Combined with Teriparatide or Strontium Ranelate on Bone Healing and Muscle in
Ovariectomized Rats. Calcif. Tissue Int. 2016, 99, 408–422. [CrossRef] [PubMed]

16. Honda, A.; Sogo, N.; Nagasawa, S.; Shimizu, T.; Umemura, Y. High-impact exercise strengthens bone in osteopenic ovariectomized
rats with the same outcome as Sham rats. J. Appl. Physiol. 2003, 95, 1032–1037. [CrossRef] [PubMed]

17. Brennan, M.; Gleeson, J.; O’Brien, F.; McNamara, L. Effects of ageing, prolonged estrogen deficiency and zoledronate on bone
tissue mineral distribution. J. Mech. Behav. Biomed. Mater. 2014, 29, 161–170. [CrossRef]

18. Klein-Nulend, J.; Bacabac, R.G.; Bakker, A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte
cytoskeleton in maintaining our skeleton. Eur. Cells Mater. 2012, 24, 278–291. [CrossRef] [PubMed]

19. Klein-Nulend, J.; Bacabac, R.; Mullender, M. Mechanobiology of bone tissue. Pathol. Biol. 2005, 53, 576–580. [CrossRef]
20. Bonnelye, E.; Chabadel, A.; Saltel, F.; Jurdic, P. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and

inhibition of osteoclast formation and resorption in vitro. Bone 2008, 42, 129–138. [CrossRef] [PubMed]
21. Atkins, G.J.; Welldon, K.J.; Halbout, P.; Findlay, D.M. Strontium ranelate treatment of human primary osteoblasts promotes an

osteocyte-like phenotype while eliciting an osteoprotegerin response. Osteoporos. Int. 2008, 20, 653–664. [CrossRef]
22. Chattopadhyay, N.; Quinn, S.J.; Kifor, O.; Ye, C.; Brown, E.M. The calcium-sensing receptor (CaR) is involved in strontium

ranelate-induced osteoblast proliferation. Biochem. Pharmacol. 2007, 74, 438–447. [CrossRef] [PubMed]
23. Fromigué, O.; Haÿ, E.; Barbara, A.; Marie, P.J. Essential Role of Nuclear Factor of Activated T Cells (NFAT)-mediated Wnt

Signaling in Osteoblast Differentiation Induced by Strontium Ranelate. J. Biol. Chem. 2010, 285, 25251–25258. [CrossRef]
24. Welch, J.; Turner, C.; Devareddy, L.; Arjmandi, B.; Weaver, C. High impact exercise is more beneficial than dietary calcium for

building bone strength in the growing rat skeleton. Bone 2008, 42, 660–668. [CrossRef] [PubMed]
25. Yeh, J.K.; Aloia, J.F.; Tierney, J.M.; Sprintz, S. Effect of treadmill exercise on vertebral and tibial bone mineral content and bone

mineral density in the aged adult rat: Determined by dual energy X-ray absorptiometry. Calcif. Tissue Int. 1993, 52, 234–238.
[CrossRef]

26. Kontulainen, S.; Kannus, P.; Haapasalo, H.; Sievänen, H.; Pasanen, M.; Heinonen, A.; Oja, P.; Vuori, I. Good Maintenance of
Exercise-Induced Bone Gain with Decreased Training of Female Tennis and Squash Players: A Prospective 5-Year Follow-Up
Study of Young and Old Starters and Controls. J. Bone Miner. Res. 2001, 16, 195–201. [CrossRef] [PubMed]

27. Moreira, L.D.F.; De Oliveira, M.L.; Lirani-Galvão, A.P.; Marin-Mio, R.V.; Dos Santos, R.N.; Lazaretti-Castro, M. Physical exercise
and osteoporosis: Effects of different types of exercises on bone and physical function of postmenopausal women. Arq. Bras.
Endocrinol. Metabol. 2014, 58, 514–522. [CrossRef] [PubMed]

28. Westbroek, I.; Ajubi, N.; Alblas, M.; Semeins, C.; Klein-Nulend, J.; Burger, E.; Nijweide, P. Differential Stimulation of Prostaglandin
G/H Synthase-2 in Osteocytes and Other Osteogenic Cells by Pulsating Fluid Flow. Biochem. Biophys. Res. Commun. 2000, 268,
414–419. [CrossRef]

29. Joukar, A.; Niroomand-Oscuii, H.; Ghalichi, F. Numerical simulation of osteocyte cell in response to directional mechanical
loadings and mechanotransduction analysis: Considering lacunar–canalicular interstitial fluid flow. Comput. Methods Programs
Biomed. 2016, 133, 133–141. [CrossRef] [PubMed]

30. Bonewald, L.F.; Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 2008, 42, 606–615. [CrossRef]
31. Grigorie, D.; Lerner, U. The Crucial Role of the WNT System in Bone Remodelling. Acta Endocrinol. 2018, 14, 90–101. [CrossRef]

[PubMed]
32. Sawakami, K.; Robling, A.G.; Ai, M.; Pitner, N.D.; Liu, D.; Warden, S.J.; Li, J.; Maye, P.; Rowe, D.W.; Duncan, R.L.; et al. The

Wnt Co-receptor LRP5 Is Essential for Skeletal Mechanotransduction but Not for the Anabolic Bone Response to Parathyroid
Hormone Treatment. J. Biol. Chem. 2006, 281, 23698–23711. [CrossRef] [PubMed]

33. Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical
Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [CrossRef] [PubMed]

34. Tu, X.; Rhee, Y.; Condon, K.W.; Bivi, N.; Allen, M.R.; Dwyer, D.; Stolina, M.; Turner, C.H.; Robling, A.G.; Plotkin, L.I.; et al. Sost
downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 2012, 50, 209–217.
[CrossRef] [PubMed]

35. Li, J.; Liu, D.; Ke, H.Z.; Duncan, R.L.; Turner, C.H. The P2X7 Nucleotide Receptor Mediates Skeletal Mechanotransduction. J. Biol.
Chem. 2005, 280, 42952–42959. [CrossRef] [PubMed]

36. Grimston, S.K.; Brodt, M.D.; Silva, M.J.; Civitelli, R. Attenuated Response to In Vivo Mechanical Loading in Mice With Conditional
Osteoblast Ablation of the Connexin43 Gene (Gja1). J. Bone Miner. Res. 2008, 23, 879–886. [CrossRef] [PubMed]

http://doi.org/10.1016/0031-9384(87)90235-6
http://doi.org/10.1016/j.medengphy.2008.01.007
http://www.ncbi.nlm.nih.gov/pubmed/18595763
http://doi.org/10.1007/s00223-016-0156-0
http://www.ncbi.nlm.nih.gov/pubmed/27272029
http://doi.org/10.1152/japplphysiol.00781.2002
http://www.ncbi.nlm.nih.gov/pubmed/12754179
http://doi.org/10.1016/j.jmbbm.2013.08.029
http://doi.org/10.22203/eCM.v024a20
http://www.ncbi.nlm.nih.gov/pubmed/23007912
http://doi.org/10.1016/j.patbio.2004.12.005
http://doi.org/10.1016/j.bone.2007.08.043
http://www.ncbi.nlm.nih.gov/pubmed/17945546
http://doi.org/10.1007/s00198-008-0728-6
http://doi.org/10.1016/j.bcp.2007.04.020
http://www.ncbi.nlm.nih.gov/pubmed/17531955
http://doi.org/10.1074/jbc.M110.110502
http://doi.org/10.1016/j.bone.2007.12.220
http://www.ncbi.nlm.nih.gov/pubmed/18291744
http://doi.org/10.1007/BF00298725
http://doi.org/10.1359/jbmr.2001.16.2.195
http://www.ncbi.nlm.nih.gov/pubmed/11204418
http://doi.org/10.1590/0004-2730000003374
http://www.ncbi.nlm.nih.gov/pubmed/25166042
http://doi.org/10.1006/bbrc.2000.2154
http://doi.org/10.1016/j.cmpb.2016.05.019
http://www.ncbi.nlm.nih.gov/pubmed/27393805
http://doi.org/10.1016/j.bone.2007.12.224
http://doi.org/10.4183/aeb.2018.90
http://www.ncbi.nlm.nih.gov/pubmed/31149241
http://doi.org/10.1074/jbc.M601000200
http://www.ncbi.nlm.nih.gov/pubmed/16790443
http://doi.org/10.1074/jbc.M413274200
http://www.ncbi.nlm.nih.gov/pubmed/15778503
http://doi.org/10.1016/j.bone.2011.10.025
http://www.ncbi.nlm.nih.gov/pubmed/22075208
http://doi.org/10.1074/jbc.M506415200
http://www.ncbi.nlm.nih.gov/pubmed/16269410
http://doi.org/10.1359/jbmr.080222
http://www.ncbi.nlm.nih.gov/pubmed/18282131

	Introduction 
	Results 
	Effects of Ovariectomy on Bone 
	BMD, BMC, and Body Composition 
	Trabecular Bone Microarchitecture 
	Cortical Bone Microarchitecture 
	Biomechanics 
	Bone Turnover 
	Osteocyte Apoptosis and Lipid Cells 

	Discussion 
	Materials and Methods 
	Animals and In Vivo Experimental Design 
	SR Administration 
	Exercise Protocol 
	Bone Densitometry Measurements 
	Morphological Characteristic of Trabecular Bone 
	Morphological Characteristic of Cortical Bone 
	Bone Mechanical Testing 
	Biochemical Analysis 
	Bone Immunostaining 
	Bone Preparation 
	Cleaved Caspase-3 Staining 
	Nile Red Staining 
	Image Acquisition 

	Statistical Analysis 

	References

