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Background: Keloids (KL) and hypertrophic scars (HS) are forms of abnormal cutaneous scarring 
characterized by excessive deposition of extracellular matrix and fibroblast proliferation. Currently, the 
efficacy of drug therapies for KL and HS is limited. The present study aimed to investigate new drug 
therapies for KL and HS by using computational methods.
Methods: Text mining and GeneCodis were used to mine genes closely related to KL and HS. Protein-
protein interaction analysis was performed using Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) and Cytoscape. The selection of drugs targeting the genes closely related to KL and HS was 
carried out using Pharmaprojects. Drug-target interaction prediction was performed using DeepPurpose, 
through which candidate drugs with the highest predicted binding affinity were finally obtained.
Results: Our analysis using text mining identified 69 KL- and HS-related genes. Gene enrichment 
analysis generated 25 genes, representing 7 pathways and 130 targeting drugs. DeepPurpose recommended  
14 drugs as the final drug list, including 2 phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitors, 
10 prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitors and 2 vascular endothelial growth factor A 
(VEGFA) antagonists.
Conclusions: Drug discovery using in silico text mining and DeepPurpose may be a powerful and effective 
way to identify drugs targeting the genes related to KL and HS.
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Introduction

Keloids (KL) and hypertrophic scars (HS) are fibroproliferative 
disorders caused by abnormal wound healing following dermal 
injury. These scars form due to fibroblast proliferation and are 
characterized by excessive collagen accumulation (1). There is 
great variation in the epidemiology of KL and HS depending 
on the study population; for instance, the incidence among 

African and Hispanic populations ranges from 4.5–16%, 
compared with only 0.09% in England (2). Aside from the 
unpleasant symptoms of HS, such as itching, pain, erythema, 
and functional damage, its unsightly appearance can cause 
psychological pain for patients, affecting their quality of life (3).

Currently, treatments for KL and HS include drug 
injections, surgical excision, laser therapy, radiotherapy, 
pressure therapy, and cryotherapy. However, corticosteroid 
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injections can produce side effects such as skin atrophy and 
telangiectasia. Furthermore, the rate of recurrence among 
keloid patients treated with surgical excision combined 
with radiotherapy has been reported to be 21%, with none 
in craniofacial locations (4). Other therapies may also 
cause side effects and have unsatisfactory effectiveness (5).  
However, the molecular mechanism underlying scar 
formation still needs to be elucidated, and successful 
treatment of KL and HS remains a challenge. 

It takes more than 10 years to discover and develop a new 
drug, at an average cost exceeding 2.6 billion US dollars. 
However, new therapeutic purposes for existing drugs may 
be discovered through drug repositioning (6,7). Drug-target 
interactions (DTIs) measure the binding affinity of drug 
molecules to protein targets (8). Therefore, computational 
methods that can obtain knowledge about the interaction 
between compounds and target proteins are important in 
drug research and discovery (R&D). Computer simulation 
methods can speed up the drug research and development 
process by systematically prioritizing the most effective 
compounds. Recently, deep learning (DL) technology 
has been demonstrated to have the potential to predict 
compound–protein interactions on a large scale by learning 
from limited data, and it has been successfully applied in the 
R&D of new drugs, in which it significantly shortened the 
time and cost (9,10). 

Our previous studies demonstrated that drug discovery 
using in silico text mining and pathway analysis tools may 
be a method to explore candidate drugs targeting the genes 
and pathways associated with certain diseases. In this study, 
we utilized DeepPurpose, a powerful Python toolkit, which 
presented the most likely drug candidates based on our 
previous work. DeepPurpose processes the input target 
amino acid sequences and candidate drug codes by feeding 
the data into multiple latest deep learning models pre-
trained on DAVIS, BindingDB-Kd, and kinase inhibitor 
bioactivity (KIBA) datasets (11-13). The prediction results 
are then integrated by DeepPurpose to generate a ranked 
list, with the drug candidates with the highest predicted 
binding scores positioned at the top. The top-ranked 
drug candidates are considered to possess the potential for 
experimental verification.

DeepPurpose presents the DTI model as an encoder-
decoder framework to predict drug-target interactions. 
Taking the simplified molecular-input line-entry system 
(SMILES) format of the drug and the target amino acid 
sequence pair as input, DeepPurpose outputs the score of 
the binding affinity between the drug and the molecule. For 

drug molecules, DeepPurpose provides 8 encoders: Morgan, 
PubChem, Daylight, RDKit 2D, convolutional neural 
network (CNN), convolutional recurrent neural network 
(CNN+RNN), Transformer encoders, and Message-
Passing Neural Network (MPNN). For protein targets, 
DeepPurpose provides 7 encoders: amino acid composition 
(AAC), PseACC, Conjoint Triad, Quasi Sequence, CNN, 
CNN+RNN, and Transformer (14).

In this study, we investigated new drug therapies for 
KL and HS by employing computational methods. First, 
we performed text mining, biological process and pathway 
analysis, and protein-protein interaction (PPI) analysis to 
explore the target genes and pathways highly relevant to 
KL and HS. DTI analysis was then performed to obtain 
candidate drugs. Finally, DeepPurpose was used to predict 
the interaction of candidate drugs and gene targets, and the 
drugs with the highest predicted binding affinity from a 
ranked list were obtained.

We present the following article in accordance with the 
MDAR checklist (available at http://dx.doi.org/10.21037/
atm-21-218).

Methods

Text mining

In this study, text mining, a process in which high-quality 
information is derived from biological literature, was 
performed using pubmed2ensembl (http://pubmed2ensembl.
ls.manchester.ac.uk/) (15). The following terms were used 
as search input: “keloid”, “hypertrophic scar”, “hyperplastic 
scar”, and “scar hypertrophy”. We chose “Homo sapiens” 
as the species dataset, then selected “Ensembl Gene ID” 
and “Associated Gene Name” under GENE. “Search for 
PubMed IDs” and “filter on Entrez: PMID” drop-down 
menus were chosen in the search of every query. The 
intersection of the 4 derived gene lists was used for the 
next step. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Biological process and pathway analysis

GeneCodis (http://genecodis.cnb.csic.es/) was used to 
perform enrichment analysis on genes closely related to 
KL and HS (16). First, the genes identified through text 
mining were subjected to Gene Ontology (GO) biological 
process analysis. The most significantly enriched genes in 
biological processes were selected for Kyoto Encyclopedia 
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of Genes and Genomes (KEGG) pathway analysis. The 
most significantly enriched KEGG pathways were selected, 
and genes associated with the selected pathways were used 
for further analysis.

Protein-protein interaction network

We used the STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) database (http://string-db.org) 
to construct a protein-protein interaction (PPI) network 
in order to visualize the genes from the previous step (17). 
The genes were input under the “Multiple proteins” menu, 
and “Homo sapiens” was selected as the species dataset. 
To obtain the genes with strong interactions, we set a high 
confidence score of 0.700, and the PPI network of the 
target genes was generated. Then, the CentiScape plugin in 
Cytoscape was used to determine the centrality parameters 
of the PPI network (18). “Degree” and “Betweenness” were 
chosen as the parameters for the selection of key genes in 
this study. Degree represents the total number of edges 
incident to the node, and betweenness refers to the number 
of shortest paths through the node. 

Drug-gene interactions

Drugs targeting the genes highly related to KL and 
HS were searched for using Pharmaprojects (https://
pharmaintelligence.informa.com/) (19). Each gene query 
returned a drug list detailing the global status, disease, 
mechanism of action, delivery route, target, chemical 
structure (SMILES format), and other information about 
drugs. Drugs with “launched”, “phase I/II/III clinical trial”, 
“pre-registration”, or “registered” as the global status were 
screened out, and those with the delivery route of “oral” or 
“oral, swallowed” were also excluded. These criteria allowed 
us to obtain candidate drugs with targeting ability, quick 
onset of action, and few side effects. Drugs derived from the 
DTI analysis may be candidates for KL and HS treatment.

DeepPurpose

In order to utilize DeepPurpose, we first translated the 
target proteins into amino acid sequences and the potential 
drugs into SMILES fingerprints. Taking the sequences 
and fingerprints as input, we used the pre-trained models 
provided by DeepPurpose to predict the binding affinity 
between each paired drug molecule and protein target of 
interest. As DeepPurpose provides 15 pre-trained models, 
we predicted the binding affinity score for each pre-trained 
model individually and screened the potential drug-target 
interaction by setting appropriate thresholds. We validated 
the results using the validation set we collected. We also 
calculated aggregated binding affinity scores with the 
aggregation schema proposed by DeepPurpose. Finally, the 
differences in the predicted binding affinity scores obtained 
using single models and aggregate models were analyzed.

Statistical analysis

Statistical analyses were carried out using machine learning 
algorithm in DeepPurpose.

Results

Results of text mining, biological process, and KEGG 
pathway analysis 

Through the data mining process described in Figure 1,  
135 genes relating to “scar hypertrophy”, “keloid”, 
“hypertrophic scar”, and “hyperplastic scar” were found. 
After deleting the duplicates, we were left with 69 genes 
(Figure 2). In the analysis of enriched GO biological process 

Text mining concept: “scar hypertrophy”,“keloid”,
“hypertrophic scar”and “hyperplastic scar”

 (Pubmed2ensembl)

Fuctional analysis
 (GeneCodis)

Protein-protein interaction
 (STRING, Cytoscape)

Drug-gene interaction
 (PharmaProjects)

Drug-gene interaction
 (DeepPurpose)

Figure 1 Overall data mining process. Text mining and GeneCodis 
were used to identify genes related to keloids and hypertrophic 
scars (KL and HS). Protein-protein interaction analysis was 
performed in STRING and Cytoscape. Drugs targeting the genes 
highly related to KL and HS were selected using Pharmaprojects. 
Based on the drug-target interaction analysis by DeepPurpose, 
candidate drugs with highest predicted binding affinity were finally 
derived.
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Figure 2 Summary of data mining results. (A) Text mining: 135 genes were found to be associated with “scar hypertrophy”, “keloid”, 
“hypertrophic scar”, and “hyperplastic scar” using pubmed2ensembl. Sixty-nine genes remained after deletion of the duplicates. (B) Gene set 
enrichment: GeneCodis biological processes and pathway analysis generated 39 and 25 genes, respectively. (C) Protein-protein interaction 
analysis was performed using STRING and Cytoscape. (D) Drug-gene interaction: 130 targeting drugs were selected by Pharmaprojects. (E) 
Drug-target interaction: the 14 candidate drugs with highest predicted binding affinity were finally derived.

annotations, the P value cutoff (P=1.00e-11) was set to 
select the most enriched biological processes relevant to 
the pathology of KL and HS, which resulted in 7 sets of 
annotations containing 39 genes (Table 1). The 5 most 
enriched biological process annotations were: “positive 
regulation of epithelial to mesenchymal transition” 
(P=1.41E-13), the “transforming growth factor beta 
receptor signaling pathway” (P=2.67E-13), the “cytokine-
mediated signaling pathway” (P=4.17E-13), “wound 
healing” (P=4.42E-12), and “pathway-restricted SMAD 
protein phosphorylation” (P=1.54E-11). For the KEGG 
pathway analysis, the P value cutoff was set to P=1.00e-14, 
which resulted in 25 genes in 7 pathways above the cutoff 
(Table 2). The top 3 most enriched biological process 
annotations were: the “AGE-RAGE signaling pathway in 
diabetic complications” (P=1.71E-21), “pathways in cancer” 
(P=5.43E-16), and the “TGF-beta signaling pathway” 
(P=8.08E-16).

Results of PPI network analysis 

The PPIs of the 25 target genes were analyzed using the 

STRING database (Figure 3). Data from STRING were 
then input into Cytoscape to generate the PPI network 
(Figure 4). In CentiScaPe, the average values of the 2 
important centrality parameters, degree and betweenness, 
were 10.00 and 15.44, respectively. The final gene list 
included “CDKN1B”, “VEGFA”, “TNF”, “TGFBR1”, 
“TGFBR2”, “TGFB1”, “TGFB2”, “TGFB3”, “STAT3”, 
“PIK3CA”, “MMP2”, “SMAD2”, “SMAD3”, “IL6”, “IL6R”, 
“FN1”, “COL1A1”, “COL1A2”, “TP53”, “SP1”, “PTGS2”, 
“MMP9”, “HGF”, “FGF2”, and “FGF7”.

Results of drug-gene interaction analysis 

A total of 130 drugs targeting the final gene list were 
initially selected as possible treatments for KL and HS. 
These drugs included 30 vascular endothelial growth 
factor A (VEGFA) receptor antagonists, 27 prostaglandin-
endoperoxide synthase 2 (PTGS2) inhibitors, 15 tumor 
necrosis factor alpha (TNF-α) antagonists, 14 transforming 
growth factor beta 1 (TGF-β1) antagonists, 8 hepatocyte 
growth factor (HGF) receptor agonists, 8 interleukin 
(IL)-6 antagonists, 7 IL-6 receptor (IL-6R) antagonists, 
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Table 1 Summary of biological process gene set enrichment analysis

Process
Genes in 
query set

Corrected 
hypergeometric P value

Genes

Positive regulation of epithelial to 
mesenchymal transition

10 1.41E-13 TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1I1, TGFB1, 
SMAD3, SMAD2, IL6, COL1A1

Transforming growth factor beta 
receptor signaling pathway

12 2.67E-13 TP53, TGFBR3, TGFBR2, TGFBR1, TGFB3, TGFB2, 
TGFB1, SMAD7, SMAD6, SMAD3, SMAD2, COL1A2

Cytokine-mediated signaling pathway 16 4.17E-13 VEGFA, TP53, TNFRSF1B, TNF, TGFB1, STAT3, PTGS2, 
PIK3CA, MMP9, MMP2, IL6R, IL6, HGF, FN1, FGF2, 
COL1A2

Wound healing 11 4.42E-12 POSTN, TGFBR2, TGFBR1, TGFB3, TGFB2, SMAD3, 
SMAD2, TNC, FN1, FGF2, COL1A1

Pathway-restricted SMAD protein 
phosphorylation

5 1.54E-11 TGFBR3, TGFBR2, TGFBR1, TGFB1, SMAD7

Negative regulation of cell population 
proliferation

17 1.72E-11 CDKN1B, TP73, TP53, TIMP2, TGFBR2, TGFB3, TGFB2, 
TGFB1I1, TGFB1, STAT3, SOD2, PTGS2, SMAD6, SMAD3, 
SMAD2, IL6, DPT

Positive regulation of pri-miRNA 
transcription by RNA polymerase II

8 4.52E-11 TP53, TNF, TGFB2, TGFB1, STAT3, SMAD6, SMAD3, FGF2

The most significantly enriched biological processes relevant to the pathology of keloids and hypertrophic scars above the P value cutoff 
(P=1.00E-11) were selected. The analysis of enriched biological processes resulted in 7 sets of annotations containing 39 genes. TGFBR2, 
transforming growth factor beta receptor 2; TGFBR1, transforming growth factor beta receptor 1; TGFB3, transforming growth factor beta 3; 
TGFB2, transforming growth factor beta 2; TGFB1I1, transforming growth factor beta 1 included transcript 1; TGFB1, transforming growth 
factor beta 1; SMAD3, mothers against decapentaplegic homolog 3; SMAD2, mothers against decapentaplegic homolog 2; IL6, interleukin 
6; COL1A1, collagen type I alpha 1; TP53, tumor protein 53; TGFBR3, transforming growth factor beta receptor 3; SMAD7, mothers 
against decapentaplegic homolog 7; SMAD6, mothers against decapentaplegic homolog 6; COL1A2, collagen type I alpha 2; VEGFA, 
vascular endothelial growth factor A; TNFRSF1B, tumor necrosis factor receptor superfamily member 1B; TNF, tumor necrosis factor; 
STAT3, signal transducer and activator of transcription 3; PTGS2, prostaglandin-endoperoxide synthase 2; PIK3CA, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha; MMP9, matrix metalloprotein 9; MMP2, matrix metalloprotein 2; IL6R, interleukin 6; 
HGF, hematopoietic growth factor; FN1, fibronectin 1; FGF2, fibroblast growth factor 2; POSTN, periostin; TNC, tenascin C; CDKN1B, 
cyclindependent kinase inhibitor 1B; TP73, tumor protein 73; TIMP2, metallopeptidase inhibitor 2; SOD2, superoxide  dismutase 2; DPT, 
dermatopontin.

5 fibroblast growth factor (FGF2) agonists, 5 TGF-β1 
antagonists, 5 PI3 kinase inhibitors, 4 STAT 3 inhibitors, 
1 matrix metalloproteinase-9 (MMP-9) inhibitor and 1 
TGF-β3 antagonist.

Results of DeepPurpose analysis

DeepPurpose requires drug molecules to be in the 
SMILES format, so 34 pharmaceutical compounds with 
SMILES structure were selected for DeepPurpose analysis. 
Subsequently, each pre-trained model in DeepPurpose 
generated a ranked list showing the predicted binding 
affinity between the drugs and molecules (Table 3). A 
threshold of pKd ≥7.0 was used for models based on the 
DAVIS and the BindingDB datasets, while for models based 

on the KIBA dataset, the threshold was set to 12.1. 
For the generation of the final outcomes, DeepPurpose 

proposed 3 aggregation schemas—the mean, max, and 
average of the max and mean—to combine the predictions 
from different models. We applied these schemas separately 
on the models trained on the same dataset, which gave us 9 
additional ranked lists of binding affinity scores. The chosen 
thresholds were also used to screen potential drug-target 
pairs (Table 4). The final drug list consisted of 14 drugs, 
including 2 PI3K inhibitors, 10 PTGS2 inhibitors, and 2 
VEGFA antagonists (Table 5).

Discussion

Keloids (KL) and hypertrophic scars (HS) are common 



Pan et al. Drug discovery by DeepPurpose in keloids 

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(4):347 | http://dx.doi.org/10.21037/atm-21-218

Page 6 of 13

Table 2 Summary of Kyoto Encyclopedia of Genes and Genomes (KEGG) process gene set enrichment analysis

Process
Genes in 
query set

Corrected 
hypergeometric 

P value
Genes

AGE-RAGE signaling 
pathway in diabetic 
complications

17 1.71E-21 CDKN1B, VEGFA, TNF, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, STAT3, 
PIK3CA, MMP2, SMAD3, SMAD2, IL6, FN1, COL1A2, COL1A1

Pathways in cancer 22 5.43E-16 CDKN1B, VEGFA, TP53, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, STAT3, 
SP1, PTGS2, PIK3CA, MMP9, MMP2, SMAD3, SMAD2, IL6R, IL6, HGF, FN1, 
FGF7, FGF2

TGF-beta signaling pathway 8 8.08E-16 TNF, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, SMAD3, SMAD2

FoxO signaling pathway 10 8.53E-16 CDKN1B, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, STAT3, PIK3CA, 
SMAD3, IL6

Cytokine-cytokine receptor 
interaction

7 8.85E-16 TNF, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, IL6

Hippo signaling pathway 7 8.85E-16 TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, SMAD3, SMAD2

Cellular senescence 9 6.52E-15 TP53, TGFBR2, TGFBR1, TGFB3, TGFB2, TGFB1, PIK3CA, SMAD3, SMAD2

The most significantly enriched KEGG pathways relevant to the pathology keloids and hypertrophic scars above the P value cutoff 
(P=1.00E-14) were selected. The analysis of enriched pathway annotations resulted in 7 sets of annotations containing 25 genes. VEGFA, 
vascular endothelial growth factor A; CDKN1B, cyclindependent kinase inhibitor 1B; TGFBR2, transforming growth factor beta receptor 
2; TGFBR1, transforming growth factor beta receptor 1; TGFB3, transforming growth factor beta 3; TGFB2, transforming growth factor 
beta 2; TGFB1, transforming growth factor beta 1; SMAD3, mothers against decapentaplegic homolog 3; SMAD2, mothers against 
decapentaplegic homolog 2; IL6, interleukin 6; COL1A1, collagen type I alpha 1; TP53, tumor protein 53; COL1A2, collagen type I alpha 
2; TNF, tumor necrosis factor; STAT3, signal transducer and activator of transcription 3; PTGS2, prostaglandin-endoperoxide synthase 
2; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; MMP9, matrix metalloprotein 9; MMP2, matrix 
metalloprotein 2; IL6R, interleukin 6; HGF, hematopoietic growth factor; FN1, fibronectin 1; FGF7, fibroblast growth factor 7; FGF2, 
fibroblast growth factor 2; SP1, specificity protein 1.

Figure 3 The protein-protein interaction (confidence score, 0.700) 
network of the 25 targeted genes, generated using STRING. 
Network nodes represent proteins, and edges represent protein-
protein interactions.

Figure 4 The protein-protein interaction network of the 25 
targeted genes, generated by Cytoscape. Network nodes represent 
proteins and edges represent protein-protein interactions.

http://genecodis.cnb.csic.es/genes_result/Hs/job-5300976358679/5806469/83
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Table 3 Identification of drug candidates for keloids and hypertrophic scars by DeepPurpose

Drug name
Target 
gene

DeepDTA_DAVIS
Morgan_CNN_
DAVIS

MPNN_CNN_
DAVIS

Daylight_AAC_
DAVIS

Morgan_AAC_
DAVIS

CNN_CNN_
BindingDB

Morgan_CNN_
BindingDB

MPNN_CNN_
BindingDB

Transformer_CNN_
BindingDB

Daylight_AAC_
BindingDB

Morgan_AAC_
BindingDB

Morgan_CNN_
KIBA

MPNN_CNN_
KIBA

Daylight_AAC_
KIBA

Morgan_AAC_
KIBA

NPC-18 FGF2 5.161 5.098 3.924 5.178 5.090 6.293 5.319 5.502 5.653 4.939 4.334 10.362 10.634 11.309 10.667

Refanalin HGF 5.123 5.069 5.771 5.457 5.078 6.758 6.732 5.979 5.092 5.313 5.272 11.300 11.622 11.239 11.542

BEBT-908 PI3KCA 4.917 5.069 4.915 5.116 5.078 6.618 6.742 5.378 6.928 5.031 5.167 11.333 11.684 11.491 11.601

Bimiralisib PI3KCA 4.901 5.029 5.658 5.839 5.072 5.659 6.621 5.100 7.383 6.480 5.938 11.325 11.352 10.260 11.632

SF-1126 PI3KCA 4.937 5.179 4.039 5.124 5.070 7.876 5.287 5.175 6.824 5.225 4.814 11.259 11.396 11.310 11.516

Copanlisib PI3KCA 4.939 5.050 4.728 5.838 5.119 5.673 5.768 5.280 3.866 6.377 4.947 11.472 11.389 11.335 11.668

(S)-flurbiprofen PTGS2 5.308 5.059 6.092 5.548 5.033 5.429 4.548 5.517 3.799 4.418 4.082 11.338 11.754 11.207 11.566

Aceclofenac PTGS2 5.634 5.241 4.632 5.497 5.229 5.202 5.612 4.963 3.689 5.208 5.014 11.463 11.157 11.113 11.477

Azapropazone PTGS2 5.181 5.094 5.942 5.375 5.129 6.863 6.341 5.289 3.799 5.376 4.553 11.776 11.252 11.368 11.604

Betamethasone 
dipropionate/salicyclic acid

PTGS2 5.153 5.806 7.020 5.436 5.060 8.067 7.918 7.324 3.799 5.419 5.444 11.018 12.529 11.270 11.422

Bromfenac PTGS2 5.174 5.053 5.858 5.043 5.074 6.585 5.800 5.066 4.242 4.695 4.903 11.480 11.388 11.285 11.399

Celecoxib PTGS2 5.289 5.076 6.357 5.016 5.033 5.084 6.014 4.969 6.531 5.210 4.747 11.465 11.312 11.286 11.321

Dexketoprofen PTGS2 5.184 5.091 6.088 5.130 5.069 5.545 4.112 5.609 3.799 5.024 3.944 11.347 11.663 11.233 11.488

Diclofenac epolamine PTGS2 5.239 5.132 3.307 5.286 5.092 5.784 6.407 5.109 7.009 5.771 5.169 11.407 11.634 10.917 11.472

Etofenamate PTGS2 5.574 5.052 6.527 5.216 5.043 6.103 6.045 5.140 4.776 4.150 4.642 11.443 11.251 11.397 11.501

Flurbiprofen PTGS2 5.364 5.059 6.344 5.548 5.033 5.872 4.548 5.461 4.562 4.418 4.082 11.338 11.633 11.207 11.566

HTX-011 PTGS2 5.383 5.279 5.613 5.481 5.124 6.339 7.277 5.510 3.799 5.310 5.219 11.291 11.583 11.513 11.309

Nimesulide-hyaluronic acid 
bioconjugate

PTGS2 4.995 5.464 5.703 5.200 5.051 6.902 5.590 6.004 5.795 5.230 4.902 10.223 10.043 10.550 10.303

Indometacin PTGS2 5.335 5.071 5.597 5.101 5.049 5.759 6.049 5.473 5.971 4.975 5.308 11.369 11.793 11.304 11.479

Ketorolac PTGS2 5.258 5.055 6.579 5.373 5.071 5.606 5.764 5.121 4.200 5.345 4.413 11.362 11.627 10.589 11.610

Laflunimus PTGS2 5.997 5.049 7.715 5.059 5.120 5.244 6.186 5.413 4.836 4.836 4.921 11.323 11.867 11.786 11.576

Lornoxicam PTGS2 5.334 5.050 4.397 5.386 5.144 6.038 7.186 5.414 3.799 5.013 5.035 10.835 11.205 11.317 11.342

Meloxicam PTGS2 5.607 5.336 5.085 5.652 5.162 6.356 6.506 5.541 3.799 5.367 5.137 11.406 11.651 12.266 11.429

Mesalazine PTGS2 5.493 5.064 4.270 5.037 5.046 4.942 4.258 5.154 5.168 4.759 3.833 11.451 11.464 12.795 11.612

Paracetamol PTGS2 5.281 5.055 4.664 5.017 5.040 4.514 4.963 4.868 4.389 4.844 3.839 11.466 10.973 10.310 11.547

Parecoxib sodium PTGS2 5.459 5.075 6.006 5.546 5.065 5.725 6.621 5.259 5.257 5.542 5.223 11.377 12.262 11.409 11.446

Piroxicam PTGS2 5.419 5.094 5.296 5.860 5.073 5.875 7.150 5.430 3.799 4.993 5.060 10.850 11.647 11.291 10.654

Propacetamol PTGS2 5.032 5.076 5.631 5.068 5.068 5.126 5.429 5.812 4.151 4.378 3.828 11.358 11.474 10.403 11.508

Tiemonium + noramidopyrinePTGS2 5.482 5.833 6.306 5.240 5.101 5.779 6.801 5.674 7.074 4.321 4.897 11.355 11.574 10.611 11.525

Yakuban Tape PTGS2 5.647 5.059 6.478 5.548 5.033 5.874 4.548 5.458 6.738 4.418 4.082 11.338 11.699 11.207 11.566

Pirfenidone TGFB1 4.981 5.049 3.321 5.096 5.070 3.512 4.036 5.272 4.435 4.614 3.839 11.357 10.911 10.654 11.499

Tranilast TGFB1 4.959 5.006 4.952 5.030 5.076 4.427 5.046 5.460 3.377 4.808 3.785 11.874 11.635 11.705 11.692

Pegaptanib octasodium VEGFA 5.034 5.079 3.592 5.260 5.019 7.667 3.645 4.551 7.120 5.893 5.013 11.223 10.153 11.431 11.280

Sunitinib malate VEGFA 5.177 5.611 5.053 5.088 5.154 7.087 6.890 6.101 5.963 5.008 4.993 12.449 11.718 11.862 12.183

DeepPurpose generated a ranked list demonstrating the predicted binding affinity between drugs and target genes. A threshold of pKd ≥7.0 was used for models based on the DAVIS and BindingDB datasets, while the threshold was set to 12.1 for models based on the KIBA dataset. The significant values 
based on the criteria are in bold. KIBA, kinase inhibitor bioactivity; CNN, convolutional neural network; MPNN, message-passing neural network; AAC, amino acid composition; FGF2, fibroblast growth factor 2; HGF, hematopoietic growth factor; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha; PTGS2, prostaglandin-endoperoxide synthase 2; TGFB1, transforming growth factor beta 1; VEGFA, vascular endothelial growth factor A.
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Table 4 Identification of drug candidates for keloids and hypertrophic scars by aggregated models

Drug name
Target 
gene

AVE_DAVIS
MAX_
DAVIS

AVE_MAX_
DAVIS

AVE_
BindingDB

MAX_
BindingDB

AVE_MAX_
BindingDB

AVE_
KIBA

MAX_
KIBA

AVE_MAX_
KIBA

NPC-18 FGF2 4.9 5.2 5.0 5.3 6.3 5.8 10.7 11.3 11.0

Refanalin HGF 5.3 5.8 5.5 5.9 6.8 6.3 11.4 11.6 11.5

BEBT-908 PI3KCA 5.0 5.1 5.1 6.0 6.9 6.5 11.5 11.7 11.6

Bimiralisib PI3KCA 5.3 5.8 5.6 6.2 7.4 6.8 11.1 11.6 11.4

SF-1126 PI3KCA 4.9 5.2 5.0 5.9 7.9 6.9 11.4 11.5 11.4

Copanlisib PI3KCA 5.1 5.8 5.5 5.3 6.4 5.8 11.5 11.7 11.6

(S)-flurbiprofen PTGS2 5.4 6.1 5.8 4.6 5.5 5.1 11.5 11.8 11.6

Aceclofenac PTGS2 5.2 5.6 5.4 4.9 5.6 5.3 11.3 11.5 11.4

Azapropazone PTGS2 5.3 5.9 5.6 5.4 6.9 6.1 11.5 11.8 11.6

Betamethasone 
dipropionate/salicyclic acid

PTGS2 5.7 7.0 6.4 6.3 8.1 7.2 11.6 12.5 12.0

Bromfenac PTGS2 5.2 5.9 5.5 5.2 6.6 5.9 11.4 11.5 11.4

Celecoxib PTGS2 5.4 6.4 5.9 5.4 6.5 6.0 11.3 11.5 11.4

Dexketoprofen PTGS2 5.3 6.1 5.7 4.7 5.6 5.1 11.4 11.7 11.5

Diclofenac epolamine PTGS2 4.8 5.3 5.0 5.9 7.0 6.4 11.4 11.6 11.5

Etofenamate PTGS2 5.5 6.5 6.0 5.1 6.1 5.6 11.4 11.5 11.4

Flurbiprofen PTGS2 5.5 6.3 5.9 4.8 5.9 5.3 11.4 11.6 11.5

HTX-011 PTGS2 5.4 5.6 5.5 5.6 7.3 6.4 11.4 11.6 11.5

Nimesulide-hyaluronic acid 
bioconjugate

PTGS2 5.3 5.7 5.5 5.7 6.9 6.3 10.3 10.5 10.4

Indometacin PTGS2 5.2 5.6 5.4 5.6 6.0 5.8 11.5 11.8 11.6

Ketorolac PTGS2 5.5 6.6 6.0 5.1 5.8 5.4 11.3 11.6 11.5

Laflunimus PTGS2 5.8 7.7 6.8 5.2 6.2 5.7 11.6 11.9 11.8

Lornoxicam PTGS2 5.1 5.4 5.2 5.4 7.2 6.3 11.2 11.3 11.3

Meloxicam PTGS2 5.4 5.7 5.5 5.5 6.5 6.0 11.7 12.3 12.0

Mesalazine PTGS2 5.0 5.5 5.2 4.7 5.2 4.9 11.8 12.8 12.3

Paracetamol PTGS2 5.0 5.3 5.1 4.6 5.0 4.8 11.1 11.5 11.3

Parecoxib sodium PTGS2 5.4 6.0 5.7 5.6 6.6 6.1 11.6 12.3 11.9

Piroxicam PTGS2 5.3 5.9 5.6 5.4 7.2 6.3 11.1 11.6 11.4

Propacetamol PTGS2 5.2 5.6 5.4 4.8 5.8 5.3 11.2 11.5 11.3

Tiemonium + noramidopyrine PTGS2 5.6 6.3 5.9 5.8 7.1 6.4 11.3 11.6 11.4

Yakuban Tape PTGS2 5.6 6.5 6.0 5.2 6.7 6.0 11.5 11.7 11.6

Pirfenidone TGFB1 4.7 5.1 4.9 4.3 5.3 4.8 11.1 11.5 11.3

Tranilast TGFB1 5.0 5.1 5.0 4.5 5.5 5.0 11.7 11.9 11.8

Pegaptanib octasodium VEGFA 4.8 5.3 5.0 5.6 7.7 6.7 11.0 11.4 11.2

Sunitinib malate VEGFA 5.2 5.6 5.4 6.0 7.1 6.5 12.1 12.4 12.3

Aggregated models generated a ranked list demonstrating the predicted binding affinity between the drug and the target gene. A threshold 
of pKd ≥7.0 was used for models based on the DAVIS and the BindingDB datasets, while the threshold was set to 12.1 for models 
based on KIBA dataset. The significant values based on the criteria were in bold. KIBA, kinase inhibitor bioactivity; AVE, average; MAX, 
maximum; FGF2, fibroblast growth factor 2; HGF, hematopoietic growth factor; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha; PTGS2, prostaglandin-endoperoxide synthase 2; TGFB1, transforming growth factor beta 1; VEGFA, vascular 
endothelial growth factor A.
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Table 5 Candidate drugs targeting genes relevant to keloids and hypertrophic scars 

Drug name
Target 
gene

The highest 
PKd

Model Disease

Mesalazine PTGS2 12.795 Daylight_AAC_KIBA Colitis, ulcerative

Betamethasone 
dipropionate/salicyclic acid

PTGS2 12.529 MPNN_CNN_KIBA Eczema; inflammatory disease

Sunitinib malate VEGFA 12.449 Morgan_CNN_KIBA Macular degeneration, age-related, wet; edema, 
macular, diabetic; retinal vein occlusion

Meloxicam PTGS2 12.266 Daylight_AAC_KIBA Ankylosing spondylitis, rheumatoid arthritis

Parecoxib sodium PTGS2 12.262 MPNN_CNN_KIBA Pain, post-operative

SF-1126 PI3KCA 7.876 CNN_CNN_BindingDB Cancer, liver; cancer, myeloma; cancer, 
neuroblastoma; cancer, solid

Laflunimus PTGS2 7.715 MPNN_CNN_DAVIS Pain, post-operative; pain, neuropathic, general; 
spinal cord injury

Pegaptanib octasodium VEGFA 7.667 CNN_CNN_BindingDB Macular degeneration, age-related, wet; edema, 
macular, diabetic

Bimiralisib PI3KCA 7.383 Transformer_CNN_BindingDB Cancer, breast; cancer, CNS; cancer, head and 
neck; cancer, leukemia, chronic lymphocytic; cancer, 
lymphoma; cancer, solid; cancer, head and neck; 
cancer, lymphoma, T-cell, cutaneous; cancer, skin, 
unspecified; dermatological disease

HTX-011 PTGS2 7.277 Morgan_CNN_BindingDB Pain, postoperative

Lornoxicam PTGS2 7.186 Morgan_CNN_BindingDB Arthritis, osteo; arthritis, rheumatoid; pain, 
musculoskeletal; pain, postoperative

Piroxicam PTGS2 7.150 Morgan_CNN_BindingDB Arthritis, rheumatoid

Tiemonium + 
noramidopyrine

PTGS2 7.074 Transformer_CNN_BindingDB Gastrointestinal disease; muscle spasm; pain, 
nociceptive, general

Diclofenac epolamine PTGS2 7.009 Transformer_CNN_BindingDB Inflammatory disease; pain, musculoskeletal

The final list consisted of 14 drugs which met the criteria of pKd ≥7.0 for models based on DAVIS and BindingDB datasets and pKd ≥12.1 
for models based on KIBA dataset. The diseases targeted by the drugs are listed in the table. KIBA, kinase inhibitor bioactivity; CNN, 
convolutional neural network; MPNN, message-passing neural network; AAC, amino acid composition; PIK3CA, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha; PTGS2, prostaglandin-endoperoxide synthase 2; VEGFA, vascular endothelial growth 
factor A.

dermal fibroproliferative disorders, which place a burden 
on the health of individuals worldwide. However, the 
pathogeneses of KL and HS have not been elucidated, and 
current therapeutic approaches have limited effectiveness. 
Through gene set enrichment analysis, this study identified 
25 genes closely related to the pathology of KL and 
HS, and a list of 14 drugs targeting 3 of the key genes 
was compiled using DeepPurpose. Potential drugs can 
be divided into PI3K inhibitors, PTGS2 inhibitors and 
VEGFA antagonists.

Prostaglandin-endoperoxide synthase 2 encoded by the 
PTGS2 gene, also known as cyclooxygenase-2 (COX-2), is 

the rate-limiting enzyme of prostaglandin biosynthesis (20).  
The involvement of COX-2 in the pathogeneses of scar 
lesions has been evidenced. Studies have demonstrated 
that COX-2 is significantly overexpressed in KL and HS 
tissues, while down-regulation of COX-2 may reduce KL 
and HS formation (21-24). After tissue injury, COX-derived 
prostaglandin E2 (PGE2) promotes the recruitment of 
inflammatory cells, which release TGF-β or platelet-derived 
growth factors; thereby, extracellular matrix and fibroblast 
activation is enhanced, leading to fibroblast proliferation 
and collagen production (25). The reduction of KL and HS 
formation in patients using nonsteroidal anti-inflammatory 
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drugs and COX-2 inhibitors has suggested that COX-2 
inhibitors may serve as a therapeutic strategy for KL and 
HS, which is consistent with our findings. Diprosalic, one of 
the PTGS2 inhibitors found to hold promise in this study, is 
a combination of betamethasone dipropionate and salicylic 
acid. It is currently used to treat psoriasis and inflammatory 
diseases like dermatitis and eczema, as well as to manage 
subacute and chronic hyperkeratotic and dry dermatoses 
that are responsive to corticosteroid therapy (26,27). 
Other COX-2 inhibitors include meloxicam, lornoxicam, 
piroxicam, mesalazine, parecoxib sodium, HTX-011, 
tiemonium noramidopyrine, and diclofenac epolamine, the 
indications for which are postoperative pain and arthritis. 
These drugs may represent promising treatments for KL 
and HS.

The involvement of the phosphatidylinositol-4,5-
bisphosphate 3-kinase (PI3K)/protein kinase B (Akt)/
mammalian target of rapamycin (mTOR) signaling pathway 
in the pathogeneses of KL and HS has been reported 
previously. Activation of the PI3K/Akt/mTOR pathway 
has been demonstrated to enhance the inflammation, 
angiogenesis, and deposition of extracellular matrix 
components in scar formation; thus, it is considered to be 
related to several fibrous diseases (28). CUDC‑907, a dual 
inhibitor of the PI3K/Akt/mTOR pathway and histone 
deacetylase (HDAC), was found to reverse the pathological 
phenotype of KL fibroblasts (29). In this study, we found 
2 PI3K inhibitors to have potential as drug therapies. 
Bimiralisib is a dual inhibitor of PI3K and the mammalian 
target of rapamycin (mTOR). It has been identified as a 
clinical candidate with potential antineoplastic activity, 
including in malignant lymphomas, primary central nervous 
system lymphoma (PCNSL), head and neck squamous cell 
carcinoma (HNSCC), advanced solid tumors, and metastatic 
breast cancer (30,31). Another PI3K inhibitor, SF-1126, 
which selectively inhibits all PI3K class IA isoforms as 
well as DNA-dependent protein kinase (DNA-PK) and 
mTOR, is the focus of current phase I clinical trials for 
chronic lymphocytic leukemia and advanced or metastatic 
solid tumors (32). In a phase I clinical trial, this drug 
showed considerable efficacy against B-cell malignancies 
and solid tumors with no dose-limiting toxicities or  
hepatotoxicities (33). However, the incorporation of novel 
PI3K inhibitors into treatment strategies for KL and HS 
still requires further experimental research and long-term 
trials to ascertain their tolerability, efficacy, and safety. 

VEGF (or VEGFA, the most abundant VEGF isoform) 
has been implicated as a crucial participant in pathological 

wound healing (34). Multiple studies on KL and HS have 
reported an association of high VEGFA levels with scar 
formation (35-38). Furthermore, there is experimental 
evidence that VEGF inhibition may be an approach to 
reducing deposition of scar tissue (37,39-41). In this study, 
we identified 2 VEGF antagonists as potential drugs to treat 
KL and HS. Sunitinib malate, a dual inhibitor of VEGF 
and PDGF receptors, is a lead injectable sustained-release 
candidate used in the treatment of wet age-related macular 
degeneration (AMD) (42). It is also under development 
for the treatment of diabetic macular edema and retinal 
vein occlusion (43). Meanwhile, pegaptanib octasodium, 
a pegylated oligonucleotide aptamer, is a direct inhibitor 
of VEGF that is used as an anticancer agent and in AMD. 
However, clinical testing to determine whether VEGF 
inhibition is an effective anti-scarring strategy will need to 
be performed.

In this study, we used DeepPurpose to predict the 
interactions of candidate drugs and gene targets in order to 
select the drugs with the highest predicted binding scores. 
In the knowledge of the relevance between candidate drugs 
and target genes, the identification of interactions between 
them became our major objective. The potential of machine 
learning models to predict the binding affinity between new 
drug-target pairs has been demonstrated in various studies. 
Bagherian et al. (44) briefly reviewed drug-target interaction 
prediction by machine learning models. Recently, machine 
learning methods have been used to search for cures 
for severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) (45-47), which has given direction for the 
promotion of new drug discovery. DeepPurpose, the toolkit 
we used in the current study, is built on the basis of an 
encoder–decoder framework. The encoders are generated 
from novel machine-learning approaches for drug-target 
interaction prediction to extract features from candidate 
drugs and target genes, while the decoder is a multi-layer 
perceptron that uses the extracted features to compute the 
binding affinity scores. With the 15 pre-trained models 
and 3 aggregation schemas provided by DeepPurpose, we 
finally obtained 24 different ranked lists of binding affinity 
score predictions. Though, we selected all potential drugs 
that meet the threshold criteria under each model, further 
analysis of pros and cons of the models may give a better 
guidance in drug screening with larger datasets. We built a 
validation set to evaluate these models. For each pair in the 
validation set, we collect the kinase dissociation constant 
( dK ) and transformed it to logspace( dpK ) as d 10 9pK log

10
dK = −  

  ,  
which is used as the dependent variable in the models 
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trained on DAVIS and BindingDB datasets. The mean 
squared error (MSE) of each model was calculated, and the 
results are shown in Table 6.

The results paved the way to obtaining the best drug-
target pair. Firstly, the MSEs showed that models trained 
on larger datasets outperformed those trained on smaller 
datasets. Three out of 5 models (DeepDTA, Morgan_CNN, 
MPNN_CNN, and Morgan_ACC) had a smaller MSE when 
trained on the BindingDB dataset than on the DAVIS dataset. 
This is often the case for machine learning models: those 
trained on a larger dataset have better generalizability, since 
the larger the training set is, the greater opportunity is for 
the model to learn global patterns. Moreover, by comparing 
the MSE of the single models and the aggregated models, 
we found that aggregated models do not always outperform 
single models, especially when aggregation is applied 
to models with a considerable variance in performance. 
However, for models trained on the DAVIS dataset, 
aggregated models performed better. The model with mean 
schema had a smaller MSE than most single models, while 
models with the max and the average of the mean and max 
schemas outperformed even the best single model. With the 
BindingDB dataset, however, the aggregated models did not 
perform as well as the best single model but did outperform 
most of the single models. This implies that although the 
use of aggregation schema can, to a certain extent, reduce 
the limitation and bias of single models, it can also introduce 
additional errors by aggregating the results of poor models. 

Conclusions 

Our study has demonstrated that drug discovery using in 
silico text mining and DeepPurpose may be a powerful and 
effective way to find drugs targeting the genes related to KL 
and HS. Therefore, our study could provide a theoretical 

basis for the development of novel targeted therapies for 
KL and HS.
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Table 6 MSE for different models on different datasets

Dataset
Model

CNN_CNN Morgan_CNN MPNN_CNN Daylight_AAC Morgan_AAC Transformer_CNN AVE MAX AVE_MAX

DAVIS 5.5 5.3 5.2 4.8 5.4 – 5.1 4.4 4.6

BindingDB 3.4 5.1 4.8 5.0 6.5 6.7 4.7 3.5 3.8

Three out of five models (DeepDTA, Morgan_CNN, MPNN_CNN) have smaller MSE when trained on BindingDB than on DAVIS dataset. 
CNN_CNN model has the smallest MSE, which shows that aggregated models may not always have a better performance though 
proposed by DeepPurpose’s oneline models. CNN, convolutional neural network; MPNN, message-passing neural network; AAC, amino 
acid composition; AVE, average; MAX, maximum; MSE, mean square error.
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