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Abstract 
Invasive fungal diseases due to resistant yeasts and molds are an 
important and increasing public health threat, likely due to a growing 
population of immunosuppressed hosts, increases in antifungal 
resistance, and improvements in laboratory diagnostics.  The 
significant morbidity and mortality associated with these pathogens 
bespeaks the urgent need for novel safe and effective therapeutics.  
This review highlights promising investigational antifungal agents in 
clinical phases of development: fosmanogepix, ibrexafungerp, 
rezafungin, encochleated amphotericin B, oteseconazole (VT-1161), 
VT-1598, PC945, and olorofim.  We discuss three first-in-class 
members of three novel antifungal classes, as well as new agents 
within existing antifungal classes with improved safety and tolerability 
profiles due to enhanced pharmacokinetic and pharmacodynamic 
properties.
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Introduction
Invasive fungal diseases (IFDs) are a growing public health  
concern in an expanding population of immunocompromised  
hosts1. Indeed, attributable mortality may still approach 90% 
in the most vulnerable patients infected with highly-resistant  
pathogens1. Three classes of antifungal drugs are currently avail-
able for prevention and treatment of IFDs: triazoles, polyenes, 
and echinocandins. However, use of these agents is often ham-
pered by drug toxicity, drug-drug interactions, and lack of oral  
formulation. Furthermore, novel therapeutic options are needed 
due to increasing rates of antifungal resistance and increasing 
IFDs due to emerging pathogens, many of which are resistant  
to approved antifungal agents. Herein, we review the antifun-
gal pipeline for agents in clinical phases of development. We 
give particular attention to investigational drugs with novel  
mechanisms targeting cellular and biochemical pathways. 

Agents targeting the cell wall
Fosmanogepix
Mechanism of action. Glycosylphosphatidylinositol (GPI)-
anchored mannoproteins are one of the major cell wall  
components of fungi. Inhibition of GPI-anchored protein bio-
synthesis therefore has the potential to compromise cell wall  
integrity and restrict fungal growth. Fosmanogepix (previously 
APX001 and E1210; Eisai Company, Japan) is a first-in-class  
antifungal prodrug that inhibits the fungal Gwt1 (GPI-anchored 
wall protein transfer 1) gene that encodes a new acyltransferase 
involved in an early step of the GPI post-translational biosyn-
thetic pathway2. Fosmanogepix undergoes rapid and complete  
metabolism by systemic phosphatases to its active moiety, mano-
gepix. The chemical structure, mechanism of action, spectrum 
of activity, clinical trials status, and potential advantages of  
fosmanogepix and other investigational antifungal agents  
included in this review are provided in Table 1.

Activity in vitro and in vivo. Fosmanogepix has broad- 
spectrum activity against a range of yeasts and molds. Potent 
in vitro activity is demonstrated against most Candida species  
with the exception of Candida krusei2. Fosmanogepix also shows 
in vitro activity against fluconazole-resistant Candida species,  
including C. auris, as well as echinocandin-resistant C. albicans 
and C. glabrata with fks mutations2–5. Among 16 C. auris iso-
lates from Europe and Asia, fosmanogepix demonstrated a mini-
mum inhibitory concentration (MIC) required to inhibit growth  

of 90% of organisms (MIC
90

) value that was 8-fold lower than 
that of anidulafungin, the next most active agent. Highly potent  
in vitro activity was also observed in six pan-resistant  
C. auris isolates from New York (MIC range 0.008 µg/mL to  
0.015 µg/mL)6. Furthermore, in a neutropenic mouse model 
of disseminated C. auris, treatment with fosmanogepix led to  
significantly improved survival and decreased fungal burden in 
brain tissue as compared to anidulafungin5. Fosmanogepix also 
was shown to have efficacy in treatment of experimental Candida  
endophthalmitis and hematogenous meningoencephalitis7.

Fosmanogepix has activity against Cryptococcus neoformans 
and C. gattii, as well as Coccidioides species8,9. In mice with  
cryptococcal meningitis, the combination of fosmanogepix 
and fluconazole was observed to decrease fungal burden in a  
synergistic manner in brain tissue but not in lung tissue9.

To determine the in vitro antifungal activity against moulds, the 
minimum effective concentration (MEC), rather than MIC, is 
determined. Amongst moulds, fosmanogepix has in vitro activ-
ity against a range of hyaline moulds including Aspergillus spp.  
(A. fumigatus, A. flavus., A. niger, A. terreus, A. lentulus, A. ustus),  
Fusarium spp. (F. solani and F. oxysporum species complex), 
Scedosporium spp. (S. apiospermum, S. boydii, S. dehoogii,  
S. aurantiacum), Lomentospora prolificans, and Purpureocillium  
lilacinum2,3,10. For example, against Aspergillus spp. (A. fumigatus, 
Aspergillus section Flavi, Aspergillus section Terrei, and Aspergillus  
section Nigri), fosmanogepix displayed a 50% minimal effective 
concentration (MEC

50
) of 0.015 µg/ml; MEC

90
 of 0.03 µg/ml3.  

Fosmanogepix also exerted potent antifungal activity against 
Scedosporium apiospermum (MEC

90
 0.12 µg/ml), Scedosporium  

aurantiacum (MEC
50

 0.06 µg/ml), and Scedosporium (Lomentospora)  
prolificans (MEC

90
 0.12 µg/ml), as well as Fusarium solani 

(MEC
90

 0.06 µg/ml) and Fusarium oxysporum (MEC
90

  
0.25 µg/ml)10.  These organisms pose formidable therapeutic  
challenges, particularly in immunocompromised patients11. In 
immunocompromised mouse models of invasive pulmonary  
aspergillosis, hematogenously disseminated fusariosis, and  
pulmonary scedosporiosis, fosmanogepix demonstrated 
improved survival and tissue clearance versus placebo; whereas, 
comparable outcomes were observed between mice treated 
with fosmanogepix and posaconazole (Aspergillus-infected 
mice) or high dose liposomal amphotericin B (Fusarium- and  
Scedosporium-infected mice)12,13. Fosmanogepix also has moderate  
activity against fungi in the order Mucorales (MIC ranges of 
1 to 8 µg/mL)2. Against Rhizomucor and Rhizopus spp., MEC 
ranges of 4 to >8 µg/mL are observed in vitro3. In a mouse 
model of pulmonary mucormycosis with two strains of Rhizopus  
arrhizus [minimum effective concentration (MEC) values of 
0.25µg/mL and 4 µg/mL], fosmanogepix lead to improved  
survival and reduced lung and kidney fungal burden compared  
to placebo and similar outcomes as compared to isavuconazole14.

Pharmacokinetics/pharmacodynamics. Fosmanogepix is avail-
able in oral and intravenous (IV) formulations, achieving more  
than 90% bioavailability in humans. In rats and monkeys  
administered fosmanogepix via oral or IV route, rapid and 
extensive absorption to most tissues including lung, brain, liver,  

      Amendments from Version 1
We have specified the in vitro activity of fosmanogepix to the 
species level including representative MEC values.  We have 
included data on the in vitro activity of ibrexafungerp and 
rezafungin against Candida parapsilosis in comparison with 
other Candida species. For fosmanogepix, ibrexafungerp, 
rezafungin, and olorofim, we have created an additional table 
to highlight the key PK/PD indices associated with therapeutic 
outcome in experimental animal models.

Any further responses from the reviewers can be found at 
the end of the article
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kidney, and eye were observed. Elimination was primarily biliary 
(rats) and fecal (monkeys)15. The 24-hour free-drug area under 
the concentration-time curve (AUC)/MIC ratio (fAUC

0–24
/MIC) 

is the PK/PD index that best correlates with efficacy in a neu-
tropenic murine disseminated candidiasis model (Table 2)16. In 
phase 1 studies, plasma exposure to fosmanogepix was linear and 
dose proportional with a half-life of approximately 2.5 days17.  
Fosmanogepix was well-tolerated; there was no dose-limiting 
toxicity, and the most common adverse event was headache17. A 
phase 1b study of fosmanogepix safety and pharmacokinetics in 
patients with acute myeloid leukemia is completed, but results  
are not yet available (NCT03333005).

Clinical development. Clinical development of fosmanogepix  
has thus far focused on its role in the treatment of infections due 
to Candida spp., Aspergillus spp., and rare moulds. The U.S.  
Food and Drug Association (FDA) has granted Fast Track, 
Qualified Infectious Disease Product (QIDP), and orphan drug  
designation to fosmanogepix for the following indications: treatment  
of invasive candidiasis, invasive aspergillosis, scedosporiosis,  
fusariosis, mucormycosis, cryptococcosis, and coccidioidomycosis.  
Phase 2 trials are ongoing for the treatment of IFDs caused  
by Aspergillus spp. or rare moulds (NCT04240886), treatment  
of candidemia or invasive candidiasis due to C. auris 
(NCT04148287), and treatment of candidemia in non-neutropenic 
patients (NCT03604705).

Ibrexafungerp
Mechanism of action. Similar to the echinocandins, ibrex-
afungerp (previously MK-3118 and SCY-078; Scynexis, Jersey  
City, NJ, USA) disrupts fungal cell wall synthesis through inhi-
bition of (1→3)-β-D-glucan synthase with fungicidal activity  
against Candida spp. However, ibrexafungerp is structurally dis-
tinct as a semisynthetic derivative of the naturally occurring  

hemiacetal triterpene glycoside enfumafungin that incorporates  
a pyridine triazole at position 15 of the core phenanthropyran 
carboxylic acid ring system and a 2-amino- 2,3,3-trimethyl-butyl  
ether at position 14 to enhance its antifungal potency and phar-
macokinetic properties; thus, representing the first compound 
in the novel class of triterpenoid antifungals18. As compared to  
echinocandins, ibrexafungerp has distinct advantages of oral 
bioavailability, broad activity against pan-resistant C. auris, 
and maintaining activity against most echinocandin-resistant  
Candida spp. 

Activity in vitro and in vivo. Ibrexafungerp exhibits potent  
fungicidal activity against Candida species, including C. glabrata 
and multiple clades of C. auris19–21. The in vitro activity of ibrex-
afungerp against C. parapsilosis, which is known to have elevated 
echinocandin MICs, is comparable to or improved from that of 
the echinocandins22. The modal MIC of ibrexafungerp against  
C. parapsilosis is also similar to the modal MIC observed against 
other common Candida species causing clinical disease, C. albicans, 
C. glabrata, C. tropicales, and C. krusei23. Notably, ibrexafun-
gerp retains in vitro activity against most echinocandin-resistant 
C. glabrata with fks mutations (MIC mode, MIC

50
, and MIC

90
 of 

0.25µg/mL, 0.25µg/mL, and 1.0µg/mL, respectively)22. Amongst 
C. auris isolates with echinocandin resistance or pan-antifungal  
resistance, ibrexafungerp demonstrates MIC ranges from  
0.25µg/mL to 1µg/mL and 0.12µg/mL to 1µg/mL, respectively20,24,25. 
In addition, C. auris biofilms treated with ibrexafungerp show 
reduced metabolic activity and thickness as compared to  
untreated control biofilms26.

Ibrexafungerp has fungistatic activity against Aspergillus  
species (MEC range <0.06µg/mL to 4µg/mL)27. The combina-
tion of ibrexafungerp with voriconazole, amphotericin B, or 
isavuconazole demonstrates in vitro synergy against wild-type 

Table 2. Key Pharmacodynamic Indices Associated with Therapeutic Outcome in 
Experimental Model Systems of Invasive Candidiasis or Invasive Aspergillosis.

Antifungal agent Animal model Organism Key PD index Reference(s)

Fosmanogepix Murine C. albicans 
C. glabrata 
C. auris

AUC/MIC 15

Ibrexafungerp Murine C. albicans 
C. glabrata 
C. parapsilosis

AUC/MIC 18,28

Rezafungin Murine C. albicans 
C. glabrata 
C. parapsilosis

AUC/MIC 29

Olorofim Murine A. flavus 
A. fumigatus

Cmin/MIC 30,31

PD, pharmacodynamic; AUC, area under the concentration-time curve; MIC, minimum inhibitory 
concentration, Cmin, minimum plasma concentration

There are insufficient PK/PD data for assignment of a PD index for encochleated amphotericin B, 
oteseconazole, and PC945.

Page 8 of 21

F1000Research 2022, 10:507 Last updated: 24 JAN 2022

https://clinicaltrials.gov/ct2/show/NCT03333005
https://clinicaltrials.gov/ct2/show/NCT04240886?term=NCT04240886&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT04148287?term=nCT04148287&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT03604705?term=NCT03604705&draw=2&rank=1


(WT) Aspergillus species but not against azole-resistant strains27.  
Little in vitro activity is observed with ibrexafungerp against 
the Mucorales and non- Aspergillus hyaline moulds (Fusarium 
spp, Scopulariopsis spp, Lomentospora prolificans) with the 
exception of Paecilomyces variotii (MEC <0.02µg/mL to  
0.03µg/mL)32. However, synergistic interaction between  
ibrexafungerp and isavuconazole is observed in vitro against 
Cunninghamella bertholletiae, S. apiospermum, F. solani and  
F. oxysporum; whereas, indifference or antagonism are observed 
with Mucor circinelloides and Rhizopus species, respectively33.

In a murine invasive candidiasis model with WT and  
echinocandin-resistant (ER) C. glabrata, ibrexafungerp signifi-
cantly reduced kidney fungal burden in both groups as compared 
to placebo. In contrast, caspofungin administered by intraperi-
toneal injection reduced fungal burden in the WT group but not 
the ER group34. Reduced tissue fungal burden and improved sur-
vival with ibrexafungerp versus control also were observed in  
immunocompromised mice with disseminated C. auris35.

In a murine model of disseminated aspergillosis, treatment 
with ibrexafungerp led to significant reduction in Aspergillus  
kidney burden and serum galactomannan (GM) levels and 
improved survival as compared to control36. This in vivo activity of 
ibrexafungerp was observed in both wild type and azole-resistant  
isolates of A. fumigatus.

The combination of ibrexafungerp and isavuconazole also 
demonstrates synergy in a neutropenic rabbit model of experi-
mental invasive pulmonary aspergillosis. As compared to  
isavuconazole alone, mice treated with ibrexafungerp and  
isavuconazole had significantly improved survival, decreased  
pulmonary infarct scores, and diminished serum GM levels37.

Ibrexafungerp is also efficacious in a murine model of  
Pneumocystis murina pneumonia, in which reductions in asci 
burden and improvements in survival were similar to those of 
trimethoprim-sulfamethoxazole and significantly better than in  
untreated controls38.

Pharmacokinetics/pharmacodynamics. Ibrexafungerp is orally 
bioavailable and highly protein bound (~99.6%) in humans. 
The maximum plasma concentration (C

max
) and area under the  

concentration-time curve (AUC) increase approximately 20% 
with high fat meals39. It has a large volume of distribution in  
mice, rats, and dogs. Concentration in multiple tissues includ-
ing liver, spleen, lungs, bone marrow, kidney, and skin exceeds 
that of plasma. However, there is low distribution to central  
nervous system (CNS) tissue40. In rats, approximately 90% of 
drug is eliminated in feces and bile, and 1.5% eliminated in  
urine40. The PK/PD index that best correlates with efficacy 
in a murine models of disseminated candidiasis is AUC/MIC  
(Table 2)18,41. Ibrexafungerp is a substrate of CYP3A and  
P-glycoprotein, though it neither induces or nor inhibits CYP3A. 
When ibrexafungerp and tacrolimus are co-administered, there 
is a 1.4-fold increase in AUC and no change in tacrolimus C

max
42. 

Thus, initial tacrolimus dose adjustment is not needed when  
co-administered with ibrexafungerp.

Clinical development. Ibrexafungerp will likely play an impor-
tant role in management of invasive candidiasis due to WT 
and resistant Candida species and invasive aspergillosis; the 
drug has received QIDP and orphan drug designations for both  
indications.

In a phase 2 open-label, randomized study, 27 patients with  
invasive candidiasis were randomized to receive step-down 
therapy to one of three treatment arms: two dosing regimens of  
ibrexafungerp (1000mg loading dose followed by 500mg daily 
or 1250mg loading dose followed by 750mg daily) or standard 
of care (SOC) following initial echinocandin therapy. Similar 
rates of adverse events were observed across study arms;  
study-drug related treatment-emergent adverse events were 
reported in two patients (vomiting and diarrhea) and did not 
require drug discontinuation. There was no difference in favo-
rable global response rates (clinical and microbiologic): 86%,  
71%, and 71% in the ibrexafungerp 750mg, ibrexafungerp  
500mg, and SOC arms, respectively, although the study was not 
powered to detect statistical superiority28.

A phase 3 open-label, single arm study of ibrexafungerp in  
patients with refractory or intolerant fungal diseases is ongo-
ing (FURI; NCT03059992). An interim analysis was performed 
in 20 patients with proven or probable invasive candidiasis  
(N=11) or severe mucocutaneous candidiasis (N=9). Eleven 
(55%) patients achieved a complete or partial response and 6  
(30%) had stable disease. The most common treatment-related 
adverse events were gastrointestinal43. Target enrollment is 200 
patients, and the estimated study completion date is December 
2021.

Ibrexafungerp has also been studied for the treatment of  
vulvovaginal candidiasis (VVC). Day 10 and day 25 clinical 
cure and mycological eradication rates were similar or improved 
with ibrexafungerp 300mg twice daily × 2 doses compared to  
fluconazole 150mg × 1 dose. Diarrhea was the most common 
adverse event in the ibrexafungerp arm, observed in 10% of  
subjects44. An new drug application has since been submitted  
for treatment of VVC.

Other ongoing clinical trials include a multicenter, randomized, 
double-blind study to evaluate the efficacy and safety of  
ibrexafungerp and voriconazole in patients with invasive  
pulmonary aspergillosis (NCT03672292). Ibrexafungerp is also in  
open-label clinical trials in India and the United States for treat-
ment of Candida auris infection (CARES; NCT03363841).  
Thus far, outcomes of two patients enrolled in the CARES Study 
have been reported; both had C. auris bloodstream infections  
and were successfully treated with ibrexafungerp45.

Combination antifungal therapy with a cell wall active agent 
and an antifungal triazole is a potentially important strategy in  
treatment of invasive aspergillosis [33]. Ibrexafungerp may 
develop a key role in combination antifungal therapy with an  
antifungal triazole in treatment of invasive aspergillosis. Simul-
taneous administration of an orally administered triazole and  
ibrexafungerp may allow patients to receive the potential  
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therapeutic benefit of combination therapy in treatment of  
invasive pulmonary aspergillosis on an ambulatory basis.

Rezafungin
Mechanism of action. Rezafungin (formerly SP3025 and  
CD101; Cidara Therapeutics, San Diego, CA, USA) is a novel 
agent in the echinocandin antifungal drug class that inhibits  
(1→3)-β-D-glucan synthesis. Rezafungin is a structural analogue  
of anidulafungin but it is differentiated by a choline moiety  
at the C5 ornithine position, conferring increased stability and 
solubility46. Due to its long half-life, rezafungin has the advan-
tage of once weekly dosing as compared to other drugs within  
the echinocandin class that require daily dosing.

Activity in vitro and in vivo. Rezafungin has potent in vitro  
activity that mirrors that of other echinocandins against WT 
and azole-resistant Candida species, as well as WT and azole- 
resistant Aspergillus species47–49. Similar to other echinocandins, 
rezafungin has higher MICs (MIC

50
 1 µg/mL/MIC

90
 2 µg/mL) 

against C. parapsilosis compared to other common Candida  
species.

In immunocompromised mouse models of C. albicans and  
A. fumigatus infection, decreased fungal tissue burden and 
improved 10-day survival, respectively, were observed with 
rezafungin as compared to controls50. Rezafungin also had 
activity in a mouse model of disseminated C. auris, leading to 
decreased fungal tissue burden as compared to amphotericin B and  
control51. Furthermore, rezafungin was efficacious as prophy-
laxis against Pneumocystis in a mouse model, supporting its 
potential for development for prevention of Pneumocystis  
pneumonia in immunocompromised hosts52.

Pharmacokinetics/pharmacodynamics. Similar to other echinoc-
andin drugs, rezafungin demonstrates a concentration-dependent  
pattern of fungicidal activity. Therefore, a front-loaded dosing  
regimen conferring higher plasma drug exposure may theo-
retically enhance pathogen killing and raise the barrier to drug  
resistance53. In animal models, the AUC/MIC correlates best with 
therapeutic outcome54 (Table 2). In phase 1 ascending dose studies 
evaluating single doses up to 400mg and multiple doses up to 
400mg once weekly for 3 weeks in healthy adults, rezafungin 
demonstrated dose-proportional plasma exposures, long half-life 
(approximately 80 hours after the first dose and 152 hours after 
the third dose), and minimal renal excretion55. The C

max
 ranged  

from ~5 µg/mL with the 100mg dose to ~22 to 30 µg/mL with 
the 400mg dose. Overall, rezafungin was well tolerated. There 
were no serious adverse events; most adverse events were 
mild and gastrointestinal (constipation and nausea). Mild infu-
sion reactions characterized by nausea, flushing, and chest  
discomfort were also observed, most often with the third dose 
of 400mg of rezafungin. These reactions resolved within  
minutes without drug interruption or discontinuation. 

Clinical development. Rezafungin has received U.S. FDA  
QIDP and Fast Track designations for prevention of invasive 
fungal infections as well as QIDP, Fast Track, and orphan drug  
designations for treatment of invasive candidiasis. 

A phase 2 multicenter, randomized, double-blinded trial in  
207 adult patients with candidemia and/or invasive candidiasis 
compared the efficacy and safety of treatment with rezafungin 
versus caspofungin with fluconazole stepdown once clinically 
stable (STRIVE; NCT02734862)56. Patients were randomized 
to one of three treatment arms: rezafungin 400mg once weekly, 
rezafungin 400mg on week 1, then 200mg weekly, and caspo-
fungin 70mg loading dose followed by 50mg daily for ≤4 weeks. 
The primary endpoint was overall cure, defined as resolution 
of signs of candidemia or invasive candidiasis and mycological 
eradication at day 14. The study was not designed for statistical 
comparison of the efficacy assessment, but overall cure rates and  
30-day mortality, respectively, were similar across groups: 
rezafungin 400mg weekly (60.5% and 15.8%), rezafungin  
400mg/200mg weekly (76.1% and 4.4%), and caspofungin 
(67.2% and 13.1%). In patients with candidemia, blood cultures  
cleared in 19.5 and 22.8 hours in the rezafungin and caspofun-
gin groups, respectively. Rezafungin was also well-tolerated. 
The most common adverse events – hypokalemia, diarrhea, and  
vomiting – were observed in similar proportions of patients in 
the rezafungin and caspofungin groups. Study drug-related seri-
ous adverse events occurred in one patient in each rezafungin  
group and two patients in the caspofungin group. 

Based on the promising results of STRIVE, a phase 3 clini-
cal trial of rezafungin versus caspofungin for treatment of 
candidemia and invasive candidiasis is ongoing (ReSTORE;  
NCT03667690). Another ongoing phase 3 trial compares 
rezafungin to standard of care for prevention of IFD due to  
Candida spp., Aspergillus spp., and Pneumocystis in patients  
undergoing allogeneic hematopoietic cell transplantation 
(ReSPECT; NCT04368559). The primary outcome is fungal-free 
survival at Day 90. In both phase 3 trials, rezafungin is dosed  
400mg for the first week followed by 200mg once weekly.

Agents targeting the cell membrane
Encochleated Amphotericin B (MAT2203)
Mechanism of action and pharmacology. Amphotericin B (AmB), 
a polyene antifungal agent, disrupts fungal cell wall synthesis  
by binding to ergosterol to form pores that allow leakage of 
intracellular contents, resulting in potent fungicidal activity  
against a wide range of yeasts and moulds. However, AmB 
and its lipid formulations are only available via intravenous 
injection due to low solubility, a tendency to self-aggregate in  
aqueous media, and low permeability29. Encochleated AmB 
(CAmB; Matinas BioPharma, Bedminster, NJ, USA) is a novel 
formulation that allows for oral administration with reduced  
toxicity. Cochleates form a multilayered structure composed of 
a negatively charged lipid (phosphatidylserine) and a divalent 
cation (calcium). This structure protects AmB from degradation 
within the gastrointestinal tract57. AmB is released to the fungus  
only when the cochleates interact with the target cells and  
subsequently destabilize in the setting of low intracellular calcium  
concentration.

Activity in vitro and in vivo. Comparable in vitro activity  
against Candida spp. and Aspergillus spp. are observed with 
CAmB and deoxycholate AmB58,59. CAmB has been successfully  
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administered in immunocompromised mouse models of dis-
seminated C. albicans infection and disseminated aspergillosis.  
In both studies, oral CAmB and intraperitoneal deoxycholate 
amphotericin B demonstrated similar improvement in survival 
and reduction in tissue fungal burden as compared to untreated  
control animals58,60. Furthermore, CAmB was evaluated in a 
mouse model of cryptococcal meningoencephalitis where CAmB 
plus flucytosine had similar efficacy to parenteral AmB plus  
flucytosine and demonstrated potent activity61.

Pharmacokinetics/pharmacodynamics. A single dose of CAmB 
demonstrates extensive tissue distribution and penetration into  
target tissues in animal models62. In a phase 1 study in healthy 
adults evaluating escalating doses of 200, 400, and 800mg, CAmB 
was well tolerated at doses of 200mg and 400mg. The most  
common adverse events were gastrointestinal, occurring in 6%, 
38%, and 56% of patients in the 200mg, 400mg, and 800mg  
groups, respectively. There were no serious adverse events or 
renal toxicity observed. Dose-dependent increases in C

max
 and 

AUC were observed, comparable to those of animal toxicity  
studies63.

Clinical development. A phase 2a single-arm study of 
CAmB for refractory mucocutaneous candidiasis is ongoing  
(NCT02629419). Preliminary results indicate that all enrolled 
patients met the primary endpoint of ≥ 50% improvement in 
clinical signs and symptoms. CAmB was well tolerated at  
400mg and 800mg with no observed renal or hepatic toxicity.  
In a phase 2 study of CAmB 200mg and 400mg and flucona-
zole 150mg for VVC in 137 patients, lower rates of clinical  
cure and more adverse events were observed with CAmB  
200mg and 400mg as compared to fluconazole (NCT02971007). 
There were no serious adverse events64. Phase 1 and 2 studies of 
CAmB for treatment of cryptococcal meningitis in HIV-infected 
patients in Uganda are ongoing (EnACT; NCT04031833).  
CAmB has FDA-granted Fast Track, QIDP, and orphan drug des-
ignations for treatment of invasive candidiasis and aspergillosis, 
prevention of IFDs in patients on immunosuppressive therapy,  
and treatment of cryptococcosis.

Oteseconazole (VT-1161), VT-1598, VT-1129
Mechanism of action. Second-generation triazole antifungal  
agents, such as voriconazole, are highly effective against a 
range of yeasts and moulds; however, they are associated with  
significant drug-drug interactions due to off-target inhibition of 
human cytochrome P450 enzymes. Oteseconazole (VT-1161),  
VT-1598, and VT-1129 (Mycovia Pharmaceuticals, Inc.,  
Durham, NC, USA) are next-generation azoles in which selective 
inhibition of the fungal enzyme CYP51 is more readily achieved 
by replacing the 1-(1,2,4-triazole) metal-binding group with a  
tetrazole65.

Activity in vitro and in vivo. Oteseconazole, VT-1598, and  
VT-1129 have potent in vitro activity against Cryptococcus 
spp. and Candida spp. including C. krusei and fluconazole- and  
echinocandin-resistant C. glabrata66,67. VT-1598 has the broad-
est spectrum, which includes C. auris, moulds (Aspergillus spp. 
and Rhizopus spp.) and endemic dimorphic fungi (Histoplasma  
capsulatum, Blastomyces dermatitidis, Coccidioides posadasii, 

and C. immitis)68–70. In murine models of CNS coccidioidomyco-
sis, VT-1598 treatment leads to improved survival and reduced 
fungal burden in brain tissue as compared to fluconazole.  
Oteseconazole has similarly demonstrated efficacy in murine 
models of pulmonary and CNS coccidioidomycosis as well 
as disseminated mucormycosis due to Rhizopus arrhizus  
var. arrhizus71,72.

Clinical development. The FDA has granted QIDP, fast track, 
and orphan drug designation to VT-1598 for the treatment of 
coccidioidomycosis (Valley fever)73. VT-1598 is in phase 1 stud-
ies (NCT04208321). Oteseconazole is in phase 3 clinical trials 
for treatment of recurrent vaginal candidiasis (NCT02267382, 
NCT03562156, NCT03561701) after demonstrating safety and 
efficacy in a phase 2 study and has FDA QIDP and Fast-Track  
designations for this indication74. A phase 2 trial for toenail  
onychomycosis demonstrated higher week 48 cure rates with  
oteseconazole (32 to 42%) versus placebo (0%) (NCT02267356)75.  
In these completed trials, oteseconazole was well-tolerated  
with no evidence of hepatotoxicity or QT prolongation.

PC945
Mechanism of action. As compared to systemic therapy, aero-
solized delivery of antifungal agents to the lung results in  
higher concentrations in epithelial lining fluid and bronchoal-
veolar lavage fluid; however, for successful activity, drug levels 
must be sustained in lung tissues with minimal systemic  
absorption76. PC945 (Pulmocide, London, United Kingdom) is 
a novel triazole antifungal agent that is being developed spe-
cifically for inhaled administration for treatment and prevention  
of invasive fungal infections of the sinopulmonary tract. The  
structure of PC945 is similar to but distinct from that of posaco-
nazole. The structures are similar in having 2,4-difluorophenyl  
and 1H-1,2,4-triazole substitutions on the asymmetric carbon  
atom. However, PC945 differs structurally in having a central  
oxolane ring (in place of the dioxalane ring) and a long  
hydrophobic 3-ylmethoxy-3-methylphenyl[piperazin-1-yl]-N-(4-
fluorophenyl)benzamide substitution. This hydrophobic moiety 
likely contributes to the sustained intrapulmonary concentrations 
of PC945.

Activity in vitro and in vivo. PC945 has in vitro activity  
against azole-susceptible A. fumigatus [median MIC 0.031µg/mL 
(IQR 0.02 – 0.031µg/mL)] and most azole-resistant  
A. fumigatus77. Activity against A. terreus is comparable to  
posaconazole and more potent than that of voriconazole;  
however, PC945 has poor in vitro activity against A. flavus and  
A. niger. PC945 lacks activity against most Mucorales; although a  
MIC 2µg/mL was observed for Rhizopus oryzae77. Against  
Candida albicans (both azole-susceptible and azole-resistant 
strains), C. glabrata, and C. krusei, PC945 is generally more active 
than voriconazole and shares equal potency with posaconazole77.  
Using a global collection of 50 clinical Candida auris isolates, 
PC945 had more potent in vitro activity than posaconazole,  
voriconazole, and fluconazole [PC945 GM MIC (MIC

50
, MIC

90
):  

0.14µg/mL (0.13, 1µg/mL)]78.

An in vitro model of the human alveolus has been developed 
to better understand the pathogenesis of invasive pulmonary  
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aspergillosis and the relationship between the kinetics of GM and 
outcomes of antifungal therapy79. Using this model, combina-
tion therapy with apical PC945 and basolateral posaconazole or 
voriconazole for azole-susceptible and azole-resistant A. fumiga-
tus demonstrated synergistic activity as compared to either agent  
alone80.

The therapeutic potential of intranasal PC945 has been investi-
gated in transiently neutropenic mice with invasive pulmonary 
aspergillosis. Intranasal PC945 leads to reduced concentrations  
of GM in bronchoalveolar lavage fluid (BALF) and serum and 
improved survival as compared to controls, and reduced GM  
concentration and similar survival as compared to intranasal  
posaconazole77,81. Combination therapy with intranasal PC945 and  
oral posaconazole was also evaluated in immunocompromised 
neutropenic mice with azole-susceptible A. fumigatus infection. 
Suboptimal dosages of PC945 and posaconazole were admin-
istered simultaneously, (i.e., doses at which either agent alone 
led to zero survival at Day 7), and Day 7 survival improved  
to 83%80. As a potential prophylactic agent, PC945 was admin-
istered in the same A. fumigatus-infected mouse model from  
days -7 to +3 and days -1 to +3. Extended prophylaxis (days 
-7 to +3) yielded greater inhibition of fungal load in lung tissue  
and GM concentrations in BALF and serum as compared to  
shorter duration, suggesting that the antifungal effects of PC945 
accumulated in the lung upon repeat dosing81.

Pharmacokinetics/pharmacodynamics. Using the human alveolus,  
topical PC945 demonstrates sustained residency and antifungal 
activity in epithelial cells80.

Clinical development. A phase 1 trial of PC945 in 29 healthy  
subjects and patients with mild asthma is completed; results 
are not yet available on clinicaltrials.gov (NCT02715570). A  
phase 3 study of PC945 for adults, who have limited or no  
alternative treatment options, for the treatment of invasive pul-
monary aspergillosis as part of a combined antifungal regimen  
is planned to start in 2021. 

In a report of two lung transplant recipients with bronchial anas-
tomotic masses due to A. fumigatus, PC945, administered in  
combination with systemic antifungal agents, was well-tolerated, 
and clinical resolution of infection was observed82.

Agents targeting nucleic acid metabolism
Olorofim
Mechanism of action. Olorofim (previously F910318, discov-
ered by F2G Ltd, Australia), a member of the novel antifungal  
class, orotomides, is in an inhibitor of the pyrimidine biosynthe-
sis fungal enzyme dihydroorotate dehydrogenase. Interruption  
of pyrimidine synthesis impairs nucleic acid production and  
leads to the arrest of hyphal extension83.

Activity in vitro and in vivo. Olorofim is unique among exist-
ing antifungal agents in that it has no activity against Candida  
species. Rather, olorofim has potent activity in vitro against WT 
and azole-resistant Aspergillus spp., some other highly resistant 

hyaline moulds, and Coccidioides spp.84 Amongst 133 azole-
resistant A. fumigatus isolates due to TR34/L98H,TR46/Y121F/
T289A, cyp51A-associated point mutations, or unknown resist-
ance mechanisms, MIC range was 0.031µg/mL to 0.125µg/mL, 
0.062µg/mL to 0.25µg/mL, and 0.01µg/mL to 0.125µg/mL, 
respectively85. Several studies have also shown excellent activ-
ity in vitro against Scedosporium species (MIC

50
/MIC

90
  

0.06/0.25µg/mL) and L. prolificans (MIC
50

/MIC
90

 0.12/0.2µg/mL) 
including biofilm formation by the latter86–88. The geometric 
mean MICs of olorofim were significantly lower for all  
Scedosporium species and L. prolificans compared with those of 
voriconazole, posaconazole, amphotericin B, and caspofungin86. 
Less in vitro data are available for Fusarium species, but  
susceptibility appears to be species-specific, with lower MICs 
observed for F. proliferatum than F. solani species complex and  
F. dimerum89. Olorofim has no activity against the Mucorales or  
the dematiaceous pathogen Exophiala dermatitidis83,90.

In murine models of profound neutropenia and chronic granu-
lomatous disease with disseminated and pulmonary aspergil-
losis, respectively, intraperitoneal administration of olorofim 
lead to significantly reduced serum GM levels and organ fungal  
DNA burden and improved survival as compared to controls30.  
In a murine model of acute sinopulmonary aspergillosis due 
to A. flavus, olorofim had comparable antifungal activity to 
posaconazole for the outcomes of decline in GM, histologic  
clearance of lung tissue, and survival31.

Pharmacokinetics/pharmacodynamics. Olorofim is available 
in oral and IV formulations and demonstrates time-dependent  
antifungal activity31,91. Olorofim initially has a fungistatic effect 
on Aspergillus isolates but prolonged exposure is fungicidal92.  
Pharmacokinetic studies in mice have identified good distribution 
of olorofim to tissues including the kidney, liver, and lung, with 
lower levels of detection in the brain83. Olorofim exhibits time-
dependent antifungal activity; the PK/PD index minimum inhibi-
tory concentration (C

min
)/MIC strongly correlates with treatment 

outcome in murine models of invasive aspergillosis30,31 (Table 2). 
In a phase 1 study of multiple doses of an immediate-release tablet  
(360mg daily for 10 days), steady state was reached within three 
days of dosing, and once attained, mean plasma trough levels  
were 1 to 2µg/mL and exceeded 0.7µg/mL in all subjects. There 
was evidence of enterohepatic recirculation. Olorofim was  
well-tolerated in all eight subjects with no serious adverse events 
and no subject withdrawn due to an AE. Drug-related adverse 
events included increased ALT (N=2), nausea and diarrhea 
(N=1), and dizziness (N=1)93. Olorofim is a weak inhibitor of  
CYP3A494.

Clinical development. Olorofim received designation from the  
U.S. FDA as a breakthrough therapy in 2019 and as an orphan 
drug in 2020. The European Medicines Agency Committee for  
Orphan Medicinal Products also granted orphan drug  
status to olorofim for the treatment of invasive aspergillo-
sis and scedosporiosis in March 2019. A phase 2 clinical  
trial of olorofim for the treatment of IFDs due to resistant  
fungi including azole-resistant aspergillosis, scedosporiosis, and  
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lomentosporiosis is ongoing (FORMULA-OLS; NCT03583164) 
as is a phase 1 drug-drug interaction study with itraconazole  
and rifampicin (NCT04171739).

Conclusion
Despite significant advances in prevention, diagnosis, and  
management of IFDs over the past several decades, IFDs remain 
a formidable threat to immunocompromised hosts. In addition  
to strategies to augment host response and reduce immuno-
suppression, novel therapeutics with potent fungicidal activity  
and low toxicity are urgently needed. We review investiga-
tional drugs in clinical phases of development, including three 
agents within three novel antifungal classes targeting the fungal  
cell wall and nucleic acid metabolism, fosmanogepix, olor-
ofim, and ibrexafungerp.   Fosmanogepix and olorofim are 
unique in their potent activity against highly-resistant molds 

for which we have few, if any, effective agents in our current 
antifungal armamentarium. Ibrexafungerp has selective advan-
tage as an oral fungicidal therapy for Candida species including  
echinocandin-resistant C. glabrata and C. auris. Four other inves-
tigational agents within existing antifungal drug classes, rezafun-
gin, CAmB, oteseconazole, and PC945, demonstrate enhanced 
pharmacokinetic and pharmacodynamic properties that impor-
tantly afford improved safety and tolerability profiles. Rezafun-
gin, in particular, with its once weekly dosing, may facilitate 
outpatient management of patients needing an echinocandin 
for treatment or prophylaxis. Overall, we are optimistic that the 
current antifungal pipeline will expand our ability to provide  
safe and effective treatments to patients suffering from IFDs.

Data availability
No data is associated with this article.
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However, I think the following points need to be considered by the authors:

Please be consistent in the use of units. In some cases, the unites are linked to the numbers 
(e.g. 35mg/L), and in the rest are separated by a space (e.g. 35 mg/L). Please add one space 
between numbers and units throughout the manuscript. 
 

○

In my opinion, conclusion needs to be changed as in its current form it looks like the aim of 
study and not a conclusion.

○

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Medical Mycology, Antifungal Drugs

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 27 Dec 2021
Samantha Jacobs, Icahn School of Medicine, New York, USA 

Response to Reviewer #2 Comments 
12.27.2021 
The study by Jacobs et al. summarizes the antifungal drugs in clinical trials. The 
corresponding author is experienced, the study is well written, and when looked alone, it 
seems perfect. 
 
However, I think the following points need to be considered by the authors:

Please be consistent in the use of units. In some cases, the unites are linked to the 
numbers (e.g. 35mg/L), and in the rest are separated by a space (e.g. 35 mg/L). Please 
add one space between numbers and units throughout the manuscript.

○

Author response: We have added one space between numbers and units throughout the 
manuscript.

In my opinion, conclusion needs to be changed as in its current form it looks like the ○

 
Page 17 of 21

F1000Research 2022, 10:507 Last updated: 24 JAN 2022



aim of study and not a conclusion
Author response:  We have modified the conclusion as suggested by the reviewer to 
summarize and highlight the advantages of the most promising investigational agents 
discussed in the manuscript.  
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This is a well-written and comprehensive paper summarizing recent data on novel antifungal 
agents in clinical development. Table 1 is very helpful. I have only few minor comments:

Abstract: consider change “we examine” to: “we review / present / discuss”. 
 

1. 

Fosmanogepix: please provide more specific in vitro data on species (rather than genera) 
susceptibility for Aspergillus spp, Fusarium spp and Scedosporium spp. 
 

2. 

In vitro antifungal activity of fosmanogepix: it should be mentioned that MEC rather than 
MIC is determined for assessment of activity against molds. 
 

3. 

“Fosmanogepix also has activity against fungi in the order Mucorales (MIC ranges of 1 to 8 
µg/mL)”: please provide reference for this statement; is the term MIC correct or should it be 
replaced by MEC? 
 

4. 

 “Ibrexafungerp has fungistatic activity against Aspergillus species (MIC range <0.06 µg/mL 
to 32 µg/mL…)”: in the reference cited by the authors (ref. 25, Ghannoum et al, AAC 2018), 
ibrexafungerp in vitro activity against Aspergillus had been determined using both MEC and 
MIC; the MIC values tended to be 8-fold higher than correspondent MEC values. Please 
modify the text accordingly. 
 

5. 

Are there data on the in vitro activity of ibrexafungerp and rezafungin against Candida 
parapsilosis in comparison with other Candida species? 
 

6. 

What is the published evidence for PK/PD indices associated with therapeutic outcome for 
each one of the novel antifungal agents presented in this paper? 
 

7. 
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Conclusion: the content of the conclusion paragraph would fit more for an introduction 
rather than a wrap-up of the main findings. I suggest to significantly modify this section, in 
order to briefly mention the novel agents in clinical development and their selective 
advantages compared to our current antifungal armamentarium.

8. 

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: 1. Antifungal agents (in vitro activity against planktonic fungal cells or 
biofilms); 2. Host immune responses against fungal infections; 3. Pharmacokinetics and safety of 
novel antimicrobial agents in pediatric patients

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 27 Dec 2021
Samantha Jacobs, Icahn School of Medicine, New York, USA 

Response to Reviewer #1 Comments 
12.27.2021 
 
This is a well-written and comprehensive paper summarizing recent data on novel 
antifungal agents in clinical development. Table 1 is very helpful. I have only few minor 
comments: 
 
1. Abstract: consider change “we examine” to: “we review / present / discuss”. 
Author response: We have changed the wording to “We discuss…” 
  
2. Fosmanogepix: please provide more specific in vitro data on species (rather than genera) 
susceptibility for Aspergillus spp, Fusarium spp and Scedosporium spp. 
Author response: We have specified the in vitro activity of fosmanogepix to the species 
level including representative MEC values. 
  
3. In vitro antifungal activity of fosmanogepix: it should be mentioned that MEC rather than 
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MIC is determined for assessment of activity against molds. 
Author response: We have added a line noting this distinction. 
 
4. “Fosmanogepix also has activity against fungi in the order Mucorales (MIC ranges of 1 to 
8 µg/mL)”: please provide reference for this statement; is the term MIC correct or should it 
be replaced by MEC?Author response: We have added the reference for this statement 
(reference #2).  Indeed, the manuscript, published in 2011, used MIC rather the MEC 
determination for activity of fosmanogepix against R. oryzae and R. microsporus. We have 
also added another reference that reports MEC values (reference #3). 
 
5. “Ibrexafungerp has fungistatic activity against Aspergillus species (MIC range <0.06 µg/mL 
to 32 µg/mL…)”: in the reference cited by the authors (ref. 25, Ghannoum et al, AAC 2018), 
ibrexafungerp in vitro activity against Aspergillus had been determined using both MEC and 
MIC; the MIC values tended to be 8-fold higher than correspondent MEC values. Please 
modify the text accordingly. 
Author response: Thank you for your comment. We have modified the text to report the 
MEC rather than MIC determinations for ibrexafungerp against Aspergillus species. 
  
6. Are there data on the in vitro activity of ibrexafungerp and rezafungin against Candida 
parapsilosis in comparison with other Candida species? 
Author response: Thank you for your question.  The in vitro activity of ibrexafungerp 
against C. parapsilosis is comparable or more potent than that of echinocandins. The MICs 
against C. parapsilosis are generally similar to those of other Candida species. For 
rezafungin, the in vitro activity against C. parapsilosis is less potent than against other 
common Candida species causing disease. These data are added to the text. 
  
7. What is the published evidence for PK/PD indices associated with therapeutic outcome for 
each one of the novel antifungal agents presented in this paper? 
Author response:  For fosmanogepix, ibrexafungerp, rezafungin, and olorofim, we have 
included the key PK/PD indices associated with therapeutic outcome in experimental animal 
models as there are insufficient clinical data to determine this information.  We have also 
created an additional table (Table 2) to highlight this information. 
 
8. Conclusion: the content of the conclusion paragraph would fit more for an introduction 
rather than a wrap-up of the main findings. I suggest to significantly modify this section, in 
order to briefly mention the novel agents in clinical development and their selective 
advantages compared to our current antifungal armamentarium. 
Author response:  We have modified the conclusion as suggested by the reviewer to 
summarize and highlight the advantages of the most promising investigational agents 
discussed in the manuscript.  
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