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Background. When data on preferences are not available,
analysts rely on condition-specific or generic measures of
health status like the SF-12 for predicting or mapping pref-
erences. Such prediction is challenging because of the char-
acteristics of preference data, which are bounded, have
multiple modes, and have a large proportion of observa-
tions clustered at values of 1. Methods. We developed
a finite mixture model for cross-sectional data that maps
the SF-12 to the EQ-5D-3L preference index. Our model
characterizes the observed EQ-5D-3L index as a mixture
of 3 distributions: a degenerate distribution with mass at
values indicating perfect health and 2 censored (Tobit) nor-
mal distributions. Using estimation and validation samples
derived from the Medical Expenditure Panel Survey 2000
dataset, we compared the prediction performance of these
mixture models to that of 2 previously proposed methods:
ordinary least squares regression (OLS) and two-part mod-
els. Results. Finite mixture models in which predictions are

based on classification outperform two-part models and
OLS regression based on mean absolute error, with substan-
tial improvement for samples with fewer respondents in
good health. The potential for misclassification is re-
flected on larger root mean square errors. Moreover, mix-
ture models underperform around the center of the
observed distribution. Conclusions. Finite mixtures offer
a flexible modeling approach that can take into account
idiosyncratic characteristics of the distribution of prefer-
ences. The use of mixture models allows researchers to
obtain estimates of health utilities when only summary
scores from the SF-12 and a limited number of demo-
graphic characteristics are available. Mixture models
are particularly useful when the target sample does not
have a large proportion of individuals in good health.
Key words: EQ-5D; SF-12; prediction; mapping; mixture
models; Tobit; health-related quality of life. (Med Decis
Making 2015;35:888–901)

Quality-adjusted life-years (QALYs), calculated
by combining life-years gained with a measure

of preferences over health states into a single com-
posite measure that captures both mortality and

morbidity, are commonly used to quantify benefit
in economic evaluations.1 To obtain societal prefer-
ences (or health utilities) from questionnaires,
a patient survey instrument measuring general
health status is scored using country-specific
weights derived from large-scale valuation studies
that reflect preferences over health states.2,3 After
the patient survey is scored, the resulting metric is
often referred to as a ‘‘preference index,’’ from
which QALYs can be calculated.

A widely used instrument for measuring preferen-
ces is the EQ-5D, which currently has preference-
scoring algorithms for many countries, including
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the US.4 The EQ-5D is a standardized measure of
health status developed to provide a simple, generic
measure of health for clinical and economic
appraisal, consisting of 5 questions.5 In the EQ-5D-
3L version, each question has 3 levels of severity,
while a newer version (EQ-5D-5L) has 5 levels.6

Together, the 5 questions or domains are meant to cap-
ture a holistic view of health.7 In the UK, the National
Institute for Health and Care Excellence (NICE) has
indicated that the EQ-5D is the preferred measure of
health-related quality of life (HRQL) in adults.8 In
the US, the Institute of Medicine (IOM) recommended
the direct elicitation of preferences or the use of
generic preference indexes like those derived from
the EQ-5D.9

Unfortunately, the EQ-5D or other preference-
based instruments are not routinely collected in clin-
ical trials or existing secondary data sources, thereby
limiting their value for economic evaluation.10 This
problem has prompted researchers to propose several
methods for predicting (or ‘‘mapping’’) the EQ-5D
based on other instruments that measure health func-
tioning. In the US, these efforts gained steam after the
release of the 2000 Medical Expenditure Panel Sur-
vey (MEPS), a nationally representative sample of
the US noninstitutionalized population. The 2000
MEPS started asking a large and representative sam-
ple of respondents to complete both the EQ-5D-3L
and the Short-Form Health Survey (SF-12), an instru-
ment that measures general health status.11 The SF-
12 is widely available in clinical trials and in some
secondary data sources. The NICE has indicated
that when the EQ-5D instrument is not available, pre-
diction methods can be used to obtain a predicted
preference index from other instruments that mea-
sure HRQL.12

The unusual distribution of the EQ-5D-3L, how-
ever, makes it challenging to predict. The index is
bounded on the right at 1, representing preferences
for ‘‘perfect health,’’ and it can also take negative val-
ues, indicating preference for health states consid-
ered ‘‘worse than death.’’2 In addition, the EQ-5D-
3L distribution tends to have 3 distinct modes, and
in samples representing the general population,
a large proportion of responses are clustered at 1. To
date, most of the methods used to predict the EQ-
5D-3L index from the SF-12 instrument in a represen-
tative sample of the US population have ignored
some or all of these characteristics, with the conse-
quence that prediction may be systematically
biased.13 While statistical methods such as ordinary
least squares (OLS), Tobit regression, and two-part
models have been previously proposed, none fully

captures the idiosyncratic characteristics commonly
observed in societal preferences.

The objective of this article is to develop and
implement a statistical model that takes into account
all the characteristics of the EQ-5D-3L index and to
investigate under which circumstances our proposed
model leads to improved prediction in a US sample
compared with other alternatives proposed in the lit-
erature. Our model assumes that the observed EQ-5D-
3L index is a mixture of 3 distributions: a degenerate
distribution with mass at preference values indicating
perfect health and 2 censored normal (Tobit) distribu-
tions, which take into account the bounded nature of
the EQ-5D-3L index. We use the mental and physical
components of the SF-12 health survey as predictors,
along with a limited number of covariates. We com-
pare predictions from our finite mixture models to
the best-performing alternatives proposed in the liter-
ature: linear regression and two-part models.13

BACKGROUND

EQ-5D-3L

The EQ-5D-3L questionnaire is made of 2 compo-
nents: a descriptive classification component and
a Visual Analogue Scale (VAS). The EQ-5D-3L
descriptive component consists of 5 domains of
health: mobility, self-care, usual activities, pain and
discomfort, and anxiety/depression. Each question
has 3 possible answers that capture a respondent’s
ability to perform each of the 5 domains: no problems,
some or moderate problems, and extreme problems or
unable to perform the activity. The EQ-5D-3L
describes a total of 35 (i.e., 243) possible response pat-
terns, each defining a ‘‘health state.’’ Perfect health is
defined as having no problem in any of the 5 domains,
while the worst possible state is being unable to per-
form any of the 5 activities. To transform the EQ-5D-
3L descriptive system into a measure that represents
preferences, each of the health states defined by the
descriptive system is converted to a preference index
using algorithms derived from valuation studies. In
the US, the valuation study sample represented the
civilian noninstitutionalized population.2

Figure 1 shows the distribution of the EQ-5D-3L
preference index using the MEPS 2000 data
(described below) for selected age groups and medi-
cal conditions. Several characteristics of the distribu-
tion are worth nothing. First, a large proportion of
individuals (43.65%) have an EQ-5D-3L index of 1
(Panel A), indicating preferences for perfect health.
The proportion of individuals in perfect health
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decreases with age, as shown in Panels B to E, and for
those individuals who have a self-reported medical
condition, Panels F to I. Second, the distribution
exhibits 3 modes, at approximately 0.17, 0.75, and 1
(Panel A). The location of the modes differs according
to the characteristics of the sample, particularly the
number and severity of comorbid conditions. Finally,
the range of possible EQ-5D scores is limited. The
lowest possible score is –0.594 and the highest is 1.

SF-12

The 12-item Short-Form Health Survey (SF-12) is
an instrument derived from the longer 36-item
Short-Form (SF-36),11 which was designed to mea-
sure general health functioning. The SF-12 items
measure physical or emotional limitations, physical
functioning, pain, general health, vitality, social
functioning, and mental health problems. It provides

2 summary scores, the Physical Component Sum-
mary (PCS) and the Mental Component Summary
(MCS). Scores are standardized; the mean score in
the population is 50 with a standard deviation of 10
points. Higher scores indicate better functioning in
each domain. The SF-12 instrument is not routinely
used in economic evaluations because the resulting
functioning scales are not expressed in terms of pref-
erences, although algorithms have been developed
for that purpose.14–16

Previous Prediction Approaches

Several methods have been proposed for predict-
ing the EQ-5D-3L from the SF-12 components using
MEPS data. These methods can be divided into 2
types, depending on whether the prediction target
is the EQ-5D-3L preference index itself or the
responses to the EQ-5D-3L descriptive system.
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Figure 1 Distribution of EQ-5D-3L by age group and medical condition. Data source: MEPS, 2000. All sample (A); by age group (B–E), and

for selected self-reported conditions (F–I). ‘‘Any condition’’ refers to those who have heart disease, stroke, and/or diabetes. Some individ-

uals have more than 1 condition.
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One of the earliest approaches using MEPS data
focused on the prediction of the mean EQ-5D-3L
preference index using mean values of the PCS and
MCS from the SF-12.17 Franks and others18 used indi-
vidual-level data instead and OLS regression with
SF-12 components as predictors. They found that
OLS models explained approximately 63% of the
total variance and performed well for EQ-5D-3L
scores close to the observed mean, but they cautioned
that their models performed poorly for the worse
health states. In addition, OLS models underpredict
scores of those in perfect health as these models do
not take into account the upper bound of the EQ-5D-
3L preference index. Recognizing that the EQ-5D-3L
index is bounded at 1, Sullivan and Ghushchyan19

compared OLS models to Tobit regression and cen-
sored least absolute deviations (CLAD) models and con-
cluded that the OLS model outperformed Tobit models,
but the investigators recommended CLAD models when
the only predictors available are mental and physical
scores of the SF-12. Another way to account for the large
proportion of EQ-5D-3L scores clustered at 1 is with two-
part models, which are commonly used to model cost
data.20 Li and Fu21 suggested that two-part models are
a superior alternative to Tobit and CLAD models for pre-
dicting EQ-5D-3L scores, although those authors did not
directly compare two-part models with OLS or Tobit/
CLAD models using MEPS data.

Gray and others22 used a different approach. They
used multinomial models to first estimate the proba-
bility that a respondent would select a particular level
of response to each question in the EQ-5D-3L (modeling
each of the EQ-5D questions separately). These esti-
mated probabilities were then used to create a simu-
lated pattern of responses, which were then scored
and translated into the preference index. The advan-
tage of this method is that if the predicted response pat-
tern is accurate, the predicted EQ-5D-3L index will
preserve the characteristics of the observed EQ-5D-3L
index. However, Chuang and Kind13 compared this
approach with OLS, CLAD, and two-part models using
MEPS data and concluded that OLS was the best
method for predicting the EQ-5D-3L, although the
accuracy of OLS deteriorated in less healthy groups.

Numerous research articles describe methods for
predicting preference-based measures from non-
preference-based instruments using datasets from
the US and other countries, as well as using instru-
ments other than the SF-12 as predictors. Brazier
and others23 conducted a review of 30 studies and
found that most of them used OLS models, with
approximately half using either the EQ-5D-3L prefer-
ence index or the descriptive system as an outcome.

The investigators concluded that the performance of
models in terms of goodness-of-fit and prediction
was variable and difficult to generalize given the myr-
iad of methods and instruments used. Other research
has focused on simulation studies comparing differ-
ent methods that could be potentially used to model
preference-based outcomes like the EQ-5D-3L,
including mixture models. In simulation studies,
Pullenayegum and others24 compared latent class
models (mixture of 2 normals) to OLS, Tobit, CLAD,
and two-part models and recommended the use of
OLS models with robust standard errors. In contrast,
two-part models were recommended by Huang and
others25 over alternatives that included latent class
models assuming normal densities. Both studies were
concerned about modeling bounded data and did not
explore other mixture models. Hernandez and others26

considered a longitudinal mixed-effects mixture of
censored normals, which they called ‘‘adjusted limited
dependent variable mixture models’’ (ALDVMMs),
using a disability measure, the Health Assessment
Questionnaire–Disability Index (HAQ-DI), and a pain
measure as predictors of the EQ-5D-3L, in a randomized
trial of patients with rheumatoid arthritis. Longworth
and others27 compared several mapping methods,
including two-part models, Tobit models, multinomial
models, and ALDVMMs using cancer-specific HRQL
measures as predictors in a sample of patients with dif-
ferent types of cancer and disease stages.

Our methodological approach is similar to that of
Hernandez and others,26 but we focus on predicting
the EQ-5D using a broader measure of health (SF-
12) in a nationally representative sample of the US
population, incorporating widely available covari-
ates in a cross-sectional context.

METHODS

Data

The MEPS is a nationally representative survey of
the noninstitutionalized US population. The survey
collects detailed information on respondents’ demo-
graphics, health care utilization and expenditures,
self-reported medical conditions, insurance cover-
age, and socioeconomic status. In the year 2000, the
MEPS added a self-administered module asking
a subset of respondents to complete both the EQ-5D
and the SF-12 questionnaires.17,28,29

Models

Traditional parametric regression models assume
that the observed outcome is a realization from
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some probability distribution. For example, linear
regression assumes that the outcome of interest dis-
tributes normally with unknown variance and mean
given by a linear combination of covariates. In con-
trast, finite mixture models assume that the outcome
comes from a combination of 2 or more distributions,
which are mixed with unknown probabilities. The
objective is to simultaneously estimate the parameters
of each distribution and the mixture probabilities.

Formally, finite mixture models assume that the
probability density generating the observed outcome
is a convex combination of k different densities:

f ðyÞ5
Xk

j 5 1

pj fjðyjx; ujÞ; ð1Þ

where 0 � pj � 1 and
Pk

j 5 1 pj 5 1. Here, uj is a vec-
tor of parameters describing the density distribution
fj, pj is a mixture probability, and x is a vector of cova-
riates. The pj values are unknown parameters to be
estimated along with the parameters uj. Mixture mod-
els can be extended by allowing the mixture probabil-
ities to be a function of a vector of covariates z with
parameters a : pjðz0ajÞ, where covariates z may be
different from those in x. Each density describes
a ‘‘class’’ or ‘‘component,’’ and the number of compo-
nents k must be specified a priori. The densities can
be discrete or continuous and of different types. For
instance, a well-known example of a finite mixture
model is the zero inflated Poisson (ZIP) model,30

typically used to model count data with excess
zeroes. The ZIP model is a mixture of 2 different dis-
tributions: a Poisson distribution and a degenerate
distribution with mass at zero. Since the Poisson dis-
tribution has support at zero, observed zeroes may
come from either of the 2 components.

Finite mixture models can also be used to classify
observations into distinctive classes. The posterior prob-
ability that an observation belongs to class c is given by

Pr y 2 class cjx; y; û
� �

¼ p̂cfc yjx;ûcð ÞPc

j¼1
p̂j fj y jx;ûjcð Þ ; ð2Þ

where p̂j and ûj are the estimated parameters of the
mixture given in Equation 1. In general, an observa-
tion is assigned to the class with the greatest posterior
probability.31 Equation 2 is used when the outcome y
is observed and the objective is to assign an observa-
tion to 1 of the classes or components.

Our application of finite mixture models assumes
that the EQ-5D-3L preference index is a mixture of 3
classes: a degenerate distribution and 2 censored nor-
mal distributions, also known as a Tobit model. With

the aim of modeling expenditure data on durable
goods, Tobin introduced the concept of censored nor-
mals in the econometrics literature.32,33 Expenditure
on durable goods can only take positive values, and
because households do not purchase durable goods
on a regular basis, a sizable portion of expenditures
over a period of time are zero. A censored normal
model assumes that the observed outcome comes
from a latent random variable that follows a normal
distribution but realizations of the random variable
are censored if they cross a threshold value. In the
case of expenditure data, the threshold value is
zero, and realizations of the latent variable that are
less than zero are observed to be zero.

Formally, the Tobit model assumes that the latent
variable y� distributes normally with mean x0b and
unknown variance s2. That is,

y�5 x0b 1 e;

where e;Nð0;s2Þ. The observed outcome y is defined
as y 5 y� if y�.L and y 5 L if y� � L. In the expendi-
ture data example, L 5 0, and therefore the observed
outcome is zero when the latent variable is negative
and Nðx0b;s2Þ when the latent variable is greater
than zero.34,35

The density for the standard Tobit model is given by

f ðyÞdy 5
1

s
˘

y � x0b

s

� �
dy

� �ð1�dÞ
F � x0b

s

� �� �d

; ð3Þ

where ˘ð � Þ is the standard normal density, Fð � Þ is
the standard cumulative normal distribution func-
tion, and d is an indicator variable equal to 1 if y 5 0
and zero otherwise. The second bracket in Equation
3 is simply the probability that the latent variable is
less than zero. The expected value conditional on
observed covariates for an observation randomly
drawn from the population, which could be cen-
sored, is given by

E y jx½ �5 F
x0b

s

� �
x0b 1 s

˘ðx0b=sÞ
Fðx0b=sÞ

� �
: ð4Þ

The density of our proposed mixture model con-
sists of 2 Tobit censored normal components and
a degenerate distribution with mass at zero. This den-
sity is an extension of Equation 3 and is given by the
expression

f ðyÞdy 5
X2

j 5 1

pj
1

sj
˘

y � x0jbj

sj

� �
dy

" #ð1�dÞ

p0 1
X2

j 5 1

pjF �
x0jbj

sj

� �" #d

;

ð5Þ
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where pj are the mixture probabilities. Here,
p0 5 ð1� p1 � p2Þ is the mixture probability of the
degenerate component. To model the EQ-5D-3L pref-
erence index using the density given by Equation 5,
we define y = 1 – EQ-5D-3L. That is, we model the
reversed EQ-5D-3L preference index.36 The choice
of scale does not affect prediction or the statistical
properties of the model, but care must be taken
when interpreting the sign of the estimated set of
coefficients bj as they represent marginal changes
on the reversed scale. In the sections below, we pres-
ent results on the original EQ-5D-3L scale.

The model described by Equation 5 can be
extended by making the mixture probabilities to be
functions of covariates using a multinomial
transformation:

pj 5
expðz0ajÞ

1 1 exp ðz0a1Þ1 expðz0a2Þ;
ð6Þ

where a0 5 0. The vector of covariates z models the
probability that an observation belongs to a class or
component, while the vector of covariates x models
how covariates affect the mean of the components.

Assuming independent observations following the
density described by Equations 5 and 6, we estimated
the parameters by maximum likelihood. For this pur-
pose, we developed a Stata program that maximizes
the log-likelihood.37 In general, the likelihood func-
tion of a mixture model is difficult to maximize
because of the possibility of multiple local maxima
and nonconcave regions.31 We developed an algo-
rithm to choose appropriate starting values, which
we tested extensively via simulations. We ensured
our models converged to a global maximum by trying
different sets of feasible starting values. Details of the
Stata command and the strategy for choosing starting
values are given in Appendix A.

Two types of predictions can be calculated from
our models. For models with constant mixture prob-
abilities, the predicted EQ-5D-3L is the sum of the
predictions from each component weighted by their
estimated mixture probabilities p̂j. For the Tobit com-
ponents, predictions are calculated following Equa-
tion 4. We call this type of prediction ‘‘weighted
average’’ (WA) predictions. For models in which mix-
ture probabilities are conditional on covariates z,
individuals can be first assigned to a class based on
the maximum of the estimated mixture probabilities
p̂jðz0âjÞ. The predicted EQ-5D-3L is then the predic-
tion corresponding to the assigned class. We call
this type of prediction a ‘‘conditional on estimated
class’’ (CEC) prediction.

Analyses

We randomly divided MEPS 2000 data into esti-
mation and validation samples of roughly equal size
and estimated 4 types of models using the estimation
sample: 1) mixture models without covariates in the
mixing probabilities, 2) mixture models with covari-
ates in the mixing probabilities, 3) OLS regression,
and 4) two-part models, in which the first part esti-
mates the probability that the EQ-5D index is less
than 1 using a logistic model, and the second part
uses an OLS model to estimate the expected EQ-5D
score based only on those with observed EQ-5D \ 1.
Assuming that the parts in the two-part model are inde-
pendent, the predicted EQ-5D index is the product of
the predicted probabilities from the first part and the
predicted expected value from the second part.20

Although the MEPS dataset has a rich set of cova-
riates, in practical applications using other datasets,
analysts will likely have access to only a limited set
of demographic variables. To examine the perfor-
mance of our method in such circumstances, we
only used age, sex, and education in addition to
PCS and MCS as predictors. For each method, we
selected the best-fitting model specification identi-
fied by the Bayesian information criterion (BIC).
Functional forms considered included quadratic
terms and interactions. In some models, we included
the sum of the mental and physical components
rather than both components. To facilitate the inter-
pretation of interactions and the intercept, continu-
ous variables were centered. Age was centered at
65, and PCS and MCS were centered at their mean
value of 50, with the sum centered at 100. Education
was entered as an indicator variable equal to 0 if the
respondent did not complete high school and 1
otherwise.

After selecting the best model for each method, we
compared their prediction performance using the
root mean square error (RMSE) and the mean absolute
error (MAE). Both RMSE and MAE quantify the dis-
crepancy between observed and predicted values,
but in RMSE larger errors have greater influence
than smaller errors.

We conducted a series of sensitivity analyses to
evaluate the performance of our model under various
circumstances. Because the shape of the distribution
varies with age and health status, we compared the
prediction performance using a subsample of indi-
viduals with diabetes, stroke, or heart disease (Figure
1, Panel I). To determine the performance of our
model at the tails of the distribution, we categorized
the EQ-5D-3L index into 4 levels (\0, 0–0.699,
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0.7–0.899, 0.9–1) and compared the prediction per-
formance by level.

RESULTS

There were a total of 14,241 observations in the
MEPS 2000 with complete data in all covariates.
Table 1 shows the characteristics of the estimation
and validation samples by age, sex, race, education,
and selected self-reported comorbidities. In the com-
bined sample, the mean EQ-5D-3L was 0.81
(s = 0.24). The mean MCS was 51.12 (s = 9.49), and
the mean PCS was 48.90 (s = 10.34). Mean EQ-5D-
3L and PCS scores declined with age and were lower
for those subjects with comorbid conditions. The
lowest average EQ-5D-3L, PCS, and MCS scores cor-
responded to medical conditions that are highly
debilitating: stroke and emphysema. For the com-
bined sample, the Pearson correlation between the

EQ-5D-3L index and the PCS and MCS scores was
0.68 and 0.48, respectively.

Using the BIC, the best-fitting model within each
method had different functional forms. Table 2 shows
the estimated coefficients for each model and
method. The Mixture 1 model is a model with con-
stant mixture probabilities. The best model of this
type corresponds to a mixture of 2 Tobit models,
with the degenerate distribution having zero esti-
mated mixture probability. The Mixture 2 model,
which allows covariates to alter the mixture probabil-
ities, is considerably simpler. In this model, the mean
EQ-5D-3L in each class is a function only of PCS and
MCS, and the probability of class membership is
a function of PCS, MCS, and age. The estimated aver-
age predicted mixture probability corresponding to
the degenerate distribution is 0.43, which is similar
to the observed proportion of observations with an
EQ-5D-3L of 1.

Table 1 Baseline Characteristics by Sample

Estimation Sample (n = 7120) Validation Sample (n = 7121)

%

�x (s)

%

�x (s)

EQ-5D-3L PCS MCS EQ-5D-3L PCS MCS

Age, years
18–40 45.53 0.88 (0.18) 52.54 (7.10) 51.31 (8.96) 44.49 0.86 (0.20) 52.29 (7.49) 50.95 (9.30)
41–65 39.87 0.79 (0.25) 48.03 (10.59) 51.12 (9.57) 40.48 0.79 (0.25) 48.29 (10.37) 50.92 (9.56)
66–80 11.33 0.71 (0.27) 41.40 (12.10) 51.83 (10.16) 12.02 0.71 (0.26) 41.42 (11.86) 51.40 (9.95)
.80 3.26 0.60 (0.33) 35.60 (11.60) 50.70 (11.11) 2.65 0.61 (0.29) 34.73 (11.60) 49.88 (11.46)
�x (s) 44.79

(17.4)
44.91

(17.20)
Sex

Male 46.21 0.83 (0.23) 49.86 (9.74) 52.34 (8.68) 46.22 0.84 (0.22) 49.69 (9.85) 52.09 (8.81)
Female 53.79 0.80 (0.25) 48.12 (10.80) 50.36 (9.92) 53.78 0.79 (0.25) 48.18 (10.67) 49.99 (1.03)

Race
White 83.08 0.81 (0.24) 48.96 (10.33) 51.31 (9.40) 83.68 0.84 (0.24) 48.90 (10.34) 50.98 (9.52)
Black 13.65 0.80 (0.26) 48.33 (10.60) 51.09 (9.55) 12.89 0.80 (0.26) 48.48 (10.35) 50.98 (9.76)
Other 3.27 0.84 (0.23) 50.49 (9.59) 51.20 (9.38) 3.43 0.83 (0.24) 49.81 (9.81) 50.41 (9.45)

Education
Less than HS 56.78 0.78 (0.26) 47.43 (11.00) 50.68 (9.95) 57.03 0.78 (0.26) 47.44 (11.03) 50.25 (10.06)
HS or more 43.22 0.86 (0.20) 50.89 (9.08) 52.06 (8.61) 42.97 0.85 (0.19) 50.79 (8.95) 51.90 (8.72)

Asthma 8.46 0.73 (0.28) 45.37 (12.07) 49.20 (10.84) 8.76 0.72 (0.30) 45.26 (12.22) 48.42 (11.19)
Current smoker 21.94 0.78 (0.26) 48.39 (10.52) 49.54 (10.28) 22.67 0.78 (0.26) 48.29 (10.70) 49.09 (10.61)
Diabetes 6.63 0.65 (0.33) 40.20 (12.57) 48.31 (11.14) 6.74 0.67 (0.31) 40.54 (12.09) 48.84 (10.75)
Emphysema 1.38 0.53 (0.32) 31.69 (11.01) 45.74 (12.30) 1.43 0.61 (0.30) 33.83 (11.53) 47.27 (11.99)
Heart disease 9.44 0.63 (0.33) 38.75 (13.11) 48.48 (11.12) 10.05 0.66 (0.31) 39.64 (12.48) 48.91 (11.34)
Hypertension 22.78 0.70 (0.29) 42.55 (12.30) 49.90 (10.62) 23.58 0.72 (0.28) 43.21 (11.79) 49.79 (1.54)
Joint pain 30.9 0.68 (0.29) 43.93 (12.33) 49.41 (10.77) 32.4 0.69 (0.28) 43.36 (12.05) 49.17 (10.65)
Stroke 2.02 0.53 (0.36) 35.18 (12.09) 46.35 (11.93) 2.43 0.57 (0.34) 35.17 (11.52) 47.85 (12.38)

Note: Data source: MEPS 2000. HS = high school; MCS = SF-12 mental component; PCS = SF-12 physical component.
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We attempted to fit a mixture model with 4 classes,
but the models failed to converge as there is too little
information to distinguish a fourth component.
Because the best model with constant mixture proba-
bilities had 2 classes with Tobit components, we also
fitted 2-class models with 1 Tobit and 1 degenerate
component, with and without covariates in the mix-
ture probabilities. These models, however, were infe-
rior to the models presented in Table 2 in terms of
prediction and fit. Models using SF-12 questions as
predictors rather than the summary scores did not
improve prediction performance considerably, with
some models failing to converge due to the larger
number of parameters that need to be estimated.

Table 3 shows RMSE, MAE, and summary statis-
tics for different types of predictions in validation
and estimation samples. All the statistics are similar
in both samples, suggesting that there are no overfit-
ting problems. OLS and two-part models are nearly
identical in their prediction ability. A mixture model
with constant mixture probabilities (Mixture 1) does
not improve prediction. In contrast, based on MAE
and CEC predictions, a mixture model with covari-
ates in the probability model is superior to both the
linear and two-part models. Mixture 2’s RMSE is
larger than that of the linear and two-part models
when CEC predictions are used. This is due to the
misclassification of some individuals, which produ-
ces larger errors that are weighted more in RMSE,
even though on average Mixture 2’s prediction ability
is superior as shown by MAE. The standard deviation
of the predicted EQ-5D obtained from the Mixture 2
(CEC) model is closer to that of the observed EQ-5D-
3L in both estimation and validation samples (0.240
and 0.239, respectively), compared with the other
models, which underestimate the standard deviation.
Table 4 shows prediction performance by levels of
the EQ-5D index. Mixture 2 (CEC) model substan-
tially improves predictions at the tails of the distribu-
tion while underperforming around the center of the
observed distribution when compared with both the
two-part and linear models.

Table 5 shows a cross-tabulation of observations
classified based on the higher posterior and estimated
probabilities using the validation sample and Mix-
ture 2 estimates. The posterior classification (Equa-
tion 2) uses the observed EQ-5D-3L to calculate the
probability that an observation belongs to 1 of the 3
classes and is thus the most accurate classification.
From Table 5, approximately 75% of the observations
are correctly classified when using the estimated
probabilities for classification, which do not assume
the EQ-5D-3L is observed. Observations away from

EQ-5D-3L = 1 have a larger misclassification rate
because the 2 Tobit components are close to each
other and are thus harder to distinguish. These errors
in misclassification produce larger RMSE.

Table 6 shows prediction comparisons for the lin-
ear (OLS) and Mixture 2 models (estimated coeffi-
cients not shown) for a subsample (n = 2219) of
individuals who reported having diabetes, stroke, or
heart disease, randomly divided into estimation
(n = 1109) and validation (n = 1110) samples. As
with models for the general population, RMSE gave
a higher weight to larger errors, but based on MAE,
both WA and CEC predictions are superior to those
of the linear model. In particular, the MAE for CEC
predictions represents a 14% improvement, from
0.147 to 0.127 in the validation sample. A finite mix-
ture for this subpopulation makes better predictions
than the linear model at the tails of the distribution,
as can be seen from Table 4, although the mixture
model underperforms in the interval 0–0.699. Predic-
tions from the linear model regress toward the mean,
overestimating the EQ-5D-3L for individuals with
lower EQ-5D-3L while underestimating the EQ-5D-
3L for those with higher observed values.

Figure 2 shows the histograms of predicted values
by model type. It can be seen that CEC predictions
based on mixture models (Figure 2, bottom row) are
able to reproduce the distribution of the observed
data (Figure 1, A and I) more closely than are OLS
and two-part models.

The best Mixture 2 model included only the SF-12
components as predictors of the mean EQ-5D-3L
within each component (Table 2). Alternative models
including age and sex fit the data well and could add
more variability to the predictions, but the extra
parameters that need to be estimated were penalized
by the BIC. As a result, the most parsimonious model
was preferred.

DISCUSSION

The feasibility of economic evaluations is hin-
dered if the data do not include preference-based
measures. When data on preferences are not avail-
able, analysts use condition-specific or generic meas-
ures of health status to predict preferences. In this
report, we showed that finite mixture models with
Tobit components capture the idiosyncratic charac-
teristics of the EQ-5D distribution, particularly
when the sample does not include a large number
of individuals in good health. Predictions from our
best mixture model are superior at the tails of the
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distribution and on average, although some indivi-
duals can potentially be misclassified, which is
reflected in larger RMSE. Moreover, linear and
two-part models tend to perform better around the
center of the observed distribution.

We use mixture models to account for a heteroge-
neous population even though the mixture compo-
nents do not have a direct physical representation.
Finite mixtures offer a flexible modeling approach
that takes into account the characteristics of the dis-
tribution of societal preferences, which cannot be

accurately described by a single probability density.
Traditional methods, such as linear regression and
two-part models, make poor predictions for extreme
values of observed EQ-5D-3L scores and do not take
into account the bounded nature of preference-based
scores. As a consequence, these methods tend to over-
estimate preferences for individuals in the poorest
health states while underestimating preferences for
those individuals in the best health states, potentially
biasing economic evaluations, which could then lead
to misallocation of resources. In contrast, finite

Table 3 Model Comparisons

Mixture 1 Mixture 2

Linear (OLS) Two-Part Estimation Validation Estimation Validation

Estimation Validation Estimation Validation WA WA WA CEC WA CEC

RMSE 0.148 0.149 0.148 0.149 0.155 0.157 0.147 0.169 0.146 0.166
MAE 0.107 0.108 0.105 0.106 0.121 0.122 0.105 0.095 0.104 0.093
Predicted

�x 0.814 0.810 0.814 0.810 0.811 0.808 0.814 0.837 0.811 0.833
s 0.180 0.188 0.181 0.188 0.181 0.182 0.190 0.218 0.189 0.216
Minimum 0.045 0.001 –0.152 –0.208 0.177 0.175 0.013 –0.036 –0.007 –0.051
Maximum 1.035 1.033 0.994 0.994 0.939 0.938 0.989 1.000 0.989 1.000

Note: CEC = conditional on estimated class; MAE = mean absolute error; OLS = ordinary least squares; RMSE = root mean squared error; WA = weighted
average prediction. Mixture 1 does not include covariates in the probability model. Mixture 2 model includes SF-12 mental and physical components and
age as predictors of mixture probabilities. Mean, standard deviation, maximum, and minimum for estimation and validation samples are 0.814, 0.240, –
0.594, 1 and 0.813, 0.239, –0.594, 1, respectively.

Table 4 Prediction Performance in Validation Sample by Level of the EQ-5D-3L Index

Linear (OLS) Two-Part Mixture 1

Mixture 2

WA CEC

EQ-5D-3L level n MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

All sample
\0 134 0.436 0.466 0.386 0.434 0.468 0.492 0.390 0.430 0.301 0.400
0–0.699 1241 0.179 0.226 0.177 0.235 0.194 0.239 0.174 0.232 0.191 0.286
0.7–0.899 2673 0.099 0.118 0.093 0.110 0.107 0.122 0.093 0.110 0.096 0.126
0.9–1 3073 0.072 0.095 0.076 0.100 0.090 0.100 0.072 0.095 0.040 0.100
All 7121 0.108 0.149 0.106 0.149 0.122 0.157 0.104 0.146 0.093 0.166

Diabetes, heart disease, or stroke
\0 62 0.366 0.400 0.333 0.378 0.241 0.351
0–0.699 437 0.179 0.224 0.173 0.226 0.189 0.288
0.7–0.899 411 0.106 0.130 0.092 0.114 0.073 0.100
0.9–1 240 0.103 0.130 0.104 0.130 0.078 0.134
All 1110 0.147 0.192 0.138 0.188 0.127 0.214

Note: CEC = conditional on estimated class; MAE = mean absolute error; OLS = ordinary least squares; RMSE = root mean squared error; WA = weighted
average prediction.. Mixture 1 does not include covariates in the probability model. Mixture 2 model includes SF-12 mental and physical components and
age as predictors of mixture probabilities.
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mixture models are able to improve prediction and
mitigate biases at both tails of the distribution with
only the SF-12 summary scores and age as predictors.

A known limitation of finite mixture models is that
they tend to be difficult to estimate. When one is
using maximum likelihood estimation, this problem
is ameliorated by choosing appropriate starting val-
ues for the maximization algorithm regardless of the
maximization method.38 When we applied our strat-
egy for choosing starting values to the MEPS dataset,
however, model specifications converged to a global
maximum and the estimated parameters were robust
to the selection of starting values.

Another potential limitation is that there is
no guarantee that mixture models will be appropriate
for other datasets or that these datasets will
have enough information to correctly separate

observations into latent classes. For example, pre-
dicting societal preferences using general measures
of health like the SF-12 is not as challenging as pre-
dicting individual preferences for those currently
experiencing a particular health state. Individuals
adapt to changes in their health status, and general
measures of health may not provide enough informa-
tion to estimate models as adaption may depend on
unmeasured traits.39 In our models, both SF-12 and
age were sufficient to accurately predict class
membership.

While Hernandez and others26 demonstrated
that mixture models can be used to predict EQ-5D-
3L preferences using a measure of disability in
a homogeneous clinic-based population with multi-
ple observations per subject, our analysis shows that
mixture models perform well using general health
measures in a heterogeneous sample of the US popula-
tion and cross-sectional data. Furthermore, we also
demonstrated that mixture models are more useful
when the target sample does not include a large pro-
portion of individuals in good health. Our results
using the SF-12 summary scores as predictors were
consistent with those of Hernandez and others, which
used a disability measure from the HAQ questionnaire
and a pain measure as predictors and found improve-
ments in both MAE and RMSE. However, our results
show that mixture models do not outperform linear
and two-part models over the whole range of observed
EQ-5D values and that predictions based on classifica-
tion may produce larger RMSE.

Finally, concerns have been expressed recently
that mapping methods underestimate the observed
variance of the EQ-5D-3L.40 In OLS models, for

Table 6 Model Comparisons for Those with Diabetes, Heart Disease, or Stroke

Mixture 2

Linear (OLS) Estimation Validation

Estimation Validation WA CEC WA CEC

RMSE 0.197 0.193 0.194 0.225 0.188 0.214
MAE 0.150 0.147 0.144 0.137 0.138 0.127
Predicted

�x 0.654 0.658 0.654 0.670 0.658 0.677
s 0.252 0.245 0.252 0.300 0.246 0.288
Minimum –0.003 –0.003 –0.035 –0.086 –0.035 –0.086
Maximum 1.031 1.043 0.985 1.000 0.989 1.000

Note: CEC = conditional on estimated class; MAE = mean absolute error; OLS = ordinary least squares; RMSE = root mean squared error; WA = weighted
average prediction. Mixture 1 does not include covariates in the probability model. Mixture 2 model includes SF-12 mental and physical components and
age as predictors of mixture probabilities. Mean, standard deviation, maximum, and minimum for estimation and validation samples are 0.654, 0.320, –
0.594, 1 and 0.673, 0.305, –0.594, 1, respectively.

Table 5 Classification Based on Posterior
and Predicted Probabilities for Mixture 2 Model

Class Based on
Posterior Probabilities

Class Based on Estimated Probabilities

0 1 2

0 2538 534 1
(82.59) (17.38) (0.03)

1 880 2566 108
(24.76) (72.20) (3.04)

2 6 269 219
(1.21) (54.45) (44.33)

Note: Numbers in parentheses are row percentages. Classifications based
on posterior probabilities use the observed EQ-5D-3L, while classifica-
tions based on estimated probabilities assume that the EQ-5D-3L is not
observed. Both classifications assign each individual to the class with
maximum probability.
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Figure 2 Histogram of predicted EQ-5D-3L scores by model. CEC = conditional on estimated class; WA = weighted average prediction.

Mixture 1 does not include covariates in the probability model. Mixture 2 model includes SF-12 mental and physical components and

age as predictors of mixture probabilities. Any condition includes respondents who reported having diabetes, heart disease, or stroke.
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example, predicted EQ-5D-3L values tend to regress
toward the mean while the bulk of the observed val-
ues are away from it. However, when the EQ-5D-3L
was predicted using mixture models and classifica-
tion, the variances of observed and predicted
EQ-5D-3L were closer in magnitude, although still
underestimated but to a much smaller extent than
the other methods.

Future research can exploit the richness of infor-
mation available in the MEPS dataset to estimate mix-
ture models for subpopulations with the same
characteristics as those in datasets without prefer-
ence-based measurements. To facilitate wider use of
our proposed mixture models, we have made our
Stata program publicly available (see Appendix A)
and provide practical guidance on how to use
our mixture models in Appendix B. Further research
is also needed to evaluate under which conditions
a finite mixture model produces better predictions
on the whole range of observed EQ-5D-3L scores
and whether additional refinement of mixture mod-
els can further improve predictions to better capture
uncertainty.
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