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The Nedd4-2/Ndfip1 axis is a negative regulator
of IgE-mediated mast cell activation
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Cross-linkage of the high-affinity immunoglobulin E (IgE) receptor (FceRI) on mast cells by

antigen ligation has a critical role in the pathology of IgE-dependent allergic disorders, such as

anaphylaxis and asthma. Restraint of intracellular signal transduction pathways that promote

release of mast cell-derived pro-inflammatory mediators is necessary to dampen activation

and restore homoeostasis. Here we show that the ligase Nedd4-2 and the adaptor Ndfip1

(Nedd4 family interacting protein 1) limit the intensity and duration of IgE-FceRI-induced

positive signal transduction by ubiquitinating phosphorylated Syk, a tyrosine kinase that

is indispensable for downstream FceRI signalosome activity. Importantly, loss of Nedd4-2

or Ndfip1 in mast cells results in exacerbated and prolonged IgE-mediated cutaneous

anaphylaxis in vivo. Our findings reveal an important negative regulatory function for Nedd4-2

and Ndfip1 in IgE-dependent mast cell activity.
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A
lthough the roles of mast cells in inflammation can be
complex (including evidence that they can negatively
regulate inflammation in certain settings1–5), they are

best known as efficient pro-inflammatory effector cells which can
provoke strong immunoglobulin E (IgE)-mediated responses to
allergens in sensitized individuals. Indeed, IgE-dependent
elicitation of mast cell mediator production helps to drive the
complex pathology of allergic disorders, such as atopic asthma,
allergic rhinitis (hay fever), atopic dermatitis (eczema) and
life-threatening anaphylaxis6,7. Therefore, a better understanding
of the inherent regulatory mechanisms that can restrain
the intricate signalosome and restore homoeostasis following
IgE-mediated mast cell activation is essential for identifying new
opportunities for therapeutic intervention.

Mast cells express on their surface the high-affinity IgE
receptor FceRI and can be activated by multivalent antigen
(Ag)-mediated aggregation of IgE-bound to the a-subunit of
this receptor7,8. Activated mast cells degranulate within minutes
of Ag exposure, releasing a diverse array of mediators, including
proteases and vasoactive amines (for example, histamine), which
characterize the early-phase response, or type I immediate
hypersensitivity reaction. A later phase of the pro-inflammatory
response reflects the de novo synthesis of lipid mediators
(for example, prostaglandins and cysteinyl leukotrienes (LTD4,
LTC4)), as well as cytokines and chemokines (for example, TNF,
IL-6, IL-4, IL-13, MIP-1a (CCL3), MCP1 (CCL2))6,7.

At the molecular level, receptor oligomerization and
subsequent engagement of the IgE-FceRI signalosome involves
a complex series of phosphorylation events involving multiple
activating Src family kinases, including Fgr (refs 9,10), Fyn, Hck
(ref. 11) and Lyn, upstream of Syk kinase12. Lyn can exert a
positive role in activating mast cells through its phosphorylation
of immunoreceptor tyrosine-based activation motifs (ITAMs)
found within the cytoplasmic domains of the b chain and the two
homodimer g chains of FceRI12–14. In rapid succession, Syk
kinase is activated in a process that is thought to involve Lyn12

and Fgr9, and is recruited to distinct binding sites in the g subunit
ITAM where it serves to amplify signal transduction. Key to
this function and to its essential role in the calcium response,
degranulation and cytokine production following FceRI
engagement13, is the capacity of cytosolic Syk to interact with
multiple signalling proteins. Syk is responsible for the
phosphorylation of adapter molecules (for example, linker
for activation of T cells; LAT1/2), required for assembly of the
signal transduction machinery and downstream phosphorylation
of pivotal mitogen-activated protein kinases (MAPKs) such
as extracellular signal-regulated kinase (Erk1/2) as well as
the transcription factors NF-kB and nuclear factor of activated
T cells15.

FceRI engagement also promotes activation of several
inhibitory receptors (for example, FcgRIIB, gp49B1, MAFA,
PIR-B)8,16, as well as a range of negative regulators of intracellular
signalling in the network (for example, RabGEF1 (ref. 17), SHIP
(ref. 16), the protein tyrosine phosphatases SHP1 and SHP2
(ref. 12), and Lyn, which can exert positive or negative regulation
depending on the intensity of the stimuli14). These mechanisms
of negative regulation serve to counteract positive signalling and
thereby determine the rate and extent of mast cell responses.
A major, yet less understood, mechanism by which mast cells
can negatively regulate their function is via ubiquitination.
E3 ubiquitin ligases are responsible for the attachment of
ubiquitin chains to select target proteins, a modification that
can prompt endocytosis of cell surface receptors and initiate
proteasomal or lysosomal degradation of signalling proteins17,18.

In this study, we identify a function in mast cells of
the ubiquitin ligase Nedd4-2 (also known as Nedd4l (Neural

precursor cell-expressed developmentally downregulated gene
4-like)), a member of the Nedd4 E3 family, as an important
negative regulator of IgE-FceRI signalling and pro-inflammatory
mediator release. Nedd4-2 contains an N-terminal C2
(Ca2þ dependent lipid binding) domain, 4 WW domains that
enable direct protein–protein interaction and a C-terminal
HECT-type ubiquitin-protein ligase domain essential for the
transfer of ubiquitin to the targeted substrate19–21. To date,
Nedd4-2 is best known for its ability to regulate stability and
activity of ion channels and transporters, particularly in epithelial
cells22, but little is known about the role of this ubiquitin ligase
in allergic inflammation. Recently, genetic studies from
asthma-enriched families have identified a variant in NEDD4L
associated with increased risk of the disease23. We have found
that mast cells express Nedd4-2 and importantly, loss of
Nedd4-2 in foetal liver-derived mast cells (FLMCs) or bone
marrow-derived cultured mast cells (BMCMCs) not only results
in heightened and sustained pro-inflammatory mediator release
by mast cells in vitro, but also in prolonged IgE-mediated
passive cutaneous anaphylaxis reactions in three different types of
mast cell-deficient mice engrafted with Nedd4-2� /� mast cells.
Notably, we ascertained that the underlying mechanism
involves phosphorylated (p)-Syk, but not p-Lyn, as a target
of Nedd4-2-mediated ubiquitination and that the adapter
molecule Ndfip1 (Nedd4 family interacting protein 1;
refs 24,25) participates in this process. These findings reveal
that Nedd4-2 is an important intracellular gatekeeper in the
control of mast cell-driven allergic inflammation and raise the
possibility that alterations in this signalling pathway play a role in
human disease.

Results
Nedd4-2 negatively regulates IgE-induced mediator release. To
investigate the physiological function of mast cell Nedd4-2 we first
confirmed that normal wild-type (WT; that is, Nedd4-2þ /þ )
B6-mouse mast cells, derived from cultured bone marrow
(BMCMCs) or embryonic (E18.5) foetal liver cells26 (FLMCs),
express this ubiquitin ligase and that this is not true of mast
cells derived from C57BL/6-Nedd4-2� /� mice which exhibit a
complete loss of Nedd4-2 expression (both mRNA and protein)27

(Supplementary Fig. 1a). Given the paucity in the number of
surviving Nedd4-2� /� mice postnatally27, we primarily used
FLMCs, rather than BMCMCs, for our studies. We found that loss
of Nedd4-2 in IgE-sensitised FLMCs activated by specific Ag
(2,4-dinitrophenol-human serum albumin (DNP-HSA)) conferred
a marked increase in the release of the pro-inflammatory
mediators, histamine (1 and 10 ng ml� 1 DNP for 30 min;
Fig. 1a), IL-6, TNF, CCL2 and CCL3, as well as higher levels of
the classic TH2 cytokine IL-13 at 6 h compared with WT littermate
FLMCs (all with 20 ng ml� 1 DNP and also with 200 ng ml� 1

DNP for CCL2, CCL3, IL-13 only; Fig. 1b–f). Notably, the elevated
release of IL-6 and TNF in IgEþAg activated Nedd4-2� /�

FLMCs was sustained over a 20 h period for both concentrations of
DNP used (2 and 20 ng ml� 1; Supplementary Fig. 2a,b). These
findings were not limited to the clone of IgE-anti DNP used (SPE7
versus H1-DNP-e26, Fig. 1a–c and Supplementary Fig. 3a–c,
respectively, for histamine, IL-6 and TNF release), or the
progenitor source of the mast cell population (that is, foetal liver
versus bone marrow; Fig. 1b,c and Supplementary Fig. 4a,b,
respectively, for IL-6 and TNF), or if the FLMCs were generated
with stem cell factor and IL-3 (Supplementary Fig. 5a,b) compared
with IL-3 alone (Fig. 1b,c).

To ascertain if the enhanced IgE-mediated cytokine and
histamine release by Nedd4-2� /� mast cells was due to altered
mast cell development, we assessed developmental parameters in
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cells cultured for 6 weeks, and found no distinction between
Nedd4-2� /� mast cells and their WT counterparts in cell surface
expression of c-Kit and FceRI, cytoplasmic granule morphology
by May Grünwald-Giemsa stain, numbers of mast cells generated
in cultures seeded with 5� 106 foetal liver cells, expression of
mRNA of mouse mast cell proteases 1, 2, 4, 5 and 6, or the
ability of the mast cells to respond to IL-3-mediated signalling
as determined by levels of phospho (p)-STAT5 and pErk
(Supplementary Fig. 1b–e). Together, these data indicate that
Nedd4-2� /� mast cells appear to develop normally in vitro and
that this ubiquitin ligase is required to restrain the extent and
duration of IgE-mediated histamine and pro-inflammatory
cytokine release from mast cells.

Prolonged passive cutaneous anaphylaxis in Nedd4-2� /� mice.
Mast cell activation is thought to contribute significantly to the
pathogenesis of allergic diseases, such as anaphylaxis. To test
the consequences associated with loss of mast cell-Nedd4-2 activity
in the skin, we used a mast cell-dependent model of IgE-induced
passive cutaneous anaphylaxis (PCA)28–30. The specific
contribution of mast cell–Nedd4-2 in this setting was assessed
using genetic and cell transfer approaches in three types of mast
cell-deficient mice; namely mast cell-deficient B6-carboxypeptidase
(Cp)a3-Cre; Mcl-1fl/fl (commonly known as ‘Hello Kitty’ mice),

which also have a modest deficiency in basophils)28, as well as the
c-kit dysregulated C57BL/6J-KitW-sh/W-sh mice31,32 or mutant
WBB6F1-KitW/W-v mice4,31. Each of these mice are profoundly
mast cell deficient and can be selectively engrafted with in vitro-
derived mast cells from genetically compatible WT mice or gene
modified (for example, Nedd4-2� /� ) mice. This ‘mast cell knock-
in’ approach has proven useful in dissecting the mechanisms of
anaphylaxis29,30,33 as it reveals the extent to which mast cells can
contribute to PCA reactions, separating these responses from those
potentially caused by other phenotypic abnormalities in the Hello
Kitty28 mice (that is, basophil deficiency) or c-kit mutant mice
(for example, inherent neutrophil abnormalities)4,31,32.

As previously described28, mast cell-sufficient Cpa3-Cre;
Mcl-1þ /þ mice developed tissue swelling that peaked at
30 min and resolved by 6 h after Ag challenge, whereas the mast
cell-deficient Cpa3-Cre; Mcl-1fl/fl mice exhibited weak reactions
(Fig. 2a,c), with swelling similar to the vehicle-injected ear pinnae
of all the groups of mice tested (Fig. 2b,d). By contrast, Cpa3-Cre;
Mcl-1fl/fl mice engrafted intra-dermally (i.d.) in their ear pinnae
with Nedd4-2� /� FLMCs (Fig. 2a) or Nedd4-2� /� BMCMCs
(Fig. 2c) exhibited enhanced IgE-Ag-mediated vascular
permeability as evidenced by increased Evans blue dye
extravasation in the IgE-sensitised ear skin (Fig. 2e; FLMCs
only), together with strikingly prolonged anaphylactic responses
lasting 424 h after IgE-Ag challenge), compared with reactions
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Figure 1 | Loss of mast cell–Nedd4-2 enhances IgE-induced mediator release. WT and Nedd4-2� /� FLMCs were sensitized with IgE anti-DNP antibody

(clone SPE-7, 2 mg ml� 1) for 16 h, then stimulated with indicated concentrations of DNP–HSA for measurement of release of (a) histamine (30 min),

(b) IL-6, (c) TNF, (d) CCL2, (e) CCL3 and (f) IL-13 (b–f all 6 h). Data (mean±s.e.m.) are pooled from the three (a,d,e) or six (b,c,f) independent

experiments performed, each of which gave similar results. *Po0.05, **Po0.01, ***Po0.001 for indicated comparisons (two-way analysis of variance

(ANOVA) with Bonferroni post test).
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which resolved within 6 h in the WT mast cell-engrafted groups
and the corresponding control Cpa3-Cre; Mcl-1þ /þ mice
(Fig. 2a,c). At the 24 h time point, we also observed in the
IgE-sensitized ears of the Nedd4-2� /� BMCMC-engrafted mice
elevated levels of the pro-inflammatory mediators TNF, IL-6,
CCL2 and CCL3 (Fig. 3a) that correlated with a distinct
Gr-1þ polymorphonuclear (PMN) cell infiltration, as
determined by H&E staining of the tissues and flow cytometric
analyses (Fig. 3b–d). Interestingly, elevated numbers of PMNs

(but not to the same extent as in the PCA-induced PMN cell
infiltration in the IgE-injected ears), were also observed in the
vehicle-treated ears of the Nedd4-2� /� BMCMC-engrafted mice.
By contrast, there were no differences in the thickness of the
ear pinnae at baseline between vehicle-treated or IgE-treated
ears before Ag-DNP injection in any of the mouse groups tested,
and no change in ear thickness above baseline at the 24 h time
point was detected in the IgE- and Ag-DNP-induced PCA
reactions in any of the groups examined (Fig. 3c,d and Fig. 2d).
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Figure 2 | Mast cell–Nedd4-2 restrains IgE-mediated passive cutaneous anaphylaxis. Changes (D) in ear thickness 0–24 h after i.v. injection of DNP–

HSA (200mg in 100 ml) into mice, with DNP–HSA given 16 h after i.d. injection of anti-DNP IgE (SPE-7, 100 ng) in the right ear pinna (a,c) and equal volume

of HMEM-Pipes vehicle in the left ear pinna (b,d) of Cpa3-Cre; Mcl-1þ /þ (filled black squares), mast cell-deficient Cpa3-Cre; Mcl-1fl/fl (filled black circles),

and mast cell-deficient mice engrafted i.d. with (a,b) WT FLMCs (WT FLMCs-Cpa3-Cre; Mcl-1fl/fl, filled blue squares) or Nedd4-2� /� FLMCs

(Nedd4-2� /� FLMCs-Cpa3-Cre; Mcl-1fl/fl, filled red squares), and (c,d) WT BMCMCs-Cpa3-Cre; Mcl-1fl/fl (filled blue squares) or Nedd4-2� /�

BMCMCs-Cpa3-Cre; Mcl-1fl/fl (filled red squares) mice. Data (mean±s.e.m.) are pooled from the four (a,b) or three (c,d) independent experiments

performed, each of which gave similar results, each with 3–5 mice per group. *Po0.05, ***Po0.001 for comparisons of WT MCs versus Nedd4-2� /�

MCs-Cpa3-Cre; Mcl-1fl/fl mice. #Po0.05, ###Po0.001 for comparisons of WT mice versus Nedd4-2� /� MCs-Cpa3-Cre; Mcl-1fl/fl mice (two-way

analysis of variance (ANOVA) with Bonferroni post test). (e) Evans blue dye extravasation (weight adjusted) quantified by absorption at 610 nm in vehicle

or IgE anti-DNP treated ear pinnae at 30 min after i.v. (tail vein) DNP–HSA (containing Evans blue dye) administration. Representative ears shown for each

group of mice tested. Data (mean±s.d.) are from one experiment with 4–5 mice per group. **Po0.01, ***Po0.001 for indicated comparisons (one-way

ANOVA with Bonferroni post test); (f) Dermal mast cell numbers in ear pinnae of mice at the completion of three of the PCA experiments (that is, at 24 h

after injection of DNP–HSA) outlined in (a,b).
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This suggests that whatever effects Nedd4-2� /� mast cells may
have had in such vehicle-injected ears which influenced numbers
of PMNs at these sites, these were not sufficient to induce
substantial increases in local vascular permeability, and therefore
were unlikely to have been associated with substantial mast

cell degranulation. However, given the notable negative
regulatory role of Nedd4-2 on mast cell activation
demonstrated in our study, it is possible that mast cells lacking
Nedd4-2 can exhibit an inherent propensity for over-activity that
can occur independently of their direct activation via
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injected i.d. with IgE anti-DNP or HMEM-pipes vehicle at 24 h after i.v. injection of DNP–HSA in Cpa3-Cre; Mcl-1þ /þ , mast cell-deficient Cpa3-Cre; Mcl-1fl/fl,
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stained cross-sections of ears; (c) Representative flow cytometric plots; and (d) Cells recovered per ear of gated populations of polymorphonuclear (PMN)

leukocytes (Gr-1þF4/80� ) and macrophages (Gr-1�F4/80þ and Gr-1þF4/80þ ) (b) *C, cartilage. Red arrowheads indicate PMNs. Scale bars: 100mm

(insets 20mm). Percentage values in c refer to percentage of total viable cells present in the depicted section of the plot. Data (a, median with interquartile

ranges) and (d, mean±s.e.m.) are pooled from two (a) or three (d) independent experiments performed, each of which gave similar results, each with 3–5

mice per group. *Po0.05, **Po0.01, ***Po0.001 for indicated comparisons (one-way analysis of variance (ANOVA) with Bonferroni (a) or Dunnett’s (d)

post test).
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IgEþ specific Ag (DNP–HSA) during PCA responses, such as
upon local injection of vehicle into the ear pinna. Indeed, we
cannot exclude the possibility that, in the in vivo setting,
mast cell-Nedd4-2 deficiency can influence other aspects of
mast cell phenotype and function beyond those directly examined
in this study.

The biological significance of the PCA findings observed in the
mast cell-deficient Cpa3-Cre; Mcl-1fl/fl mice was corroborated in
experiments performed with two other types of mast cell-deficient
mice, C57BL/6J-KitW-sh/W-sh and WBB6F1-KitW/W-v mice where,
notwithstanding the particular range of abnormalities carried by
each, a similarly pronounced PCA reaction was observed in each of
the Nedd4-2� /� FLMCs groups (Supplementary Fig. 6a,c).
Furthermore, the differences between the IgE-Ag-challenged WT
or Nedd4-2� /� FLMC groups were unlikely to be related to
disparities in the extent of mast cell engraftment because similar
numbers of ear pinna mast cells were present in the two groups,
irrespective of IgE sensitization (Fig. 2f; Supplementary Fig. 6e).
These data support the conclusion that a loss of mast cell-Nedd4-2
during IgE-mediated PCA leads to sustained mast cell-dependent
inflammation (likely reflecting sustained mast cell activation in this
setting) with significant biological consequences in vivo.

Nedd4-2� /� mast cells show enhanced FceRI-mediated signalling.
The data presented above strongly suggest that impaired
Nedd4-2 function in mast cells leads to alterations in intracellular
signalling events downstream of IgE-FceRI aggregation. To define
the underlying mechanisms, we first evaluated the impact of
Nedd4-2 deficiency on FceRI-mediated Src related kinase and
MAPK activation kinetics, and examined the phosphorylation
of FceRI-proximal molecules, Lyn, Syk and LAT1. Although
pLyn levels were unchanged over the time courses studied,
phosphorylation of Syk and to a lesser extent LAT1 were
increased (Fig. 4a; Supplementary Fig. 7a,b), in Nedd4-2� /�

FLMCs versus WT FLMCs. MAPK cascades as well as certain
transcription factors, such as NF-kB, orchestrate the production
of IgE-induced cytokines from mast cells8,16,34 and are
downstream of Lyn, Syk and LAT1/2 activation. We found
that FceRI-mediated phosphorylation of the MAPKs JNK1/2
and p38 were unaltered by the absence of Nedd4-2, whereas
p-ERK1/2 was significantly elevated at 5 and 10 min after
stimulation in Nedd-2� /� FLMCs compared to WT FLMCs
(Fig. 4a; Supplementary Fig. 7a,b). In the same experimental
setting, phosphorylated NF-kB-p65 was also enhanced between 2
and 15 min post Ag stimulation (Fig. 4a; Supplementary
Fig. 7a,b). We also assessed calcium mobilization, a key
regulator of degranulation35, in IgEþ cognate Ag-stimulated
FLMCs. Nedd4-2� /� FLMCs showed a sharp cytosolic Ca2þ

spike followed by a sustained Ca2þ plateau, whereas cytosolic
Ca2þ influx was considerably lower in WT FLMCs (Fig. 4f,g);
findings consistent with the enhanced histamine release of
Nedd4-2� /� FLMCs relative to WT FLMCs (Fig. 1a;
Supplementary Fig. 3a). Collectively, these findings provided us
with an important clue as to the function of Nedd4-2 in this
setting, suggesting that the Src tyrosine kinase, Syk, upstream of
the ERK1/2 and NF-kB pathways and Ca2þ mobilization, might
be a target of Nedd4-2 ubiquitination.

p-Syk is a substrate of Nedd4-2-mediated ubiquitination.
Because Nedd4-2 deficiency leads to heightened p-Syk and in
turn propagation of stronger signals downstream of this
activating kinase following Ag-induced IgE-FceRI aggregation, we
first evaluated the association of Syk and Nedd4-2 in mast cells.
In line with Syk being a bona fide substrate of Nedd4-2, both
total Syk (Fig. 4b) and p-Syk (Fig. 4c; Supplementary Fig. 3d)

immunoprecipitated with Nedd4-2 in mast cells generated from
WT mice but not Nedd4-2� /� mice. Interestingly, in IgE-
sensitized WT FLMCs without Ag stimulation, Nedd4-2
appeared to associate with p-Syk, an interaction that might occur
to negatively regulate the cytokinergic activity of the SPE-7 IgE
used in these experiments when bound to FceRI36,37. To address
the possibility that Nedd4-2 targets Syk for degradation,
FLMCs were stimulated with IgEþDNP–HSA, and we
searched by co-immunoprecipitation and immunoblotting for
evidence of a physical interaction between Syk (both total
and phosphorylated forms) and ubiquitin. Although p-Lyn and
total Syk appeared to be equally ubiquitinated (Supplementary
Fig. 8; Fig. 4d) in both WT and Nedd4-2� /� FLMCs, we
observed substantially reduced polyubiquitination of p-Syk in
Nedd4-2� /� FLMCs, particularly at 1–5 min after Ag
stimulation in comparison to the WT counterparts (Fig. 4e).
Thus, we concluded that the elevated levels of p-Syk (Fig. 4a)
resulting in subsequent elevated and prolonged mediator
release (Fig. 1a–f; Supplementary Figs 2a,b, 3a–c, 4a,b and 5a,b)
in IgE-activated Nedd4-2� /� FLMCs or BMCMCs is due to the
lack of Nedd4-2 binding and ubiquitination of p-Syk.

Ndfip1 restrains FceRI-mediated signalling. The PPxY (PY) or
similar proline-rich motifs in the substrate are required for direct
binding to the WW domains of Nedd4-2. Since the Syk protein
sequence lacks such binding motifs, we investigated whether an
adaptor protein such as Ndfip1 (Nedd4 family interacting protein
1) was responsible for binding to p-Syk and augmenting the
function of Nedd4-2 (refs 20,21,38). Mast cells express Ndfip1
(Fig. 5a) and in its absence, Ndfip1� /� BMCMCs elicited
responses similar to those induced in IgEþAg-activated
Nedd4-2-deficient mast cells (Fig. 1a–f; Supplementary Figs 4a,b
and 5a,b), including elevated histamine release at the 30 min time
point (Fig. 5b), as well as marked increases in the production of
IL-6, TNF, CCL2, CCL3 and IL-13 at 6 h, particularly for the
highest concentrations of Ag used (Fig. 5c–g). In accordance with
these results, IgE-activated Ndfip1� /� mast cells displayed
amplified phosphorylation of Syk, LAT1, Erk1/2 and NF-kB p65
(Fig. 6a), as well as heightened cytosolic Ca2þ influx (Fig. 6b)
compared with the WT counterparts. Immunoprecipitation
confirmed that Ndfip1 physically interacts with Nedd4-2 (Fig. 6c)
and p-Syk (Fig. 6d) in WT BMCMCs but not in Ndfip1� /�

BMCMCs. In contrast to WT BMCMCs, Ndfip1� /� BMCMCs-
like Nedd4-2� /� FLMCs (Fig. 4e), exhibited markedly lower
polyubiquitination of p-Syk (Fig. 6e) but no difference in total Syk
ubiquitination (Fig. 6f) after Ag stimulation at 1 to 5 min.
However, it should be noted that some interaction between
Nedd4-2 and p-Syk, albeit significantly reduced compared with
WT BMCMCs, was detected in the Ndfip1� /� BMCMCs
(Fig. 6d), indicating that although Ndfip1 is required to mediate
optimal functional interaction of Nedd4-2 with p-Syk, other
binding partners that bind to both Nedd4-2 and p-Syk are also
present in the complex in the absence of Ndfip1.

Finally, we set out to determine if loss of mast cell–Ndfip1
caused similar IgE-mediated PCA reactions and pathology as
those we observed when Nedd4-2 was absent in skin mast cells
(Fig. 2a,c). A sustained anaphylactic response with a Gr-1þ PMN
cell infiltrate into the IgE-treated ears characterised the 24 h time
point in the Cpa3-Cre; Mcl-1fl/fl mice engrafted with Ndfip1� /�

BMCMCs (Fig. 7a–d). Furthermore, similar to the findings in
Nedd4-2� /� mast cell engrafted mast cell-deficient mice
(Fig. 2a,c; Supplementary Fig. 6a,c), differences in the PCA
reactions were not due to disparities in mast cell numbers in the
WT or Ndfip1� /� BMCMC engrafted groups (Fig. 7e).

Taken together, these data indicate that this E3 ligase adaptor is
required for optimal bridging of p-Syk with Nedd4-2; a function
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that appears to facilitate maximal negative regulation of p-Syk in
the IgE/FceRI signal transduction pathway and subsequently
controls mast cell mediator release to limit excessive reactions
and pathology in vivo.

Discussion
Our findings have identified previously unknown functions for
the ubiquitin ligase Nedd4-2 and its adaptor Ndfip1 in the
negative intracellular regulation of the IgE/FceRI signal
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Figure 4 | Nedd4-2 interacts with p-Syk and mediates its ubiquitination in mast cells. (a) Immunoblot analysis of phosphorylated (p-) and total

signalling Lyn, Syk, LAT1, ERK1/2 and NF-kB-p65 proteins in whole cell lysates prepared from IgE anti-DNP (SPE-7; 2 mg ml� 1) sensitized WT or

Nedd-4-2� /� FLMCs stimulated with DNP–HSA (20 ng ml� 1) for the indicated time points. Immunoblot analysis of Nedd4-2 immunoprecipitated (IP)

with Syk (b) and p-Syk (c) and whole-cell lysates of FLMCs prepared and stimulated with DNP–HSA as in a. IP: MOCK indicates an IP control performed

without antibody. Ubiquitylation of Syk (d) and p-Syk (e) using Agarose-Tandem Ubiquitin Binding Entities in cell extracts from WT and Nedd4-2� /�

FLMCs. Data are representative of the three (a–e) independent experiments performed, each of which gave similar results. (f) Representative confocal

micrographs of intracellular calcium influx over indicated times in IgE anti-DNP (SPE-7, 2 mg ml� 1) sensitized WT and Nedd4-2� /� FLMCs incubated with
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versus Nedd4-2� /� FLMCs (left panel) and quantified analyses of area under the Ca2þ influx curves (right panel). Arrow indicates time of DNP–HSA

addition to the cells. Data (right panel, mean±s.e.m.) are pooled from the four independent experiments performed, each of which gave similar results.

*Po0.05 for indicated comparison (one-way analysis of variance (ANOVA) with Bonferroni post test).
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transduction pathway in mast cells. We have shown that loss of
p-Syk negative regulation by Nedd4-2/Ndfip1 proximal to FceRI
aggregation results in heightened and prolonged propagation
of multiple downstream pathways including the MAP
kinase cascade, involving the ERK1/2, NF-kB pathway and
calcium mobilization. This latter process is essential for mast
cell degranulation and histamine release. Collectively, our data
demonstrate that the Nedd4-2/Ndfip1 axis in mast cells
represents a previously unknown mechanism contributing to
the control of the magnitude and duration of inflammatory
mediator release. The loss of mast cell-Nedd4-2/Ndfip1 activity is
significant biologically, as it results in exacerbated mediator
release in vitro and sustained IgE-mediated anaphylaxis-
associated inflammation in vivo.

It is well recognized that Syk is essential for amplification of the
signals required for mast cell function as loss of its tyrosine kinase
activity results in diminished calcium responses, degranulation
and cytokine production following FceRI stimulation39. By
contrast, prolonged phosphorylation of Syk and its substrates
augments histamine release40 and markedly elevates production

of the proinflammatory cytokines TNF, IL-6 and CCL2 (ref. 41).
Thus, tight control of the FceRI signalosome is essential to guard
against the pathological consequences associated with sustained
mast cell activation. Syk activation is thought to be governed in
part by dephosphorylation of phospho-Tyr58 in the ITAM
domain of FcRg via receptor-associated phosphatases SHP-1
and SHP-2 (ref. 42), as well as by Cbl-mediated ubiquitylation
and degradation40,41.

Studies in normal and ‘non-releaser’ human basophils have
indicated that loss of Syk expression that leads to negative
regulation (1–18 h after stimulation)43 of, or absent44, IgE-
induced basophil activation is caused by a proteasome-dependent
mechanism involving c-Cbl-mediated Syk ubiquitination43.
Interestingly, in B cells, eosinophils and neutrophils from
‘non-releaser’ donors, Syk and Lyn appear to be expressed
normally, indicating that in other leukocyte populations Syk
expression is regulated differently compared with basophils44.
With respect to mast cells it has been reported that CBLB� /�

BMCMCs, but not CBLC� /� BMCMCs41, exhibit enhanced
FceRI and Syk phosphorylation. Based on these findings it is of
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interest that Cbl-b RING finger mutant mast cells do not display
retarded FceRI internalization nor the very high cytokine levels
evident in CBLB� /� BMCMCs45. This suggests that Cbl-b’s
negative regulation of FceRI signalling is largely independent of
its E3 ligase activity; a finding supported by the work of Zhang
et al.40, who failed to detect any increased Syk ubiquitination in
WT BMCMCs compared with CBLB� /� cells. It is possible that
Cbl-b functions as an adaptor and/or docking molecule in this
setting to facilitate the physical interaction between FceRI/Syk
and other yet to be identified E3 ligases or phosphatases.
Although it is unknown whether Nedd4-2/Ndfip1 interact with

the Cbl family of proteins in mast cells, our data demonstrate that
Nedd4-2 ubiquitinates phosphorylated Syk within minutes of
stimulation, without altering total Syk expression over the same
time frame, and for this to occur optimally Ndfip1 is required.
Notably, the absence of either Nedd4-2 or Ndfip1 in mast cells
results in elevated and sustained IgE-induced pro-inflammatory
mediator release.

Our results are consistent with experimental studies
investigating the role of Ndfip1 in autoimmune and allergic
diseases. Mice that lack Ndfip1 naturally develop severe
TH2-mediated inflammation in the skin, gut and lungs, exhibit
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high levels of circulating IgE and die prematurely46,47. To date,
the contribution of mast cells to the pathology in these mice is
unknown but studies focusing on T cells have identified that
activated TH2-polarized CD4þ T cells are a feature, possibly due
to elevated production of IL-2, IL-4 and IL-5 (refs 46,48), as well

as an inability to exit the cell cycle to abort T-cell clonal
expansion in response to self and exogenous antigens49. Although
loss of Ndfip1 is thought to impede Itch-mediated ubiquitination
and degradation of the transcription factor JunB in this setting46,
it is plausible that Nedd4-2 might also be required. Selective
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Figure 7 | Mast cell–Ndfip1 restrains IgE-mediated passive cutaneous anaphylaxis. Changes (D) in ear thickness 0–24 h after i.v. injection of DNP–HSA

(200mg in 100ml) into mice, with DNP–HSA given 16 h after i.d. injection of (a) anti-DNP IgE (SPE-7, 100 ng) in the right ear pinna and (b) equal volume of

HMEM-Pipes vehicle in the left ear pinna of (a,b) Cpa3-Cre; Mcl-1þ /þ (filled black squares), mast cell-deficient Cpa3-Cre; Mcl-1fl/fl (filled black circles), and

mast cell-deficient mice engrafted i.d. with WT BMCMCs (WT BMCMCs-Cpa3-Cre; Mcl-1fl/fl, filled blue squares) or Ndfip1� /� BMCMCs (Ndfip1� /�

BMCMCs-Cpa3-Cre; Mcl-1fl/fl, filled red squares). (c) Representative flow cytometric plots; and (d) Cells recovered per ear of gated populations of

polymorphonuclear (PMN) leukocytes (Gr-1þF4/80� ) and macrophages (Gr-1�F4/80þ and Gr-1þF4/80þ ). Percentage values in c refer to percentage

of CD45þ viable cells present in the depicted section of the plot. (e) Dermal mast cell numbers in ear pinnae of mice at the completion the PCA

experiments (that is, at 24 h after injection of DNP–HSA) outlined in (a,b). (a,b,d) Data (mean±s.d.) are pooled from the two independent experiments

performed, each of which gave similar results, each with 3–5 mice per group. (a,b) ***Po0.001 for comparisons of WT BMCMCs versus Ndfip1� /�

BMCMCs-Cpa3-Cre; Mcl-1fl/fl mice. ###Po0.001 for comparisons of WT mice versus Ndfip1� /� MCs-Cpa3-Cre; Mcl-1fl/fl mice (two-way analysis of

variance (ANOVA) with Bonferroni post test). (d) ***Po0.001 for indicated comparisons (one-way ANOVA with Bonferroni post test).
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deletion of SGK1 in T cells has been shown to protect against
pathology associated with an experimental model of allergic
asthma by enhancing JunB ubiquitination in CD4þ T cells via a
mechanism thought to involve Nedd4-2 and its adaptor Ndfip1
(ref. 50). Thus, in Ndfip1� /� mice both Itch and Nedd4-2
activity would be disrupted in cell lineages where each of these
ligases are selectively expressed and Ndfip1 is required to bind to,
and to present such proteins for ubiquitination. It is unknown if
Itch is expressed in mast cells, nevertheless our findings are the
first to reveal that both Ndfip1 and Nedd4-2 are necessary
to physiologically restrain FceRI signal transduction upon IgE-
mediated mast cell activation in vitro and in the experimental
setting of passive cutaneous anaphylaxis in vivo. These findings
provide the context for future investigations in models of chronic
allergic inflammation of the airways in which mast cells
contribute to multiple features of the pathology51. Disruption of
the Nedd4-2/Ndfip1 axis in mast cells would likely unleash
multiple cycles of sustained antigen-IgE:FceRI aggregation,
potentially driving an earlier onset of exacerbated pathology.

In summary, we have identified previously unknown functions
of Nedd4-2 and Ndfip1 in the repertoire of inhibitory molecules
expressed by mast cells that govern restraint of IgE-mediated
activation. Our findings are likely to be relevant to the pathogenesis
of human diseases in which mast cells are implicated. Human
genetic studies have associated variants in NDFIP1 with asthma52

and other inflammatory diseases (that is, rheumatoid arthritis53

and inflammatory bowel disease54). More recently, in a whole-
genome sequencing study on individuals from a Hutterite
population, a 6 kbp deletion in an intron in NEDD4L has been
associated with increased risk of asthma23. Our experimental
findings here, raise the possibility that such genetic alterations
perturb the ability of Nedd4-2 to negatively regulate mast cell
signalling, as well as that of other cell populations expressing this
ligase and adaptor50, resulting in sustained inflammatory responses
and a contribution to the sequelae of allergic disease in affected
individuals. Our data also support the notion that novel
therapeutic interventions to control allergic inflammation would
benefit from targeting the Nedd4-2/Ndfip1 pathway to enhance
Nedd4-2 activity.

Methods
Mice. Male and female Nedd4l-targeted B6 Nedd4-2-deficient (Nedd4-2� /� ) and
Ndfip1-targeted B6 Ndfip1-deficient (Ndfip1� /� ) mice were generated as
described in Boase et al.27 and Oliver et al.46, respectively. Cpa3-Cre; Mcl-1fl/fl mice
are severely deficient in mast cells and also have a marked deficiency in basophils28.
In these mice, Cre recombinase is expressed under the control of the
carboxypeptidase A3 (Cpa3) promoter. Mcl-1 is an intracellular anti-apoptotic
protein that is required for mast cell survival. C57BL/6- Cpa3-Cre; Mcl-1þ /þ mice
were used as WT controls for Cpa3-Cre; Mcl-1fl/fl mice. Genetically c-kit
mutant mast cell-deficient (WB/ReJ-KitW/þ �C57BL/6-KitW-v/þ )F1-KitW/W-v

(WBB6F1-KitW/W-v) (KitW/W-v) mice and the congenic normal WBB6F1-Kitþ /þ

(Kitþ /þ ) mice, were obtained from The Jackson Laboratory (Bar Harbor, Maine,
USA) and bred in house. B6-KitW-sh/þ mice, backcrossed with C57BL/6J (B6J)
mice for 12 generations were used as breeding pairs to produce genetically mast
cell-deficient B6J-KitW-sh/Wsh mice55. As previously reported, adult KitW-sh/Wsh

and KitW/W-v mice have a profound deficiency of mast cells, with o1.0% the WT
level of mast cells in the dermis1,4,31. For all in vivo experiments, age-matched male
mice of 6–12 weeks of age were used and all mice were bred in house at the SA
Pathology Animal Resource Facility (Adelaide, Australia). Experiments were
performed in compliance with the ethical guidelines of the National Health and
Medical Research Council of Australia, with approval from the SA Pathology/
CALHN Animal Ethics Committee (South Australia).

Generation of mouse FLMCs and BMCMCs. WT and Nedd4-2� /� FLMCs and
BMCMCs were obtained by culturing progenitor stem cells from foetal livers of
E18.5 mice, and bone marrow cells from the femurs and tibias of 18–21-day old
B6-WT or B6-Nedd4-2� /� mice, in DMEM (Gibco) supplemented with 10% fetal
calf serum (FCS; Bovogen) and 20% WEHI-3 conditioned medium (supplemented
to 3–4 ng ml� 1 IL-3 with recombinant mouse IL-3 (Shenandoah Biotechnology))
for 5–7 weeks. B6-WT and B6-Ndfip1� /� BMCMCs were derived from the
femoral bone marrow cells and cultured according to the aforementioned

conditions. After 5 weeks of culture, 495% of the cells were identified as mast
cells by May Grünwald-Giemsa staining and by flow cytometric analysis
(c-Kitþ FceRIþ )1,2,29.

Antibody production and affinity purification. Anti-DNP mouse IgE
monoclonal antibodies (clones SPE-7 and H1-DNP-e-26) were affinity-purified by
DNP/BSA column chromatography. Briefly, IgE-mAb-producing hybridoma
cells (SPE-7 clone provided by Z. Eshar, Weizmann Institute of Science, Israel;
H1-DNP-e26 clone provided by F.-T. Liu, University of California-Davis, USA)
were cultured in DMEM supplemented with 10% FCS at 105 cells per ml for 4 days.
Culture supernatant was purified with DNP-BSA packed HiTrap NHS-activated
HP column (Amersham Biosciences) using an AKTApurifer system (GE Health-
care Life Sciences). Fractions collected were first concentrated using a Vivaspin 20
tube (Sartorius), and then dialysed in PBS. Purified SPE-7 and H1-DNP-e-26 mAbs
were quantified using the SMART system with a Superdex 200PC 3.2/30 column
(Amersham Biosciences).

Histamine and cytokine measurement. Five to seven week-old FLMCs or
BMCMCs cultured in DMEM containing 10% FCS and 20% WEHI-3 conditioned
medium (supplemented to 3 ng ml� 1 IL-3 as outlined above) were sensitized for
16 h at 37 �C with IgE anti-DNP mAb (2 mg ml� 1; generated from supernatants
induced by the hybridomas SPE-7 clone or H1-DNP-e-26 clone (where indicated),
which produce different clones of an IgE mAb to DNP). For measurement of
histamine release, after IgE sensitization FLMCs (106 cells per ml) were
re-suspended in Tyrode’s buffer (129 mM NaCl, 8.4 mM glucose, 10 mM HEPES,
5 mM KCl, 1 mM MgCl2, 1.4 mM CaCl2 and 1% BSA at pH 7.4), aliquoted into
polystyrene test tubes and then activated with 1–1,000 ng ml� 1 DNP–HSA-specific
antigen (30–40 DNP conjugated to each molecule of HSA (DNP30-40–HSA);
Sigma-Aldrich) for 30 min at 37 �C. The reaction was stopped by the addition of
ice-cold buffer followed immediately by centrifugation at 180g for 5 min at 4 �C.
Cell pellets and supernatants were separated by transferring the supernatant in
each tube into a new tube. Cell pellets were lysed with 0.5% Triton X-100
(Sigma-Aldrich) in Tyrode’s buffer. Histamine levels in supernatants and cell
lysates were measured using an EIA histamine kit (Beckman Coulter) according to
the manufacturer’s instructions. Histamine release was expressed as a percentage of
total cellular content of histamine (histamine release (%)). For measurement of
cytokine production, IgE anti-DNP mAb sensitized FLMCs or BMCMCs were
washed with DMEM supplemented with 0.1% BSA (starvation medium), plated at
106 cells per ml in the same medium, and then stimulated with DNP–HSA
(2–200 ng ml� 1) for 6 h. For the time course experiments, IgE anti-DNP mAb
sensitized FLMCs were stimulated with DNP–HSA (2 or 20 ng ml� 1) for 6, 12 and
20 h, respectively, in the combined presence of the following protease inhibitors:
soybean trypsin inhibitor (SBTI; 100 mg ml� 1, Sigma-Aldrich), potato carbox-
ypeptidase inhibitor (PCI; 50 mg ml� 1, Sigma-Aldrich) and chymostatin
(60 mg ml� 1, Sigma-Aldrich). Supernatants were collected for measurement of
mIL-6, mTNF (BD Bioscience), mIL-13, mCCL2 (eBioscience) and mCCL3 (R&D
Systems) protein levels by ELISA according to the manufacturer’s instructions. The
lower limits of detection were as follows: mIL-6¼ 15.6 pg ml� 1; mTNF¼ 15.6
pg ml� 1; mIL-13¼ 4 pg ml� 1; mCCL2¼ 15 pg ml� 1; and mCCL3¼ 0.8 pg ml� 1.

Adoptive transfer of FLMCs or BMCMCs into mast cell-deficient mice.
For mast cell engraftment studies, FLMCs or BMCMCs derived from WT B6-
Nedd4-2þ /þ (WT FLMCs or WT BMCMCs) or B6-Nedd4-2� /� (Nedd4-2� /�

FLMCs or Nedd4-2� /� BMCMCs) or B6-Ndfip1� /� (Ndfip1� /� BMCMCs)
mice were transferred by intra-dermal injection (i.d., two injections into each ear
with 1� 106 cells in 25 ml DMEM per injection) into 4–6-week-old male Cpa3-Cre;
Mcl-1fl/fl or KitW-sh/W-sh or KitW/W-v mice. Passive cutaneous anaphylaxis
experiments were initiated 4–6 weeks after i.d. transfer of mast cell populations.

IgE-dependent passive cutaneous anaphylaxis. For PCA, mice from all groups
were injected i.d. with 20ml of IgE anti-DNP mAb (SPE-7 clone or H1-DNP-e-26
clone in experiments where indicated) at a concentration of 5 mg ml� 1 (that is,
100 ng dose) diluted in Hanks’ MEM containing 0.47 g l� 1 piperazine-N,N0 bis
(2-ethane sulfonic acid) (HMEM-Pipes; Sigma-Aldrich) in one ear and equal
volume of HMEM-Pipes vehicle in the other ear of each mouse tested. Sixteen
hours after IgE sensitization, all mice were injected i.v. (retro-orbitally) with
2 mg ml� 1 of DNP–HSA-specific antigen diluted in 100ml of sterile 0.9% saline
(that is, dose of 200 mg). Ear thickness was measured using a dial thickness gauge
(model G-1A; Ozaki MFG. Co., Ltd) before (baseline) and at intervals after i.v.
antigen challenge. For Evans blue dye extravasation experiments, the PCA reaction
was elicited as cited above with the exception that DNP–HSA (200 mg in 100 ml of
sterile 0.9% saline containing 1% Evans blue dye (Gurr-Searle Diagnostic) was
administered i.v. (tail vein). Mice were euthanized 30 min after i.v. DNP–HSA
injection and whole ear pinnae were obtained and weighed. To extract the
Evans blue dye, the ear pinnae were diced into pieces (B1–2 mm2) in an
Eppendorf tube and incubated in 0.3 ml formamide at 55 �C overnight. Samples
were then centrifuged at 16,200g for 10 min and 100 ml of supernatant quantified by
absorption at 610 nm on a plate reader. Data expressed as OD610/ear weight (g).
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Histology and quantification of mast cell numbers. Ear pinna samples were
processed and histology analysed according to our established protocols1,2,31,56.
Briefly, ear pinnae were fixed in 10% buffered formalin, embedded with a
cross-sectional orientation in paraffin. Ear sections (4 mm) were stained with 0.1%
Toluidine Blue (pH 1.0) for the detection of mast cells (cytoplasmic granules
appear purple) and mast cells counted in 6–9 consecutive fixed fields of 870 mm
width using a 20� microscope objective (200� final magnification). The entire
length of each ear pinna extending from the base to the tip (B5.4–8.1 mm) was
quantified using computer-generated image analysis (NIH Image J software,
version 1.46r). Numbers of mast cells were expressed per horizontal ear cartilage
field length (millimetre). For representative images of inflammatory cell infiltrates,
cross-sections of ear pinna were stained with haematoxylin and eosin, scanned
using a Hamamatzu Nanozoomer 2.0HT (SDR Scientific) and images captured
with Aperio ImageScope (V11.1.2.752) software.

Flow cytometric analysis of leukocytes in ear skin. Flow cytometric assessment
of PMN cells (Gr-1þF4/80� ) and macrophages (Gr-1�F4/80þ and Gr-1þ

F4/80þ ) in ear pinnae was performed according to our established protocols1,2.
Briefly, individual ears i.d. injected with IgE anti-DNP mAb or HMEM-Pipes
vehicle of each mouse (in each group) were split parallel to the cartilage into two
halves, diced and incubated in RPMI plus 0.5 mg ml� 1 of Liberase TL Research
Grade (Roche) for 2 h at 37 �C. Single cell suspensions were obtained by using a
70mm nylon cell strainer. The cells were incubated with anti-mouse CD16/CD32
mAb (Clone 93, 0.5 mg ml� 1, eBioscience) on ice for 15 min and then incubated on
ice for 30 min with the following cell surface markers: anti-mouse CD45.2 (104,
0.5 mg ml� 1, BD Biosciences), anti-mouse F4/80 (BM8, 1 mg ml� 1, eBioscience)
and Gr-1 (Ly-6C RB6-8C5, 0.5 mg ml� 1, BD Biosciences). Live cells as determined
by Live/Dead Fixable Aqua Dead Cell Stain (Life Technologies) or Fixable Viability
Stain 700 (BD Biosciences) were used for analyses. For Fig. 3c, data were collected
on a Gallios flow cytometer (Beckman Coulter) and analysed using FCS express 4
(version 4.07.0014, De Novo software). For Fig. 7c, data were collected on a
BD LSR Fortessa flow cytometer (BD Biosciences) and analysed using FCS
express 4 (version 4.07.0014, De Novo software). Gates for subpopulations of
cells were based on single colour stain of the cells to determine compensation
and non-specific fluorescence. To calculate the number of live cells of a
particular type recovered per ear (determined by gating on Live/Dead
Aqua-negative or Fixable Viability Stain 700-negative cells), the following
calculation was applied for each population quantified: live cells recovered per ear
of PMNs or macrophages¼ (percentage gated of the total cell population in that
group)� (total number of cells recovered from the ears).

Measurement of cytokines in ear skin lysates. Ear skin lysates were prepared in
PBS containing protease inhibitors as previously described1,2. TNF, IL-6, CCL2 and
CCL3 protein levels in the supernatants were measured by ELISA (eBioscience),
according to the manufacturer’s instructions, and data obtained for each group
were expressed as median±range (box and whiskers) pictogram/milligram protein.
Total protein levels in the supernatants were measure by a Bio-Rad Dc protein
assay, according to the manufacturer’s instructions (Bio-Rad Laboratories).

Immunoblotting and immunoprecipitation. FLMCs were incubated with IgE anti-
DNP mAb (SPE-7 clone, 2mg ml� 1) for 16 h at 37 �C in a CO2 incubator, centrifuged
at 180g for 5 min, resuspended in Tyrode’s buffer, centrifuged again, and then
resuspended with Tyrode’s buffer (2� 106 cells per sample for analysis of total cell
lysates or 20� 106 cells per samples for immunoprecipitation). FLMCs were activated
with 20 ng ml� 1 DNP–HSA-specific antigen at various intervals up to 60 min at
37 �C. The reaction was quenched by the addition of 500ml ice-cold buffer, followed
immediately by centrifugation at 180 g for 5 min at 4 �C. Cells were then lysed in 50ml
ice-cold lysis buffer containing 50 mM Tris-base, 100 mM NaCl, 5 mM EDTA,
10 mM Na4P2O7, 1% Triton X-100, 1 mM PMSF, 2 mM NaF, 1� complete protease
inhibitors cocktail (Roche). Total cell lysates were separated with SDS–polyacrylamide
gel electrophoresis (SDS–PAGE) and transferred to nitrocellulose membranes.
Membranes were blocked in 5% nonfat dry milk in Tris-buffered saline that con-
tained 0.1% Tween buffer; they were then probed with antibodies raised in rabbit
against the phosphorylated form of ERK1/2 (Thr202/Tyr204, #9101), p38 (Thr180/
Tyr182, #4511), JNK1/2 (Thr183/Tyr185, #4668), NF-kB-p65 (Ser536, #3033), Syk
(Tyr525/526, #2710, only detects p-Syk and does not cross-react with total Syk), Lyn
(Tyr507, #2731), and LAT1 (Tyr191, #07–278) at a dilution of 1:1,000 (except pLAT
at 1:500) overnight at 4 �C. All antibodies with the exception of p-LAT1 (Millipore)
were obtained from Cell Signaling Technology. Membranes were then probed with
horseradish peroxidase (HRP)-conjugated antibody against rabbit IgG (1:3,000
dilution, #7074), and bands visualized with ECL reagent (Amersham, GE Healthcare
Life Sciences) with a LAS4000 imaging system (Fujifilm). Membranes were then
stripped and re-probed with antibodies against the total form of these proteins
(ERK1/2 #4695, p38 #9212, JNK1/2 #9258, NF-kB-p65 #4767, Syk #2712, Lyn #2796,
LAT1 #9166). The band intensity was quantified using Scion Image software
(Scion Corporation). Original immunoblots are shown in Supplementary Fig. 9.

For immunoblots of mast cell-Nedd4-2 expression, FLMCs or BMCMCs
(2� 106 cells per sample) were lysed in ice-cold lysis buffer, membranes prepared
as indicated above and then probed with affinity purified rabbit anti-Nedd4-2

(ref. 57) and anti-b-actin (#4967, Cell Signaling Technology), antibodies, both
diluted 1:1,000. HRP-conjugated rabbit IgG secondary antibody was then applied
and bands visualized as detailed above.

For the IL-3-induced signalling study, FLMCs (2� 106 cells per sample) were
incubated in starvation medium (DMEM supplemented with 0.1% BSA) for 6 h
and then stimulated with recombinant mouse IL-3 (4 ng ml� 1, Shenandoah
Biotechnology) for the indicated times at 37 �C. The reaction was quenched as
outlined above, cells prepared in ice cold lysis buffer, lysates transferred to
nitrocellulose membranes, and these then probed with antibodies against p-STAT5
(1:1,000 dilution, Tyr694, #611964, BD Bioscience) and p-ERK1/2 (1:1,000
dilution, Thr202/Tyr204). HRP-conjugated mouse (for p-STAT5) or rabbit IgG
(for p-ERK1/2) secondary antibodies were used (1:3,000 dilution) and membranes
stripped then re-probed with total-ERK1/2 (1:1,000 dilution) and total-STAT5
(1:1,000 dilution, #610191, BD Bioscience) antibodies as controls.

For immunoprecipitation studies, FLMCs (20� 106 cells per sample) were
sensitized with IgE anti-DNP mAb, activated with DNP–HSA and prepared as
indicated above. Following lysis in 500 ml ice-cold lysis buffer, the lysates were first
pre-cleared with protein A Sepharose (Amersham Biosciences), followed by
incubation with indicated Abs (Syk, p-Syk, or affinity purified rabbit anti-mouse
Ndfip1 (generated by S. Kumar) for 1 h (1ml of antibody in 60ml Protein A
Sepharose per sample), before immunoprecipitation with Protein A Sepharose for
another hour. Immunoprecipitated samples were washed with lysis buffer four
times (centrifugation at 180g for 5 min at 4 �C) before immunoblot analysis
with Nedd4-2, Syk, p-Syk or Ndfip1 antibodies (all 1:1,000 dilution), and
HRP-conjugated rabbit IgG secondary antibody (1:3,000 dilution). For
immunoblots associated with immunoprecipitated Ndfip1, Protein A
HRP-conjugated secondary antibody (1:10,000 dilution, Thermo Scientific) was
used to avoid visualization of the IgG light chain).

Affinity purification of ubiquitinated proteins using TUBEs. After IgE
sensitization for 16 h, cells were incubated with MG132 (25 mM; Merck) and
chloroquine (50 mM; Sigma-Aldrich) for 2 h before DNP–HSA-mediated
activation. FLMCs or BMCMCs (20� 106 cells per sample) were lysed in 500 ml
ice-cold lysis buffer. Cell lysates were then rotated at 4 �C with 20ml
Agarose-Tandem Ubiquitin Binding Entities (TUBEs) (Lifesensors) for 2 h. Beads
were collected, washed (three times) in cold tris-buffered saline with Tween-20
(TBS-T) and samples then subjected to SDS–PAGE, followed by immunoblot with
Syk, p-Syk or p-Lyn antibodies (all 1:1,000 dilution).

Calcium mobilization study. IgE anti-DNP (2mg ml� 1; SPE7 clone) sensitized
FLMCs or BMCMCs were administered with 5mM Fluo-3 AM (Life Technologies) in
Tyrodes buffer for 30 min at 37 �C and then placed in a 15m-slide Microscopy
Chamber (ibidi GmbH). Fluorometric measurements were commenced when 495%
of the cells had settled to the base of the chamber. A Biorad Radiance
2000 Confocal system mounted on an inverted IX81 Olympus microscope, equipped
with a 20� water-immersion objective (numerical aperture (NA) 0.5) and fluores-
cence intensity excited at 488 nm and emitted at 520 nm was measured at 5 s intervals
for 5 min after DNP–HSA (10 ng ml� 1) stimulation. Changes in intracellular Ca2þ

[Ca2þ ]i were expressed as F1/F0 ratios where F1 and F0 was the fluorescence
intensity at a specific time and at the initiation of image recording. For each inde-
pendent experiment using paired WT and Nedd4-2� /� FLMCs or BMCMCs, two–
three replicates were performed to acquire information on 200–300 cells.

RNA extraction and real-time PCR. FLMCs (2� 106 cells) were sensitized with
IgE anti-DNP mAb (2mg ml� 1, SPE-7 clone) for 16 h, then lysed in 500 ml TRIzol
reagent (Life Technologies) from which RNA was extracted according to the
manufacturer’s instructions. For mRNA analysis, 1 mg of RNA was used for
complementary DNA (cDNA) synthesis using the QuantiTect reverse transcription
kit (QIAGEN). Conventional PCR was performed using GoTAQ green master mix
reagent (Promega) on S1000 Thermal Cycler (BioRad). PCR assays were performed
for 30 cycles (95� C for 30 s, 57� C for 30 s, and 72 �C for 60 s). PCR products were
run on a 2% agarose gel and visualized using a GelDot-IT TS Imaging System
(UVP). The following oligonucleotide sequences were used:

Forward Reverse

Mcpt1 AGGCCCTACTATTCCTGATGG CCACCACATCTGTCCTCAG
Mcpt2 ATGCAGGCCCTACTATTCCT ACACCTCTCCTTCGAACCG
Mcpt4 TGACCGACACTGGCAAGAT GTGAACCCTCTCTCAGTG

GTG
Cma1/
Mcpt5

TCTGCTGCTCCTTCTCCTG TCTTATCAGGAAGCCAC
TGC

Tpsb2/
Mcpt6

TGCTGTGTGCTGGAAATACC TGTAGATGCCAGGCTT
GTTG

GAPDH ACATCATCCCTGCATCCACT ACTTGGCAGGTTTCTCCAG
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Statistical analysis. Prism software version 5.01 (GraphPad Software) was used
for statistical analyses. A two-way analysis of variance (ANOVA) with Bonferroni
post test for repeated measures was used to assess differences in ear swelling
between groups of mice over the course of the PCA reactions or to compare
differences in mediator release in response to increasing concentrations of
DNP–HSA specific antigen between WT and Nedd4-2� /� FLMCs or BMCMCs,
or Ndfip1� /� BMCMCs. Where specified, a one-way ANOVA with Dunnett’s or
Bonferroni post test for comparison between multiple groups or an unpaired
Student’s t-test for comparison between two groups were used. A P value of o0.05
was considered statistically significant. Data are presented as mean±s.e.m., unless
otherwise stated.

Data availability. All relevant data are available within the article and its
Supplementary Files or available from from the authors upon request.
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