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Abstract
The purposes of this study are to propose an unsupervised anomaly detection method based on a deep neural network (DNN) 
model, which requires only normal images for training, and to evaluate its performance with a large chest radiograph data-
set. We used the auto-encoding generative adversarial network (α-GAN) framework, which is a combination of a GAN and 
a variational autoencoder, as a DNN model. A total of 29,684 frontal chest radiographs from the Radiological Society of 
North America Pneumonia Detection Challenge dataset were used for this study (16,880 male and 12,804 female patients; 
average age, 47.0 years). All these images were labeled as “Normal,” “No Opacity/Not Normal,” or “Opacity” by board-
certified radiologists. About 70% (6,853/9,790) of the Normal images were randomly sampled as the training dataset, and 
the rest were randomly split into the validation and test datasets in a ratio of 1:2 (7,610 and 15,221). Our anomaly detection 
system could correctly visualize various lesions including a lung mass, cardiomegaly, pleural effusion, bilateral hilar lym-
phadenopathy, and even dextrocardia. Our system detected the abnormal images with an area under the receiver operating 
characteristic curve (AUROC) of 0.752. The AUROCs for the abnormal labels Opacity and No Opacity/Not Normal were 
0.838 and 0.704, respectively. Our DNN-based unsupervised anomaly detection method could successfully detect various 
diseases or anomalies in chest radiographs by training with only the normal images.

Keywords  Chest radiograph · Variational autoencoder · Generative adversarial network · Deep learning · Unsupervised 
learning · Anomaly detection

Introduction

In recent years, deep neural network (DNN)–based 
approaches have made remarkable advances in the field of 
computer-aided diagnosis/detection (CAD) for chest radio-
graphs [1–8]. Most of these works have been carried out 
in supervised learning, which is a type of training based 

on labels corresponding to the inputs, such as the type of 
disease and the location of each lesion. However, such CAD 
systems based on supervised learning techniques (simply 
referred to as supervised CAD systems hereafter) have two 
problems. The first problem is the difficulty of preparing 
training datasets. Considerable time and effort are required 
by even experts to correctly annotate numerous images with 
the information of diseases or lesions [9, 10]. The second 
is that the type of diseases that a supervised CAD system 
can correctly detect or diagnose is limited by the design of 
its training datasets. To develop a supervised CAD system 
that can detect various types of anomaly, it is necessary to 
prepare diverse types of anomalous data and to annotate the 
anomalies, which is also difficult [11, 12]. These problems 
can be addressed using a framework of unsupervised anom-
aly detection, that is, capturing the characteristics of normal 
images and detecting differences in the characteristics in the 
images assessed from those in the normal images. In this 
method, training requires only normal images and no lesion 
labels; furthermore, any type of abnormality can be detected.
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Despite the above advantages, unsupervised anomaly 
detection is a technically challenging task and had not 
been widely applied to medical images. However, with 
the recent development of unsupervised methods in deep 
learning, several works on unsupervised anomaly detec-
tion in medical images have emerged [13–18]. These 
have employed autoencoders, especially variational 
autoencoders (VAEs) [19], or generative adversarial 
networks (GANs) [20], which are the most well-known 
classes of DNN-based unsupervised learning models. 
AnoGAN [13], an unsupervised anomaly detection 
framework based on a GAN, requires a time-consuming 
iterative process to calculate the inverse mapping of the 
generator for anomaly detection. VAE-based methods do 
not have this problem, but in general, VAEs generate 
more blurry images than GANs [21, 22]. In some recent 
papers, models combining an autoencoder and a GAN 
to utilize their advantages have been presented [22–24]. 
Baur C et al. [14] also reported an unsupervised anomaly 

detection/segmentation method based on a VAE–GAN 
model, targeting multiple sclerosis lesions in brain MR 
images. Very recently, Tang et al. [17] proposed an unsu-
pervised anomaly detection method for chest radiographs 
using a hybrid model of a traditional (not variational) 
autoencoder and a GAN.

In this paper, we present an unsupervised anomaly detec-
tion method based on VAE-GAN and demonstrate its abil-
ity to detect various lesions using a large chest radiograph 
dataset. The contributions of this research are as follows:

• Unlike the supervised methods widely used in CAD 
for chest radiographs, our VAE-GAN-based unsuper-
vised method can detect any kind of lesions and does 
not require any abnormal images and lesion labels for 
training.
• We achieved both anomaly detection based on Gaussian 
latent vectors derived from VAE and fine visualization of 
anomalies derived from GAN.

Fig. 1   Overview of our anomaly 
detection system. (a) Anomaly 
detection based on reconstruc-
tion error. The anomaly (a lung 
mass in this figure) disappears 
after the reconstruction, and 
the total reconstruction error of 
an abnormal image is expected 
to be larger than that of a 
normal image. (b) Anomaly 
detection using code norm. 
Abnormal images will be out of 
the distribution of the normal 
images in the latent space (the 
standard Gaussian distribution 
ideally) and farther from the 
origin than normal ones. The 
128-dimensional latent space is 
drawn as two-dimensional for 
the explanation

(a)

(b)
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Materials and Methods

Overview

Here, we describe an overview of our anomaly detection 
method using a VAE-GAN. This anomaly detection is per-
formed via the VAE part of the model, and the GAN part 
mainly contributes to improving image quality.

A VAE is a network that maps an input image to a low-
dimensional vector called a latent code and then gener-
ates (or “reconstructs”) an output image from it. A VAE 
is trained so that the reconstructed image is as close as 
possible to the input image. In our method, the VAE is 
trained using a dataset consisting only of normal chest 
radiographs. This VAE will then be able to correctly 
reconstruct a normal chest radiograph. However, when 
it tries to reconstruct a radiograph with some anomaly, 
its output will be a somewhat "normal-like" reconstruc-
tion and the anomaly will disappear (Fig. 1a). Therefore, 
anomaly detection can be performed by taking the dif-
ference between the input image and the reconstructed 
image (hereinafter referred to as the reconstructed error).

In addition, the latent codes described above are trained 
to follow a standard normal distribution. Therefore, anomaly 
detection can be performed by regarding the latent codes 
close to the origin as normal and those far from the origin 
as abnormal (Fig. 1b).

Dataset

We used a publicly available chest radiograph dataset: 
the Radiological Society of North America (RSNA) 
Pneumonia Detection Challenge dataset [25] (hereafter, 
the RSNA dataset). This dataset comprises 30,000 frontal 
view chest radiographs, with each image labeled as “Nor-
mal,” “No Opacity/Not Normal,” or “Opacity” by one 
to three board-certified radiologists. The Opacity group 
consists of images with opacities suspicious for pneu-
monia, and the No Opacity/Not Normal group consists 

of images with abnormalities other than pneumonia. The 
details of the RSNA dataset are shown in Table 1. The 
total number of images was smaller than 30,000 because 
the RSNA dataset includes some invalid images such 
as abdominal or lateral chest images; thus, they were 
excluded from the labeling [25]. All images were resized 
into 256 × 256 from the original size of 1024 × 1024 by 
Lanczos resampling.

We split this RSNA dataset into three subsets: the 
training, validation, and test datasets. The training data-
set was used to train our model. The main feature of 
this study is that the training dataset consists only of 
normal images. The test dataset was used for the final 
performance evaluation. The validation dataset is a 
performance evaluation dataset separate from the test 
set and was used to determine the optimal number of 
training epochs. These two datasets contain both nor-
mal and abnormal images. We randomly sampled 70% 
(6,853/9,790) of the Normal images as the training data-
set and randomly split the remaining images into the 
validation and test datasets in a ratio of 1:2 (7610 and 
15,221). This random subsampling was performed ten 
times for cross-validation, which is described later. The 
details of this random splitting are shown in Table 2. 

The RSNA dataset is a subset of the National Insti-
tutes of Health (NIH) Chest X-Ray dataset [26], which 
contains 112,120 frontal chest radiographs. The original 
NIH dataset also includes per-image labels of 14 thoracic 
diseases; however, these are far less accurate than the 
RSNA dataset because they were not annotated by human 

Table 1   Details of the RSNA 
dataset

SD standard deviation, PA posteroanterior, AP anteroposterior

Normal Lung opacity No lung opacity/
not normal

Total

Age (Year) Range 2–91 1–92 1–92 1–92
Mean (SD) 45.0 (16.3) 49.4 (16.4) 45.6 (17.5) 47.0 (16.8)

Gender Male 5496 4158 7226 16,880
Female 4294 2948 5562 12,804

View position PA 7995 1614 6520 16,129
AP 1795 5492 6268 13,555

Total 9790 7106 12,788 29,684

Table 2   Details of splitting dataset in our study

*“No lung opacity/not normal” or “lung opacity”

Training Validation Test Total

Normal 6853 979 1,958 9,790
Abnormal* 0 6631 13,263 19,894
Total 6853 7610 15,221 29,684
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experts but automatically generated from radiological 
reports through natural language processing techniques. 
Thus, we used the RSNA dataset rather than the entire 
NIH dataset to ensure the accuracy of evaluation.

Formularization of Anomaly Detection

We employed an auto-encoding GAN (α-GAN) [22] 
framework in our anomaly detection method. This is a 
combination of a GAN and a VAE and consists of four 
DNNs, an encoder, a generator, a discriminator, and a 
code discriminator (Fig. 2). The architectures of the net-
works are shown in Table 3. The encoder encodes an 
input image into a latent code, which is a 128-dimen-
sional vector in our model, and the generator generates 
an image from a latent code. The encoder and the gen-
erator compose an autoencoder, which can reconstruct 
its own input image. These networks are trained so as to 
minimize the difference between input images and their 
reconstructions. The discriminator tries to discriminate 
generated images from real images in order to encourage 

the generator to generate images indistinguishable from 
the real images. The code discriminator similarly makes 
the distribution of latent codes closer to the standard 
Gaussian distribution. See Rosca et al. [22] for more 
details.

First, we trained these networks with the training data-
set, consisting of only normal chest radiographs. As men-
tioned in the subsection “Overview,” we can measure the 
anomaly score of an input image x by calculating the sum 
of the differences between the pixel values of the original 
and reconstructed images (Fig. 1a):

where Gen and Enc are the generator and the encoder 
respectively and ‖ ∙ ‖1 is the pixelwise L1 norm. This 
method yields not only a per-image anomaly score but a 
per-pixel anomaly score, which is useful for visualizing 
anomalies.

We can also measure the per-image anomaly score by 
simply calculating the Euclidean norm of the latent code.

(1)reconstruction_error(�) = ‖� − Gen(Enc(�))‖1

Fig. 2   Illustration of α-GAN 
model. The grayed-out 
components are used only for 
training and are not used for our 
anomaly detection method. 128-
D: 128-dimensional
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Since outputs of the encoder for the normal chest radi-
ographs ideally follow a multivariate standard Gauss-
ian distribution, we can measure the anomaly degree of 
the input image  by x calculating the distance between 
the corresponding latent vector Enc(�) and the origin 
(Fig. 1b).

Model Implementation and Training Details

We implemented our model using Chainer (https​://chain​
er.org/) version 4.4.0 as a deep neural network framework. 

(2)code_norm(�) = ‖Enc(�)‖
We used a supercomputer system (Reedbush-H) in our 
institution, which consists of 120 computing nodes 
equipped with two GPUs (Tesla P100, NVIDIA Corpo-
ration, Santa Clara, CA). The batch size was set to 10. 
We used the Adam optimizer with α = 0.0005, β1 = 0.5, 
and β2 = 0.9, similar to in the α-GAN paper [22]. We 
employed a progressive growing technique [27] to sta-
bilize the training of the generator, the encoder, and the 
discriminator. The training procedure was as follows:

1. We first started with an image size of 4 × 4 and 
trained only the linear layers of these networks until 
the first epoch ended.

Table 3   Architectures of the networks

LReLU leaky rectified linear unit, Tanh hyperbolic tangent

Generator Encoder

Layer Activation Output shape Layer Activation Output shape

(Latent vector) 128 (Input Image) 256 × 256 × 1
Linear LReLU 4 × 4 × 512 Convolution 1 × 1 LReLU 256 × 256 × 8
Upsampling 8 × 8 × 512 Convolution 3 × 3 LReLU 256 × 256 × 16
Convolution 3 × 3 LReLU 8 × 8 × 256 Downsampling 128 × 128 × 16
Upsampling 16 × 16 × 256 Convolution 3 × 3 LReLU 128 × 128 × 32
Convolution 3 × 3 LReLU 16 × 16 × 128 Downsampling 64 × 64 × 32
Upsampling 32 × 32 × 128 Convolution 3 × 3 LReLU 64 × 64 × 64
Convolution 3 × 3 LReLU 32 × 32 × 64 Downsampling 32 × 32 × 64
Upsampling 64 × 64 × 64 Convolution 3 × 3 LReLU 32 × 32 × 128
Convolution 3 × 3 LReLU 64 × 64 × 32 Downsampling 16 × 16 × 128
Upsampling 128 × 128 × 32 Convolution 3 × 3 LReLU 16 × 16 × 256
Convolution 3 × 3 LReLU 128 × 128 × 16 Downsampling 8 × 8 × 256
Upsampling 256 × 256 × 16 Convolution 3 × 3 LReLU 8 × 8 × 512
Convolution 3 × 3 LReLU 256 × 256 × 8 Downsampling 4 × 4 × 512
Convolution 1 × 1 Tanh 256 × 256 × 1 Linear 128
Discriminator Code Discriminator
Layer Activation output shape Layer Activation output shape
(Input Image) 256 × 256 × 1 (Latent vector) 128
Convolution 1 × 1 LReLU 256 × 256 × 8 Linear LReLU 1500
Convolution 3 × 3 LReLU 256 × 256 × 16 Linear 1
Downsampling 128 × 128 × 16
Convolution 3 × 3 LReLU 128 × 128 × 32
Downsampling 64 × 64 × 32
Convolution 3 × 3 LReLU 64 × 64 × 64
Downsampling 32 × 32 × 64
Convolution 3 × 3 LReLU 32 × 32 × 128
Downsampling 16 × 16 × 128
Convolution 3 × 3 LReLU 16 × 16 × 256
Downsampling 8 × 8 × 256
Convolution 3 × 3 LReLU 8 × 8 × 512
Downsampling 4 × 4 × 512
Linear 1
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2. Then we upsized the resolution to 8 × 8 and faded in 
the next (upsampling/downsampling and convolutional) 
layers gradually until the second epoch ended and con-
tinued training in order to stabilize them until the third 
epoch ended.
3. We similarly added the layers progressively until the 
resolution became 256 × 256.

Evaluation

As a visual assessment of our per-pixel and per-image 
anomaly detection method, we show some examples of 
anomaly location visualization by the reconstruction 
error method and images of the highest and the lowest 
code norm scores. For quantitative evaluation, we per-
formed receiver operating characteristic (ROC) analysis 
of the image-level anomaly detection performance of the 
reconstruction error and the code norm anomaly scores. 
The images labeled as Normal in the RSNA dataset were 
regarded as negative and the rest as positive. To evaluate 
the performance difference depending on the class of 
anomalies, we also performed ROC analysis with posi-
tive samples limited to each class (Lung Opacity or No 
Lung Opacity/Not Normal). The training and this quan-
titative evaluation were repeated ten times for each ran-
dom split of the dataset as Monte Carlo cross-validation, 
and the area under the ROC curve (AUROC) values are 
reported with 95% confidence intervals (CI). The opti-
mal number of training epochs was determined using the 
validation set. First, the training session was run for 50 
epochs. At the end of each epoch, the model was saved, 
and the AUROC values of the code norm scores were 
calculated for the validation set. Then, the model with 
the best validation scores was finally used for evaluation.

Results

Visual Assessments

Figure 3 shows examples of anomaly location visualization 
using the reconstruction error. It can be seen that our sys-
tem could correctly localize various lesions or anomalies, 
namely, a lung mass, cardiomegaly, pleural effusion, bilat-
eral hilar lymphadenopathy, and even dextrocardia. More 
examples are available in Supplemental Materials.

Figure 4 shows radiographs with the highest and lowest 
code norm scores in the test dataset. The highest-scored 
images (Fig. 4a) include inappropriate chest radiographs 
such as incorrectly rotated or color-inverted ones and 
images with small and/or off-centered fields of view, 

mostly in those from children. Figure 4b shows the high-
est-scored posteroanterior adult chest radiographs, exclud-
ing incorrectly rotated or color-inverted radiographs. Most 
of these images have various bulky lesions or anomalies 
such as a large mass, pneumonia involving the entire lung, 
a large amount of pleural effusion, and thoracic deforma-
tion probably due to thoracoplasty. By contrast, the low-
est-scored images shown in Fig. 4c are all similar. Most 
of them have no bulky lesions, have the normal form of 
thoraces and are correctly positioned.

Fig. 3   Examples of anomaly location visualization. The original 
images are shown on the left side and the reconstruction error images 
overlaid on the original images are shown on the right side. a Mass. b 
Cardiomegaly (arrow) and pleural effusion (arrowheads). c Bilateral 
hilar lymphadenopathy. d Dextrocardia
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Quantitative Performance of Anomaly Detection

The average ROC curves of the per-image anomaly detec-
tion task are shown in Fig. 5 with the AUROC values and 
their 95% CIs. The anomaly detection method with the code 
norm score on average detected 67.2% of the abnormal chest 
radiographs with a false-positive rate of 28.5%. The AUROC 
was 0.752 (95% CI, 0.738–0.766). The AUROCs for each 

abnormal label (Opacity and No Opacity/Not Normal) were 
0.838 (0.820–0.855) and 0.704 (0.691–0.718), respectively. 
The reconstruction error method showed worse performance 
than the code norm method, with an overall AUROC of 0.630 
(0.579–0.682). Each training session took an average of 
10,768 s, and each evaluation session took an average of 183 s 
(12 ms/image), with a Tesla P100 GPU (NVIDIA Corporation, 
Santa Clara, CA).

Fig. 4   Images with the a, b highest and c lowest code norm anomaly scores. The images in b are limited to the posteroanterior adult chest 
images and incorrectly rotated or color-inverted images are also excluded
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Discussion

We have shown that our unsupervised anomaly detec-
tion method can successfully detect and localize lesions 
in chest radiographs. In contrast to supervised CAD sys-
tems requiring images and annotations of target diseases 
or lesions for training, our system requires only normal 
chest radiographs and no annotations, making it easy to 
create a training dataset. In addition, this method can also 
detect various lesions or anomalies, in contrast to super-
vised CAD systems, which can generally detect only spe-
cific lesions. In addition to pathological anomalies, our 
method can even detect technical anomalies such as inap-
propriate rotation, inversion, and positioning, as shown 
in Fig. 4a. This means our method may also be applied to 
detect technical errors in image acquisition, as well as for 
diagnostic assistance. Moreover, because this method does 
not require any specific processing for the targets, it can be 
easily applied to any target, not only to chest radiographs 
but to any organ and even any modality. We can develop a 
CAD for any target by simply gathering "normal" images.

In clinical practice, it is often the case that unexpected 
diseases or lesions are found in patients. Whereas a disease-
specific supervised CAD system can hardly detect such 
unexpected disease, our method can easily detect them by 
finding "not normal" features. This process of learning the 
features of normal images and detecting the difference from 
them is similar to what radiologists do when assessing radio-
logical images. Training for radiologists starts with studying 

the normal anatomy and familiarizing them with the features 
of normal images. When assessing an image, radiologists 
first look for abnormal findings and then determine what 
they are. Human radiologists cannot make a diagnosis unless 
they find an abnormality. Our system will prevent us from 
oversights and help in the first step of diagnosis.

Very recently, Tang et al. [17] also proposed an unsuper-
vised anomaly detection method for chest radiographs using 
a hybrid model of an autoencoder and a GAN, and reported 
an AUROC of 0.805, although this value cannot be directly 
compared with our results because of the difference in the 
datasets. A major difference between our method and that 
of Tang et al. is that we use a VAE, while Tang et al. used a 
traditional, not variational, autoencoder. The benefit of using 
a VAE over a traditional autoencoder is that we can make 
the latent variables follow the standard Gaussian distribu-
tion, which enables simple latent–variable-based anomaly 
detection (called the “code norm” method in our paper). 
A traditional autoencoder does not assume any distribu-
tion over the latent variables; thus, it is difficult to perform 
anomaly detection based on the latent variables as it is. For 
the model by Tang et al. it is necessary to train an additional 
encoder, which encodes fake images to latent variables, to 
utilize latent variables for anomaly detection. Our method 
has also succeeded in generating larger and higher-quality 
reconstruction images than that of Tang et al., which pro-
vides fine anomaly visualizations (see Figs. 1 and 3).

We found that the code norm score performs better than 
the reconstruction error score in the per-image anomaly 

Fig. 5   Receiver operating characteristic (ROC) curves for per-image anomaly detection tasks. Each value in parentheses represents the area 
under the corresponding ROC curve and its 95% confidence interval. AUROC area under the ROC curve
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detection task in our experiments. We observed that the 
reconstructed images have a slight deviation from the origi-
nal images, especially in the thorax and body contour (see 
Figs. 1a and 3), which may degrade the reconstruction error 
score. To address a similar problem in the reconstruction of 
brain MR images, Baur et al. [14] performed various post-
processing methods such as the use of a median filter, ero-
sion, and removal of small connected components. The code 
norm method is free from this misregistration problem and 
does not require such complicated postprocessing, but as it 
is, it has the disadvantage that it is difficult to obtain a visual 
explanation for anomaly detection. Applying recent visual 
explanation techniques for DNNs such as Grad-CAM [28] 
and SmoothGrad [29] to the code norm method may help 
identify abnormal sites more accurately, which will be our 
future work.

This method has a limitation in that it provides discrimi-
nation only between normal and abnormal images; it can 
detect any anomaly but cannot diagnose it. It detects any 
features in the assessed images that are different from those 
in training images, regardless of what they are and whether 
they are clinically significant or not. Thus, this approach 
does not replace the human doctor, but is rather a tool to help 
detect lesions and prevent oversights. Another limitation is 
its performance in anomaly detection. Unsupervised anom-
aly detection techniques often perform worse than super-
vised techniques [12] in the detection of specific objects. 
For example, CheXNet [1], one of the state-of-the-art super-
vised CAD systems for chest radiographs, has achieved an 
AUROC of greater than 0.9 for some diseases. This is better 
than our AUROCs of 0.7–0.8, although these values cannot 
be compared directly because of the difference in the tasks 
and datasets used. Further development of unsupervised 
anomaly detection techniques and/or a combination with 
supervised techniques will improve in the performance of 
anomaly detection. Our study also lacks a sufficient quantita-
tive performance evaluation for various diseases or anoma-
lies. The RSNA dataset does not have detailed labeling for 
findings other than lung opacity; therefore, we cannot per-
form per-disease ROC analysis for them at this time. We 
hope to prepare an evaluation dataset and perform further 
analysis in the future.

Conclusion

We have proposed an unsupervised anomaly detection system 
based on a VAE–GAN model and shown that it can successfully 
detect various diseases or anomalies in chest radiographs by 
training only with the normal images. Although unsupervised 
anomaly detection is still a challenging task, it has a wide range 
of potential applications that may spread to various fields with 
the development of unsupervised deep learning techniques. Our 

future work will focus on the improvement of performance in 
anomaly detection and visualization, in which we aim to clini-
cally apply an all-purpose initial screening tool for any type of 
anomaly and even for any modality including 3D images.

Supplementary Information  The online version contains supplementary 
material available at https​://doi.org/10.1007/s1027​8-020-00413​-2.

Acknowledgements  The Department of Computational Radiology and 
Preventive Medicine, The University of Tokyo Hospital, is sponsored 
by HIMEDIC Inc., and Siemens Healthcare K.K. 

Funding  This work was supported in part by JSPS Grants-in-Aid for 
Scientific Research KAKENHI Grant Nos. 18K12095 and 18K12096. 
This work was supported by the Joint Usage/Research Center for 
Interdisciplinary Large-scale Information Infrastructures and High 
Performance Computing Infrastructure projects in Japan (Project IDs: 
jh170036-DAH, jh180073-DAH, and jh190047-DAH).

Compliance with Ethical Standards 

Conflict of Interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding 
D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP, Ng AY: 
CheXNet: radiologist-level pneumonia detection on chest X-rays 
with deep learning. arXiv preprint arXiv: 1711.05225,2017

	 2.	 Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman 
K: Learning to diagnose from scratch by exploiting dependencies 
among labels arXiv preprint arXiv: 1710.10501,2017

	 3.	 Li Z, Wang C, Han M, Xue Y, Wei W, Li LJ, Fei-Fei L: Thoracic 
disease identification and localization with limited supervision. 
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit pp. 
8290–8299,2018

	 4.	 Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y: Diag-
nose like a radiologist: attention guided convolutional neural 
network for thorax disease classification. arXiv preprint arXiv: 
1801.09927,2018

	 5.	 Gündel S, Grbic S, Georgescu B, Liu S, Maier A, Coman-
iciu D: Learning to recognize abnormalities in chest X-rays 
with location-aware dense networks. Lect Notes Comput Sci 
11401:757-765,2019

	 6.	 Hwang EJ, Park S, Jin KN, et al. Development and validation of 
a deep learning–based automatic detection algorithm for active 

426 Journal of Digital Imaging  (2021) 34:418–427

https://doi.org/10.1007/s10278-020-00413-2
http://creativecommons.org/licenses/by/4.0/


pulmonary tuberculosis on chest radiographs. Clin Infect Dis 
69(5):739-747,2019

	 7.	 Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, Vu TH, 
Sohn JH, Hwang S, Goo JM, Park CM : Development and valida-
tion of deep learning–based automatic detection algorithm for 
malignant pulmonary nodules on chest radiographs. Radiology 
290(1):218–228,2019

	 8.	 Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, Aum 
J, Yim JJ, Cohen JG, Ferretti GR, Park CM: Development and vali-
dation of a deep learning–based automated detection algorithm for 
major thoracic diseases on chest radiographs. JAMA Netw Open 
2(3):e191095,2019

	 9.	 Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, 
van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep 
learning in medical image analysis. Med Image Anal 42:60–88,2017

	10.	 Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey 
H, Folio LR, Summers RM, Rubin DL, Lungren MP: Preparing medi-
cal imaging data for machine learning. Radiology 295(1):4-15,2020

	11.	 Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura 
D, Summers RM: Deep convolutional neural networks for computer-
aided detection: CNN architectures, dataset characteristics and transfer 
learning. IEEE Trans Med Imaging 35(5):1285-98,2016

	12.	 Chalapathy R, Chawla S: Deep learning for anomaly detection: a 
survey. arXiv preprint arXiv: 1901.03407,2019

	13.	 Schlegl T, Seeböck P, Waldstein SM, Schmidt-Erfurth U, Langs 
G: Unsupervised anomaly detection with generative adversar-
ial networks to guide marker discovery. arXiv preprint arXiv: 
1703.05921,2017

	14.	 Baur C, Wiestler B, Albarqouni S, Navab N: Deep autoencod-
ing models for unsupervised anomaly segmentation in brain MR 
images. Lect Notes Comput Sci 11383: 161–169,2019

	15.	 Freiman M, Manjeshwar R, Goshen L: Unsupervised abnormality 
detection through mixed structure regularization (MSR) in deep 
sparse autoencoders. Med Phys 46(5):2223–2231,2019

	16.	 Uzunova H, Schultz S, Handels H, Ehrhardt J: Unsupervised pathol-
ogy detection in medical images using conditional variational autoen-
coders. Int J Comput Assist Radiol Surg 14(3):451–461,2019

	17.	 Tang Y, Tang Y, Xiao J, Summers RM, Han M: Deep adversarial 
one-class learning for normal and abnormal chest radiograph classi-
fication. Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided 
Diagnosis, 1095018,2019

	18.	 Davletshina D, Melnychuk V, Tran V, Singla H, Berrendorf M, 
Faerman E, Fromm M, Schubert M: Unsupervised anomaly detec-
tion for X-ray images. arXiv preprint arXiv: 2001.10883,2020

	19.	 Kingma DP, Welling M: Auto-encoding variational Bayes. arXiv 
preprint arXiv: 1312.6114,2013

	20.	 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, 
Ozair S, Courville A, Bengio Y: Generative adversarial networks. 
arXiv preprint arXiv: 1406.2661,2014

	21.	 Radford A, Metz L, Chintala S: Unsupervised representation 
learning with deep convolutional generative adversarial networks. 
arXiv preprint arXiv: 1511.06434,2015

	22.	 Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S: 
Variational approaches for auto-encoding generative adversarial 
networks. arXiv preprint arXiv: 1706.04987,2017

	23.	 Larsen ABL, Sønderby SK, Larochelle H, Winther O. Autoen-
coding beyond pixels using a learned similarity metric. Proc. of 
The 33rd International Conference on Machine Learning, PMLR 
48:1558–1566,2016

	24.	 Donahue J, Krähenbühl P, Darrell T: Adversarial Feature Learning. 
arXiv preprint arXiv: 1605.09782,2016

	25.	 Shih G, Wu CC, Halabi SS, Kohli MD, Prevedello LM, Cook TS, 
Sharma A, Amorosa JK, Arteaga V, Galperin-Aizenberg M, Gill RR, 
Godoy MCB, Hobbs S, Jeudy J, Laroia A, Shah PN, Vummidi D, 
Yaddanapudi K, Stein A: Augmenting the national institutes of health 
chest radiograph dataset with expert annotations of possible pneu-
monia. Radiol Artif Intell. Radiological Society of North America; 
1(1):e180041,2019

	26.	 Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM: ChestX-
Ray8: hospital-scale chest X-ray database and benchmarks on 
weakly-supervised classification and localization of common 
thorax diseases. Proc of 2017 IEEE Conf Comput Vis Pattern 
Recognit pp.3462–3471,2017

	27.	 Karras T, Aila T, Laine S, Lehtinen J: Progressive growing of 
GANs for improved quality, stability, and variation. arXiv preprint 
10.10196,2017

	28.	 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, 
Batra D: Grad-CAM: visual explanations from deep networks 
via gradient-based localization. Proc IEEE Int Conf Comput Vis 
pp.618–626,2017

	29.	 Smilkov D, Thorat N, Kim B, Viégas F, Wattenberg M: Smooth-
Grad: removing noise by adding noise. arXiv preprint arXiv: 
1706.03825,2017

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

427Journal of Digital Imaging  (2021) 34:418–427


	Unsupervised Deep Anomaly Detection in Chest Radiographs
	Abstract
	Introduction
	Materials and Methods
	Overview
	Dataset
	Formularization of Anomaly Detection
	Model Implementation and Training Details
	Evaluation

	Results
	Visual Assessments
	Quantitative Performance of Anomaly Detection

	Discussion
	Conclusion
	Acknowledgements 
	References


