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Global metagenomic survey reveals a new bacterial
candidate phylum in geothermal springs
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Analysis of the increasing wealth of metagenomic data collected from diverse environments

can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of

metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus

Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This

lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the

primers commonly used for ribosomal gene surveys. Genome reconstruction from

metagenomic data combined with single-cell genomics results in several high-quality

genomes representing four genera from the new phylum. Metabolic reconstruction indicates

a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for

metabolic complementarity with other microbes. Co-occurrence patterns identifies a number

of putative partners, including an uncultured Armatimonadetes lineage. The discovery of

Kryptonia within previously studied geothermal springs underscores the importance of

globally sampled metagenomic data in detection of microbial novelty, and highlights the

extraordinary diversity of microbial life still awaiting discovery.
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M
olecular environmental surveys have provided a sizeable
snapshot of microbial phylogenetic diversity. Sequen-
cing of small-subunit ribosomal RNA (SSU rRNA)

genes directly from the environment has expanded the known
microbial tree of life from Woese’s original 12 phyla to more than
70 bacterial phyla1,2. Advances in cultivation-independent
methods for examining uncultured microbes, including single-
cell genomics and deep sequencing of environmental samples,
have begun yielding complete or near-complete genomes from
many novel lineages3–10. These approaches have already led to
the recovery of genomic information from a wealth of candidate
lineages (phylogenetic lineages for which a cultured represen-
tative is not available), notably the Lokiarchaeota11,
Pacearchaeota and Woesearchaeota10, and members of the
Candidate Phyla Radiation3. These lineages, previously
recognized only through SSU rRNA data and residing in poorly
sampled habitats, are providing a more complete topology of the
tree of life.

More recently, it has been suggested that a wealth of novel
bacterial and archaeal clades exist that are systematically
under-represented (the ‘rare biosphere’) or missed altogether in
classical surveys, leaving significant taxonomic ‘blind spots’12.
Compared with many of the proposed candidate phyla for which
SSU rRNA gene information exists, these taxonomic ‘blind spots’
are uncharted lineages with potentially important ecological and
evolutionary implications. Further, these lineages may be highly
abundant and hold important metabolic or functional roles
within the community, yet have been overlooked thus far in
ecological surveys. Metagenome sequencing is uniquely suited for
uncovering taxonomic ‘blind spots’ since it does not suffer
from biases introduced during PCR amplification, and has
limitations only with insufficient resolution of minor

populations within a community. However, an exploration of
the complete compendium of available metagenomic sequences
for the presence of taxonomic ‘blind spots’ has yet to be
performed13. Here, we report the results of large-scale mining of
metagenomic data and single-cell genomics, which led to the
discovery of a new bacterial phylum in geographically distinct
geothermal springs.

Results
Identification of a novel bacterial candidate phylum. To cast a
global net for the discovery of novel microbial lineages in the
absence of biases introduced via PCR amplicon-based surveys, we
collected long assembled contigs (Z100 kbp) from a
comprehensive collection of 4,290 metagenomic data sets
available through the Integrated Microbial Genomes with
Microbiome Samples (IMG/M), a database containing a total of
more than 5 Tb of sequence data14. From these data, 31,955
assembled contigs were identified and 744 contigs were further
selected that contained SSU rRNA gene fragments 4100 bp
(Fig. 1a). The SSU rRNA gene sequences were then aligned and
phylogenetically placed on a reference tree consisting of
high-quality SSU rRNA sequences from bacteria and
archaea15,16. Exploration of the constructed SSU rRNA tree for
novel phylogenetic branches led to the identification of a distinct
lineage consisting of a full-length SSU rRNA sequence. A
subsequent search against all assembled metagenomic data
identified three additional full-length SSU rRNA sequences. The
four SSU rRNA gene sequences were from four geographically
distant, high-temperature, pH-neutral, geothermal springs in
North America and Asia (Fig. 1). These sequences shared an
average 97.4% identity (±1.97% s.d.), and showed a maximum
identity of only 83% to SSU rRNA genes (such as the one in
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Figure 1 | New lineage identified using metagenomic and single-cell genomic approaches. Workflow used to (a) identify novel SSU rRNA gene

sequences globally, along with (b) single-cell genomics pipeline to screen and sequence single cells isolated from geothermal springs samples. For the three

geothermal spring environments, we sequenced 13, 2 and 3 SAGs, respectively. SSU rRNA gene, small-subunit ribosomal gene; MDA, multiple

displacement amplification; QC, quality control; SAG, single-amplified genome. The photograph of Jinze Pool, Tengchong, China, was taken from ref. 22.
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GenBank ID: AP011715) in NCBI’s Non-Redundant (NR)
database. In line with the notion of taxonomic ‘blind spots’12, a
comparison of ‘universal’ SSU rRNA primer sets typically used
for full-length and hypervariable region amplification with the
four novel sequences indicated numerous mismatches, explaining
why members of this lineage likely eluded detection in previous
microbial diversity surveys (Supplementary Fig. 1; Supplementary
Table 1).

Phylogenetic analysis of the four SSU rRNA genes placed the
newly discovered lineage into a monophyletic branch within the
Fibrobacteres-Chlorobi-Bacteroidetes (FCB) superphylum9,17

(Supplementary Fig. 2). Based on suggested thresholds for SSU
rRNA sequence identity to distinguish new phyla2,18, we propose
that this lineage represents a new bacterial candidate phylum
(Supplementary Table 2).

Comparative genomics and cell morphology.. Reassembly of the
metagenomic data combined with tetranucleotide-based binning
methods using the initial contigs containing the SSU rRNA genes
yielded near-complete recovery of four distinct genomes, each
from one of the four spring samples (Supplementary Fig. 3;
Supplementary Table 3). Phylogenetic analysis of conserved

marker genes supported its placement as a sister phylum to the
Ignavibacteria with 100% bootstrap support (Fig. 2a;
Supplementary Fig. 4). Three of the genomes reconstructed from
metagenomes (GFMs) from Dewar Creek Spring, Canada19,
Great Boiling Spring, Nevada20,21 and Gongxiaoshe pool, Yunnan
Province, China22 had an average 95.8% estimated coverage,
while the genome from Jinze pool, Yunnan Province, China22 had
a lower estimated coverage of 68% (Supplementary Table 4). The
high genomic sequence coverage across the four metagenomes
(average 31.2� coverage; Supplementary Table 3) suggested that
this novel lineage might exist at sufficient cell abundance to be
captured by single-cell technology. We therefore employed high-
throughput single-cell isolation, whole-genome amplification
(WGA) and SSU rRNA screening of single-amplified genomes
(SAGs) in search for the novel lineage (Fig. 1). We successfully
recovered a total of 18 SAGs from three of the four samples,
corresponding to the novel phylum-level clade with an estimated
average genome completeness of 67.2% (±20.1 s.d.)
(Supplementary Table 3). We designate this new candidate
phylum ‘Candidatus Kryptonia,’ from the Greek word ‘krupton’
meaning hidden or secret since it has hitherto eluded detection
due to SSU rRNA primer biases (Supplementary Table 4).
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Figure 2 | Maximum likelihood concatenated protein phylogeny and cell imaging for ‘Ca. Kryptonia.’ (a) Phylogeny was based on concatenation of 56

conserved marker proteins, where at least 10 marker proteins were used to infer SAG phylogenetic placement (with the exception of JGI-22 with only six

marker proteins recovered). Bootstrap support values Z50% are shown with small circles on nodes with robust phylogenetic support. The FCB

superphylum is shown in the grey shaded region. Expanded phylogenetic tree for ‘Ca. Kryptonia’ shows the placement of the proposed four genera

represented by GFMs and SAGs, along with the estimated genome completeness shown in parentheses. (b) A ‘Ca. Kryptonia’-specific FISH (fluorescence

in situ hybridization) probe was designed and used to visualize cells from Dewar Creek Spring sediment samples. ‘Ca. Kryptonia’ cells hybridizing with the

probe are green, while other cells are visualized with 4’,6-diamidino-2-phenylindole (DAPI; blue). Scale bar, 5 mm.
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The average nucleotide identity (ANI) -based metric, Microbial
Species Identifier (MiSI), was used to compare the four
‘Ca. Kryptonia’ GFMs and the 18 SAGs (ref. 23). This analysis
revealed that almost all of the genotypes extracted from the same
sample belonged to a single species (Supplementary Data 1).
For example, the GFM reconstructed from Dewar Creek
(‘Ca. Kryptonium thompsoni’ JGI-4) and the 13 SAGs (‘Ca.
Kryptonium thompsoni’ JGI-5—JGI-17) collected from the same
site shared an ANI of 99.67% (±0.15 s.d.) and represent a single
coherent species23. A single exception to the above observations
was the recovery of a divergent ‘Ca. Kryptonia’ SAG
(‘Ca. Chrysopegis kryptomonas’ JGI-23) from the Jinze pool,
Yunnan Province, China representing a population distinct from
the other two SAGs recovered from this site (‘Ca. Kryptobacter
tengchongensis’ JGI-24 and JGI-25) (Supplementary Data 1).
Across the four geothermal springs, the GFMs and SAGs
collectively share average ANIs of only 78.86% (±1.42 s.d.),
suggesting that they represent different genera of ‘Ca. Kryptonia’.
Further support for genus-level designations is evident from
nuanced functional and metabolic differences across the genomes,
as described below.

In addition to recovering single cells of ‘Ca. Kryptonia’ for
genome amplification, we designed a SSU rRNA-targeted
fluorescence in situ hybridization (FISH) probe to visualize cell
morphology (Fig. 2b). The targeted ‘Ca. Kryptonia’ cells appeared
filamentous, and exhibited morphological heterogeneity ranging
from short to elongated filaments. These findings are consistent
with numerous reports describing filamentous thermophilic
bacteria, most notably cultivated members of the sister
phylum Ignavibacteria that range in length from 1 mm to
415mm (refs 24,25).

CRISPR-Cas fusion and limited biogeographic distribution.
CRISPR (clustered regularly interspaced short palindromic

repeats) elements and cas (CRISPR-associated) genes across the
‘Ca. Kryptonia’ genomes were recovered, and are suggestive of
defense against viral attack. A novel fusion between two different
CRISPR-Cas types (types I and III; subtypes I-B and III-A)
was identified in all genomes. This unusual fusion
contained the full gene set for components responsible for the
multistep CRISPR processes for spacer acquisition, CRISPR locus
transcription and maturation, and final nucleic acid
interference26,27 (Supplementary Fig. 5). This observation
represents the first report of a type I-B/type III-A CRISPR-Cas
fusion and expands the known genetic diversity of CRISPR-Cas
loci. Based on reconstruction of repeat-spacer arrays, the
‘Ca. Kryptonium thompsoni’ genomes appear to represent a
clonal CRISPR population without active spacer acquisition,
while the ‘Ca. Kryptobacter tengchongensis’ genomes are
considerably dynamic in terms of a mosaic spacer collection
(Supplementary Note 1; Supplementary Data 2 and 3). These
findings suggest that the CRISPR-Cas encoded by ‘Ca.
Kryptobacter tengchongensis’ is highly active, while the ‘Ca.
Kryptonium thompsoni’ genomes are not actively acquiring
spacers through the CRISPR-Cas system.

To verify the limited biogeographic distribution of
‘Ca. Kryptonia,’ we systematically surveyed the collection of
640 Gb of assembled metagenomic data from 4,290
environmental samples (including 169 samples from geothermal
springs and hydrothermal vents) for the presence of a genomic
signature beyond our initial search using SSU rRNA fragments
from 100 kbp contigs (Fig. 3; Supplementary Data 4). Further, we
searched against all available SSU rRNA data from the SILVA
database (ref. 16) for additional ‘Ca. Kryptonia’ phylotypes and
did not recover a highly similar match. Using this expanded
search, we found evidence for ‘Ca. Kryptonia’ in a total of 20
metagenomes, which included only three additional geographic
sites compared to our initial SSU rRNA survey (Supplementary

Geothermal/Hydrothermal metagenome

Metagenome

Candidatus Kryptonia genomic match 

Candidatus Kryptonia genomic + rRNA match
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Figure 3 | Limited, yet widely dispersed biogeographic distribution of ‘Ca. Kryptonia’ genomes and CRISPR spacers. All genomic content from the ‘Ca.

Kryptonia’ GFMs and SAGs was used to comprehensively search the collection of 640 Gb of assembled metagenomic data from 4,290 environmental

samples, including 169 samples from geothermal springs and hydrothermal vents denoted by red triangles (temperature Z50 �C). Marked circles are as

follows: (A) Great Boiling Spring, Nevada20,21; (B) Dewar Creek Spring, Canada19; (C) Jinze pool, Yunnan Province, China22; and (D) Gongxiaoshe pool,

Yunnan Province, China22. Significant matches were determined for sequences Z250 bp in length and with Z75% identity threshold for non-ribosomal

genomic regions. For metagenomic contigs mapping to the ‘Ca. Kryptonia’ ribosomal operon, a 97% identity threshold was used to capture only high-

quality matches to ‘Ca. Kryptonia.’ For CRISPR spacers, only significant matches allowing for up to 3 bp mismatch along the entire length of the spacer were

considered. The ‘Ca. Kryptonia’ genomic hits can be found in Supplementary Data 4 and the manually curated spacer hits can be found in Supplementary

Data 3.
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Data 4). The environments where this phylum was found were
similar to the settings where we first discovered the genomic
presence of ‘Ca. Kryptonia’: all were high-temperature (Z70 �C),
pH-neutral (6.4–8.0) settings. In sum, the limited range of
‘Ca. Kryptonia’ is reflected in the observation that genomic
signatures were found in nine unique geographical locations from
a total of 23 pH-neutral hot springs currently sampled by
metagenomics, and absent from the 1,614 unique locations
represented by 4,290 metagenomic samples.

In addition metagenomic searches specific for all CRISPR
repeat-spacer arrays collected from the ‘Ca. Kryptonia’ genomes
resulted in a similar pattern of limited biogeographic distribution
(Fig. 3; Supplementary Data 3). We identified shared spacers
across ‘Ca. Kryptonia’ populations in geographically distinct
geothermal springs. For example, shared spacers were identified
between the ‘Ca. Kryptobacter tengchongensis’ JGI-2 and JGI-3
genomes despite sampling from separate geothermal pools in
China. Further, shared spacers were identified across exception-
ally wide geographic distances including Canada and Nevada
(‘Ca. Kryptonium thompsoni’ JGI-4 and the Great Boiling
Springs metagenome), and China and Nevada (‘Ca. Kryptobacter
tengchongensis’ JGI-2 and the Great Boiling Springs
metagenome) (Fig. 3). Remarkably, we also found spacer matches
to a set of metagenomic contigs that we assigned as viral because
of their linkage to known viral genes, from these same samples
and metagenome samples collected from Yellowstone National
Park28 (Fig. 3; Supplementary Note 1, Supplementary Fig. 5 and
Supplementary Data 5). These genomic recruitment and spacer
signature data suggest that ‘Ca. Kryptonia’ is present in additional
geothermal spring sites and that viruses which appear to infect
‘Ca. Kryptonia’ circulate across wide geographic space as revealed
from the conserved infection vestiges.

Metabolic potential of ‘Candidatus Kryptonia’. The availability
of multiple nearly complete ‘Ca. Kryptonia’ genomes from both
GFMs and SAGs enabled metabolic and putative functional pre-
dictions for this novel candidate phylum, as well as insights into
some of the unique properties and notable absence of function for

the individual genera. Approximately 50% of the predicted com-
posite proteome for the ‘Ca. Kryptonia’ genomes showed similarity
to a diverse array of FCB superphylum members, with 11.3% and
1.96% best matches to thermophilic members of the phylum
Ignavibacteria and Caldithrix abyssi, respectively (Supplementary
Fig. 6). The conserved Por secretion system C-terminal sorting
domain (TIGR04183), found exclusively in members of the FCB
superphylum9, was recovered in all GFMs and SAGs, and
altogether totalled 811 predicted proteins across the
‘Ca. Kryptonia’ genomes. Reverse gyrase, the presumptive gene
indicator for the extreme thermophilic and hyperthermophilic
lifestyle in bacteria and archaea29, was found in all ‘Ca. Kryptonia’
genomes, which suggests that most, if not all members, of this
lineage are extreme thermophiles or hyperthermophiles. Further,
we found evidence for horizontal gene transfer of the reverse
gyrase from the crenarchaeal order Thermoproteales
(Supplementary Note 2; Supplementary Fig. 7) and hypothesize
that ‘Ca. Kryptonia’s’ thermophilic traits might have been acquired
via lateral gene transfer rather than ancestral inheritance.

‘Ca. Kryptonia’ is a motile heterotroph with a complete
tricarboxylic acid cycle and key metabolic enzymes for Embden–
Meyerhof glycolysis and the pentose phosphate pathway. We
found evidence for a complex oxidative phosphorylation pathway,
which points towards aerobic respiration (Fig. 4; Supplementary
Data 6). An elaborate and unique respiratory pathway for the
redox transformation of iron is encoded in the ‘Ca. Kryptonia’
genomes with similar, yet non-homologous components to the
well-characterized Mtr-like respiratory pathway30 (Supplementary
Fig. 8). Altogether, ‘Ca. Kryptonia’ has the machinery to carry out
ferric iron respiration under thermophilic conditions and likely
vies with archaeal community members to impact metal
biogeochemistry in these geothermal springs.

‘Ca. Kryptonia’ hosts the genomic potential for aromatic
hydrocarbon degradation via oxidation to catechol, and
subsequent catechol meta-cleavage (Fig. 4). Further, the
‘Ca. Kryptonium thompsoni’ genomes encode a putative gene
complement for the anaerobic degradation of aromatic amino
acids or similar compounds, notably represented by a
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with full gene information available in Supplementary Data 6.
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phenylacetyl-CoA oxidoreductase homologous to the hyperther-
mophilic archaeon Ferroglobus placidus31. This feature appears to
be the first example of an extremely thermophilic or
hyperthermophilic bacterium with the presumptive capacity to
completely mineralize aromatic compounds, and holds
biotechnological potential as well as implications for carbon
cycling within geothermal springs32.

Unexpected metabolic deficiencies identified in ‘Ca. Kryptonia’.
An unexpected observation was that all ‘Ca. Kryptonia’ genomes
had conspicuous nutritional deficiencies, displaying gene loss for
many biosynthetic pathways, including thiamine, biotin
and amino acids, such as the evolutionarily conserved histidine
biosynthesis33 (Fig. 4; Supplementary Data 6). While obligately
host-dependent microbes and some free-living organisms with
reduced genomes are known to omit a suite of anabolic
pathways34,35, the ‘Ca. Kryptonia’ genomes do not appear to
have signatures of either lifestyle. An analysis of 759 high-quality
FCB superphylum genomes indicate the near-complete
‘Ca. Kryptonia’ genomes are distinct from free-living microbes
in terms of amino acid pathway coverage and genome size, yet are
not highly reduced compared with obligate symbionts
(Supplementary Fig. 9). These findings suggest that
‘Ca. Kryptonia’ has potentially evolved functional dependency
on other microbes to acquire necessary metabolic requirements.

To explore the existence of possible microbial partners, we
performed a co-occurrence analysis of SSU rRNA sequences
retrieved through their targeted assembly from an expanded set of
22 geothermal springs metagenomes (Supplementary Note 3;
Supplementary Table 5). An analysis of co-occurrence patterns
for clusters of taxonomically coherent groups (clustered at 90%
sequence identity) revealed a subset of taxonomically clustered
groups (phylotypes) highly correlated with the abundance of ‘Ca.
Kryptonia’ (Supplementary Table 6). These clusters included an
Armatimonadetes lineage, which had the highest correlation
value, three separate lineages of Chloroflexi, and Thermus spp.
(Fig. 5). For the twelve metagenomes in which ‘Ca. Kryptonia’s’
SSU rRNA was reconstructed, the Armatimonadetes lineage was
found to co-occur in seven of those metagenomes at
similar sequence coverage to the ‘Ca. Kryptonia’ genomes, and
was conspicuously absent across all other metagenomes surveyed.
To explore the potential of the Armatimonadetes lineage
to complement the metabolic deficiencies identified in
‘Ca. Kryptonia,’ we reconstructed three nearly complete genomes
of Armatimonadetes (Fig. 2; Supplementary Table 3;
Supplementary Data 7) to infer metabolic potential and
signatures of possible metabolic exchange and interaction.
Analysis of the reconstructed genomes identified metabolic
features complementary to those of ‘Ca. Kryptonia,’ such as
histidine, cysteine and methionine, proline, aspartic acid, and
thiamine biosynthesis, and degradation of pentoses (Fig. 5b;
Supplementary Note 4; Supplementary Data 7). Furthermore, in
the reconstructed Armatimonadetes genomes we also identified a
CsgG family protein, which forms transmembrane channels for
secretion of ‘functional amyloids,’ a class of bacterial proteins
capable of assembling highly stable fibres through a nucleation–
precipitation mechanism36. ‘Functional amyloids’ play major
roles in adhesion to surfaces and biofilm formation in diverse
bacteria including Escherichia coli, Caulobacter crescentus and
Bacillus subtilis37. Further, the CsgG-like transporter was
located in a six-gene conserved cluster containing a predicted
subtilase-family peptidase and a putative secreted protein with
four copies of a ‘carboxypeptidase regulatory-like domain’
(Pfam13620) (Supplementary Fig. 10). This domain is a
member of the transthyretin clan and has been found to form
amyloid in physiological conditions38. We hypothesize that this

cluster in the Armatimonadetes genomes encodes for synthesis,
secretion and assembly of ‘functional amyloid,’ in which other
members of the community may be embedded. On the other
hand, the ‘Ca. Kryptonia’ genomes encode many proteases and
peptidases, which may be responsible for remodelling and
digestion of this extracellular matrix.

Other co-occurring lineages with ‘Ca. Kryptonia’ include the
Thermus spp. cluster (Supplementary Table 6). Interestingly,
‘Ca. Kryptonia’ might complement an incomplete denitrification
pathway in Thermus spp., which may be responsible for high
rates of nitrous oxide production39,40. Thermus spp. have been
experimentally characterized to reduce nitrate to nitrous oxide
but lack the capacity to subsequently produce dinitrogen39,40.
‘Ca. Kryptonia’ encodes a nitrous oxide reductase (EC 1.7.2.4)
but lacks other components of the denitrification pathway
(Supplementary Note 5; Supplementary Table 7). Taken
together, we hypothesize that ‘Ca. Kryptonia’ may participate in
a partnership with other organisms, such as the
Armatimonadetes, or might interact with a broader consortium
of microbes within the geothermal spring environment.

Discussion
A comprehensive survey of a global set of assembled metage-
nomic data for novel microbial lineages has resulted in the
discovery of a new bacterial candidate phylum in geothermal
springs. The high-quality draft genome assemblies enabled by
complementary approaches from metagenomic data and
single-cell genomics data for ‘Ca. Kryptonia’ faciliated
delineation of the host–virus interaction across geographically
distant sites. Further, we observed a novel fusion between two
different CRISPR-Cas types, representing the first report of a type
I-B/type III-A CRISPR-Cas fusion and expanded the known
genetic diversity of CRISPR-Cas loci.

The metabolic capacity for ‘Ca. Kryptonia’ provides evidence for
a unique heterotrophic lifestyle with the putative capacity for iron
respiration within a consistent ecological niche in geothermal
springs. An unexpected observation was that all ‘Ca. Kryptonia’
genomes had conspicuous nutritional deficiencies, which led to the
hypothesis of a microbial partnership or interaction with a broader
consortium of microbes. Subsequent genome reconstruction of
genomes from a co-occurring Armatimonadetes lineage indicated
potential complementarity for those metabolic features presumably
absent in ‘Ca. Kryptonia.’ It is well recognized that certain marine
microbes, such as SAR11 (ref. 41) and SAR86 (ref. 42), lack a
variety of anabolic pathways and likely rely on other microbial
community members to supplement their requirements. Within
geothermal springs, the growth of chlorophototroph Ca.
Chloracidobacterium thermophilum in the laboratory was shown
to depend upon two heterotrophs, Anoxybacillus and Meiothermus
spp., because of the lack of biosynthetic pathways for branched-
chain amino acids, lysine and cobalamin43. Our study suggests that
dependency on other organisms within the geothermal spring
community might be a more common occurrence than previously
appreciated, perhaps contributing to challenges in obtaining many
of these lineages as isolated monocultures. Future efforts to
delineate this hypothesized interaction, particularly utilizing
microscopy methods to visualize these uncultivated cells in situ,
will further contribute to our understanding of ‘Ca. Kryptonia’ and
its role within the environment.

Geothermal springs have been heavily surveyed as a rich source
of novel microbial branches on the tree of life18,44, yet our results
indicate that additional phylogenetic novelty has yet to be
captured from these environments. The discovery of a new
candidate phylum emphasize that extraordinary microbial
novelty is likely still awaiting discovery using the vast
metagenomic data assembled from locations sampled globally.
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Methods
Metagenomes. All publicly available metagenome data sets from IMG/M were
used in the study (data accessed on 8 September 2014) (ref. 14). The metagenomes
can be accessed at http://img.jgi.doe.gov and associated metadata can be found in
the GOLD database at http://genomesonline.org.

Metagenomic binning. Tetranucleotide-based binning methods were imple-
mented as previously described to recover near-complete genomes from meta-
genomes45. Both single metagenomes and combined metagenome assemblies were
used to recruit additional contigs that harboured the same tetranucleotide
signature, and the raw reads were subsequently re-assembled using SPAdes version
3.1.0 (ref. 46).

SAG generation. Sediment samples were collected from Dewar Creek hot spring
(49.9543667�, � 116.5155000�) near the source of the hot spring on 28 September
2012, from the Jinze pool (25.44138�, 98.46004�) on 12 August 2012, and from the
Gongxiaoshe pool (25.44012�, 98.44081�) on 9 August 2011. Samples were mixed
with 4% dimethylsulphoxide in TE buffer (1 mM EDTA, 10 mM Tris) for
cryopreservation and stored at � 80 �C within 24 hours of sample collection. Single
cells were isolated using fluorescence-activated cell sorting, lysed and subjected to
WGA as previously described9 with the following modifications: the alkaline
lysis was preceded by a 20 min digest with lysozyme (Epicentre) at 30 �C; WGA
was performed with a REPLI-g Single Cell Kit (Qiagen) with a scaled-down
reaction volume of 2 ml; and the amplification reaction was incubated for 6 h at
30 �C. WGA reactions were diluted 10-fold, then aliquots were further diluted
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Figure 5 | Co-occurrence patterns and metabolic complementarity with ‘Ca. Kryptonia.’ (a) Spearman-rank correlation values were calculated based on

reconstructed SSU rRNA sequences across 22 geothermal spring metagenomes, and led to the identification of a cluster of highly correlated phylotypes

with ‘Ca. Kryptonia.’ Armatimonadetes (cluster 3107) had the highest correlation value (r¼0.82) with ‘Ca. Kryptonia.’ (b) Biosynthetic pathways present in

the Armatimonadetes genome which complement missing components in ‘Ca. Kryptonia.’ Full gene information for the Armatimonadetes genome is available

in Supplementary Data 7. Each arrow represents an enzymatic component of the biosynthetic pathways; arrows highlighted in blue are contributed by the

Armatimonadetes, while arrows highlighted in dark orange are contributed by ‘Ca. Kryptonia.’ Black arrows indicate enzyme was not recovered in either.
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200-fold for PCR screening targeting the V6–V8 regions (forward primer: 926wF
(GAAACTYAAAKGAATTGRCGG) and reverse primer: 1392R (ACGGGCG
GTGTGTRC)) of the SSU rRNA using a QuantiNova SYBR Green PCR kit
(Qiagen) for 45 cycles of amplification9. PCR products were purified and
sequenced, and SAGs matching ‘Ca. Kryptonia’ SSU rRNA sequences were selected
for shotgun sequencing.

SAG sequencing, assembly and QC. Draft genomes for the eighteen SAGs were
generated at the DOE Joint Genome Institute (JGI) using the Illumina MiSeq
technology according to standard protocols (http://www.jgi.doe.gov/). Assembly
was performed using SPAdes version 3.1.0 (ref. 46) using the -sc flag to denote
MDA-derived data to account for uneven coverage of the single-cell genomes.
Quality control and contaminant removal from the resultant assemblies was
achieved using a two-step process. First, all assembled reads were used as input for
a newly developed single-cell decontamination method (ProDeGe) (ref. 47), which
uses both taxonomic and k-mer-based decisions to flag putative non-target contigs.
Since the taxonomic information was limited to phylum-level designations, we
further supplemented this procedure with direct mapping to the GFM data. For
mapping, a combination of blast and blat were implemented to validate correct
recruitment of the assembled SAG contigs to ‘Ca. Kryptonia’-specific GFM
scaffolds. This method was important for retaining CRISPR/Cas genetic regions
since ProDeGe had the tendency to flag these contigs based on divergent k-mer
frequencies. Gene annotation was performed within the Integrated Microbial
Genomes (IMG) platform developed by the DOE Joint Genome Institute14.

SSU rRNA phylogeny. Full-length SSU rRNA gene sequences from ‘Ca. Kryp-
tonia’ were aligned using the SINA aligner (ref. 15) to a comprehensive database of
references (SILVA-NR version 119) (ref. 16). A total of 187 full-length bacterial
and archaeal reference sequences were selected based on taxonomic breadth from
the SILVA database, and 1,354 distinct alignment patterns were used, and filtered
using the E. coli positional mask. A maximum likelihood tree was calculated from
the masked alignments with 100 bootstrap resamplings using the Generalized
Time-Reversible model with Gþ I options in RAxML version 7.6.3 (raxmlHPC-
PTHREADS-SSE3 -f a -x 12345 -p 12345 -# 100 -T 5 -m GTRGAMMAI) (ref. 48).
To resolve placement within the FCB superphylum, a subset of 77 FCB
superphylum members and 37 archaeal reference sequences were selected based on
broad taxonomic representation within the FCB superphylum and phylogenies
constructed using two separate algorithms with the GTRþGþ I model: maximum
likelihood (RAxML (ref. 48)) and Bayesian inference (MrBayes (ref. 49)). Node
stability was evaluated using a rapid bootstrapping analysis (RAxML, 100 runs) and
posterior probabilities (MrBayes, 2.4 million generations, burnin of 25%).
Alignments and phylogenetic trees are available in Supplementary Data 8 and 9,
respectively.

Microscopy. An oligonucleotide probe specific for ‘Ca. Kryptonia’ (Kryp56;
50-CCGTGTCCCTGACTTGCA-30) was designed in ARB (version 6.0.2) (ref. 50).
The probe is a perfect match to 19 out of the 22 ‘Ca. Kryptonia’ SSU rRNA gene
sequences recovered in this study, and contains two or more mismatches to all SSU
rRNA gene sequences in the SILVA-NR database (version 123) (ref. 16). The probe
sequence was synthesized by Biomers.net (Ulm, Germany) with horseradish
peroxidase conjugated to the 5’ end. Cells from Dewar Creek sediment were
separated from particulates by brief vortexing followed by centrifugation (30 s,
1,300g). Suspended cells were preserved with 4% dimethylsulphoxide and stored at
� 80 �C. The cells were permeabilized with lysozyme (10 mg ml� 1 in TE buffer
(1 mM EDTA, 10 mM Tris)) for 1 h at 37 �C and catalysed reporter deposition
FISH (CARD-FISH) was performed based on the protocol of Pernthaler et al.51

Hybridization was carried out at 46 �C with 20% formamide, and the amplification
was performed with tyramides conjugated to Alexa 488 (Life Technologies,
#T20948). The optimal formamide concentration and specificity was predicted
using mathFISH (ref. 52) and the DECIPHER ProbeMelt tool (ref. 53)
(Supplementary Data 10), and confirmed empirically by performing CARD-FISH
on the Dewar Creek cells over a gradient of formamide concentrations (10–35%).
Samples were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) in
VECTASHEILD Antifade Mounting Media (Vector Laboratories, #H-1200). Cells
were visualized and imaged using a Leica DM6000B microscope using a HCX PL
APO � 100 oil immersion objective.

Conserved single-copy and housekeeping gene phylogenetic inference. A set
of 56 universally conserved single-copy proteins in the Bacteria and Archaea was
used for phylogenetic inference (Supplementary Data 11). Marker genes were
detected and aligned with hmmsearch and hmmalign included in HMMER3
(ref. 54) using HMM profiles obtained from phylosift (http://phylosift.wordpress.
com/)55. Alignments were concatenated and filtered56. Housekeeping genes were
aligned using MAFFT with mafft-linsi option57. Best substitution model was
selected using prottest58. Phylogeny was inferred using maximum likelihood
methods with RAxML (version 7.6.3) (ref. 48). Tree topologies were tested for
robustness using 100 bootstrap replicates with the LGþ IþG model (raxmlHPC-
PTHREADS-SSE3 -f a -x 12345 -p 12345 -# 100 -m PROTGAMMALG -T 5).
Trees were visualized using Dendroscope59. The concatenated protein alignment
and phylogenetic tree are available in Supplementary Data 12 and 13, respectively.

Phylogenetic distribution of predicted proteins. The taxonomic distribution of
all proteins across the GFM data along with the ‘Ca. Kryptonia’ SAGs was compiled
based on best matches to a comprehensive protein database of high-quality non-
redundant bacterial and archaeal isolate genomes14. This search was performed
using USEARCH (version 7.0) (ref. 60), where a protein match was considered for
proteins with Z30% sequence identity across Z50% of the query alignment length.
Phylogenetic affiliation at the phylum level was assigned for top matches, while
proteins lacking a match according to the above criteria were noted as ‘no match.’

Biogeography of ‘Ca. Kryptonia’. All genomic data for ‘Ca. Kryptonia’ was
searched against the assembled metagenomic data from 4,290 environmental
samples using blat with the -fastMap option (ref. 61). Significant matches for non-
ribosomal genomic regions were considered for sequences Z250 bp in length and
with Z75% identity threshold. For metagenomic contigs mapping to the ribosomal
operon, a 97% identity threshold was used to capture only high-quality matches to
‘Ca. Kryptonia.’ Visualization of metagenomic matches globally was performed
using the R package ‘maps’ (ref. 62). All genomic matches can be found in
Supplementary Data 4.

CRISPR-Cas locus type determination. We used 99 CRISPR-associated (cas)
gene sequence alignments and hidden Markov models from the TIGRFAM
database (originally built by Haft et al.63 and later expanded by Zhang et al.64) to
precisely find and identify Cas family members within the scaffolds of the ‘Ca.
Kryptonia’ genomes. We recovered and classified the corresponding CRISPR type
for complete and partial CRISPR-Cas loci in all genomes following the unified
CRISPR classification from 2011 (ref. 65).

CRISPR repeat-spacer arrays analysis. The CRISPR Recognition Tool (CRT)
(ref. 66) was used to detect CRISPR repeat-spacer regions across all ‘Ca. Kryptonia’
assembled scaffolds using parameters according to the JGI’s annotation pipeline67.
In the case of ‘Ca. Thermokryptus mobilis’ GFM JGI-1, we were unable to detect
spacers, and therefore we additionally used the CRISPR assembler algorithm
(Crass) (ref. 68) on the raw reads. Spacers were manually curated to cull false
positives from the data set that clearly did not represent authentic spacer regions
(in sum, 38 false positives). Potentially active repeat-spacer arrays were inferred
based on direct association with a cas gene locus. We also considered the isolated
repeat-spacers arrays when they shared the same repeat sequence with associated
cas genes. CRISPRmap (refs 69,70) was used to further characterize identified
repeat regions. From a total of 1,031 trusted spacers, we next clustered these into
795 groups based on identity Z90% over the whole spacer length. Spacer groups
were BLAST queried against distinct databases including ‘Ca. Kryptonia’ genomes,
reference public plasmid and viral data sets (from NCBI), and across the broad
available metagenomic space (IMG/M).

SSU rRNA gene assembly and co-occurrence analysis. Raw reads aligning to
16S and 18S rRNAs were collected for 22 metagenomes (Supplementary Table 5)
from geothermal environments using hmmalign (ref. 54) against hmm models
representing bacterial, archaeal and eukaryotic sequences67 and also by BBMap
with default settings71 against sequences from the SILVA database (version 119)
(ref. 16) dereplicated at 95% identity using UCLUST (ref. 60). Collected paired-end
Illumina reads were merged using BBMerge (ref. 71) and assembled using Newbler
(v. 2.8) (ref. 72) with -ml 60 -mi 99 -rip options. Resulting contigs and scaffolds
were screened using cmalign from Infernal 1.1 package (ref. 73) and Rfam 16S and
18S rRNA models (RF00177.cm, RF01959.cm and RF01960.cm) (ref. 74). 16S and
18S rRNA sequences longer than 300 nt were retained and trimmed using cmalign
against the best-matching model with the -matchonly option to remove introns.
Reference sequences from the SILVA database were trimmed using cmalign with a
domain-specific model and -matchonly option, and clustered together with 16S
sequences extracted from shotgun metagenome data using UCLUST and percent
identity cutoffs of 94, 92 and 90%. Clusters including sequences from at least two
metagenome samples were retained and their abundances in metagenome samples
were computed by multiplying the length of SSU rRNA sequence by the average
coverage. Taxonomy was assigned to the clusters as last common ancestor of
SILVA reference sequences included in the cluster, or as last common ancestor of
SILVA sequences in the larger cluster obtained by co-clustering SILVA and
metagenome sequences at 83% identity. Spearman’s rank-order correlation of
cluster abundances was used to estimate co-occurrence of the clusters in
metagenome data.
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