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Abstract: Over the past few decades, nanoparticles of iron oxide Fe3O4 (magnetite) gained significant
attention in both basic studies and many practical applications. Their unique properties such as
superparamagnetism, low toxicity, synthesis simplicity, high surface area to volume ratio, simple
separation methodology by an external magnetic field, and renewability are the reasons for their
successful utilisation in environmental remediation, biomedical, and agricultural applications. More-
over, the magnetite surface modification enables the successful binding of various analytes. In this
work, we discuss the usage of core–shell nanoparticles and nanocomposites based on Fe3O4 for
the modification of the GC electrode surface. Furthermore, this review focuses on the heavy metal
ions electrochemical detection using Fe3O4-based nanoparticles-modified electrodes. Moreover, the
most frequently used electrochemical methods, such as differential pulse anodic stripping voltamme-
try and measurement conditions, including deposition potential, deposition time, and electrolyte
selection, are discussed.

Keywords: magnetite nanoparticles; Fe3O4; electrode modification; electrochemical sensor; heavy
metal ions detection

1. Introduction

Nanotechnology has become a popular and rapidly developing field of science and
industry since Nobel Prize winner R.P. Feynman’s breakthrough in 1959 [1]. A series of
nanomaterials has been attracting researchers’ attention due to the significant features of
these materials, such as excellent electrical, optical, magnetic, and catalytic properties [2].
The properties and potential applications of nanoparticles depend on their phases, sizes,
and morphologies [3].

Recently, nanomaterials with magnetic properties, especially those comprising iron
oxide Fe3O4, have gained considerable popularity. Magnetite (Fe3O4) nanoparticles have
been widely used in many fields because of their unique electric and magnetic properties.
Fe3O4 nanomaterials are found in many important applications in industrial areas, such as
lithium-ion batteries [4,5], catalytic sorption [6], microwave absorption [7,8], and photocat-
alytic degradation [9–11]. Furthermore, magnetite-based nanocomposites are extensively
used in biomedicine, in particular the photothermal killing of breast cancer cells [12], cell
targeting and sorting, drug delivery vehicles [13,14], magnetic resonance [15,16], and fluo-
rescence imaging [17]. Due to the increasing environmental pollution from heavy metals,
nanomaterials based on magnetite are widely applied in environmental protection as metal
ion adsorbents for metal ions remediation [18,19].

Magnetic Fe3O4 nanoparticles have been used as a basis for the development of many
synthesis methods. There are plenty of Fe3O4 synthesis methods, including coprecipitation,
sonochemical reaction, hydrothermal reaction, microemulsion and sol-gel synthesis, and
cathodic electrochemical deposition [14,20–23]. Interestingly, an important characteristic of
nanomagnetite is its surface modification ability, which increases its applicability [24]. The
majority of synthesis methods are simple and quick in preparation. Furthermore, there are
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many synthetic methods that can be used to obtain different nanoparticle sizes [24–28] and
shapes [28–30]. Nanomagnetite can be obtained in various sizes and shapes, including the
most popular spherical nanoparticles and in cuboids, octahedrons, plates, tetrahedrons,
concaves, octapods, multibranches, and nanorods [31–34]. Fe3O4 nanoparticles are the
basic material for subsequent surface modifications creating core–shell structures, which
affect the further extension of their applications in many fields.

To the authors’ knowledge, the very first paper covering Fe3O4 was published in
1916 by the Americans, Sosman and Hostetter, and focused on iron oxides in general [35].
Over the next few decades, several articles appeared each year. Since the 1990s, we have
observed a growing interest in nanomagnetites. The highest number of publications in the
field with “Fe3O4” in the title appeared in 2020, totalling 1930 papers (Figure 1).
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using the Scopus base.

The data presented in Figure 1 shows the popularity of Fe3O4 and its dynamics as a
topic of publication, especially during the most recent years. Additionally, composites based
on Fe3O4 are used in many fields of science and industry, including magnetic separation,
magnetic catalysis, environmental treatment, food analysis, target drug delivery systems,
biosensors, magnetic resonance imagining, hyperthermia, and tissue engineering [36].

There are plenty of magnetite nanoparticles and hybrid structures used in the elec-
trochemical detection of heavy metal ions providing an excellent basis for further func-
tionalisation. The surface of Fe3O4 nanoparticles can be combined with nanoparticles
of other metals (Au [37]); oxides (SiO2 [38,39] and TiO2 [40]) and additional conductive
materials (GO [41]); complicated, organic functional groups (dendrimers [42] and poly-
mers [43]); and biological particles fragments (DNA [44]). Fe3O4-based nanomaterials
possess a high adsorption capacity, which makes them suitable for the electrochemical
detection of metals [45].

The Fe3O4 nanoparticles are easy to oxidise and aggregate, which results in their low
magnetic properties [46]; therefore, there is a need to coat bare nanomagnetite with polymer
or inorganic shells. Additionally, the modification can increase the biocompatibility of
these material [47].

In this work, we describe the recently published applications of a variety of function-
alised Fe3O4 nanoparticles to electrode surface modifications to create a sensor for heavy
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metal ions. We discuss the preparation procedure of GCE for a sensor and the methods
of electrode modification using Fe3O4 nanoparticles. We also present the most frequently
used electrochemical techniques with their characteristic measurement parameters. Finally,
we present a performance comparison of the recently developed heavy metal ion sensors.

2. Nano-Fe3O4 as Electrode Modifiers

Based on several decades of intensive research, Fe3O4 has become one of the best
characterised metal oxides. Its cubic crystallographic system contains both Fe3+ and Fe2+

ions. Fe3O4 is a black solid with a density of 5.18 g·cm−3, Mohs hardness of 5, melting point
range of 1583–1597 ◦C, and boiling point of 2623 ◦C. Its characteristic magnetic feature is
the ferrimagnetism at room temperature and Neel (Curie) temperature of 850 ◦C [48].

In the past few years, Fe3O4 nanoparticles have become a focus of interest for nu-
merous scientific groups. In the nano range (in diameter from 1 to 100 nm) smaller than
6 nm, magnetite particles indicate superparamagnetic properties, although their magnetic
features strongly depend on the synthesis method [49]. Based on the gathered evidence, the
nanomagnetites in most applications show the best characteristics in the range of 10–20 nm.
Decreasing the nanoparticles’ size leads to an increase in the specific surface. Furthermore,
the nanoparticles’ size strongly influences their magnetic moment and reaction to the
magnetic field and depends on their size and shape [50]. Electrochemistry, and electrode
modifications for the generation of a highly sensitive sensor, is one of the most rapidly
developing fields of science. Electrochemical sensing is focused on the development of
new electrode materials with better properties compared to commercial electrodes. The
perfect sensor should exhibit a signal output proportional to the number of target species,
high selectivity, sensitivity, repeatability, and rapid response [50].

Nanomagnetite has been widely employed as a promising modifier due to its unique
properties, low-cost, easy preparation, non-toxicity, excellent absorption capacity, catalytic
properties, and inherent electrical conductivity [51]. The electrochemical performance of an
electrode is closely related to the absorption capacity and the conductivity of the modified
material. The imposition of Fe3O4 nanocomposites on the electrode surface causes the
enhancement of the electrode area, enhancement of the rate of mass and electron transfer,
improved selectivity and sensitivity, and, most importantly, increased response to the noise
ratio [50]. Furthermore, Fe3O4-based electrochemical detection systems are characterised
by small dimensions, costlessness, sensitivity, flexibility, and quickness in use [52]. The
advantages of Fe3O4 usage as an electro-sensor are described in Figure 2.
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3. Recent Electrode Modifications with Magnetic Nanoparticles to Heavy Metal
Ions Detection

The glassy carbon (GC) electrode is the most commonly used electrode for electroana-
lytical purposes due to its unique electrical conductivity, chemical stability, biocompatibility,
and wide potential range and extremely low gas permeability [53]. Therefore, the GC elec-
trode is an excellent material for modification to obtain a stable surface used as a biosensor.
First of all, sensor development requires proper preparation of the electrode for further
modification. Before each modification, the GC electrode usually needs to be polished
to a shiny, mirror-like surface with wet alumina slurry—Al2O3 powder of different sizes,
1.0 µm, 0.3 µm, and 0.05 µm, using a polishing cloth and rinsing with water. Then, succes-
sive washing or sonications in absolute ethanol and ultrapure water are usually conducted,
sometimes in a 1:1 (v/v) HNO3 solution, lasting at least a few minutes each [54]. Sub-
sequently, the electrode surface is dried with nitrogen or at room temperature, and the
electrode is ready for further use. As an exception, Miao et al. started the modification
with GCE soaking in piranha solution (98% H2SO4:30% H2O2 = 3:1) for about 5 min to
remove any adsorbed materials [44].

A homogeneous suspension of nanoparticles is necessary to modify the electrode,
most often by sonication in deionized water, absolute ethanol, and sometimes an ethanol
solution containing 0.25 wt% Nafion® [55] or IPA [56], or DMF [57] in a concentration of
1 mg/mL. Ultrasonic bath sonication lasts from 5 min to 2 h, but most often 30 min or until
a uniform suspension is obtained. The most common method of electrode modification
is drop-casting while the nanoparticles’ suspension is pipped on the electrode surface
(Figure 3) [58]. The amount of applied nanoparticles depends on the active surface of the
working electrode. After the modification, the electrode was dried at room temperature
until the solvent completely evaporated, which usually takes from several minutes to a few
hours. A different approach was presented by Kong et al., where 6 mL of Fe3O4@PANI
nanoparticles suspension was pipetted onto an electrode, and after drying at 4 ◦C in a
refrigerator, the electrode was coated with 3 mL of Nafion® solution (0.5 wt%) [59]. More-
over, Wang et al. created an unconventional sensor by adding the Fe3O4@PDA@MnO2 NPs
homogenous suspension to the HCl solution (pH 3.0) with various concentrations of Pb2+.
Then, nanoparticles with already adsorbed Pb2+ ions were completely transferred onto
the mGCE for immediate electrochemical measurements (Figure 3) [60]. Recent findings
concerning heavy metal ion detection with the GC electrode modified using Fe3O4-based
nanocomposites are presented in Table 1. The authors focused only on reports published
in the last 5 years related to heavy metal ions’ electrochemical analysis of GC electrodes
modified with Fe3O4-based nanocomposites (Table 1).

Table 1. Selected studies on Fe3O4 nanoparticles in electrochemical sensors for heavy metal ions detection.

Electrode Method Analyte
Detection limit

Ref
Published Converted

Fe3O4@citrate/GCE DPASV, CV Pb2+ 0.0061 µg·L−1 300 nM [56]

Fe3O4/Bi2O3/C3N4/GCE SWASV
Cd2+ 3 × 10−9 mol·L−1 3 nM

[61]
Pb2+ 1 × 10−9 mol·L−1 1 nM

Fe3O4@PDA@MnO2/mGCE DPVSV Pb2+ 0.03 µg·L−1 0.14 nM [60]

Fe3O4/F-MWCNTs/GCE SWASV

Cd2+ 0.05 nM 0.05 nM

[62]
Pb2+ 0.08 nM 0.08 nM

Cu2+ 0.02 nM 0.02 nM

Hg2+ 0.05 nM 0.05 nM

Fe3O4/MWCNTs/LSG/CS/GCE SWASV
Cd2+ 0.1 µg·L−1 0.9 nM

[63]
Pb2+ 0.07 µg·L−1 0.3 nM
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Table 1. Cont.

Electrode Method Analyte
Detection limit

Ref
Published Converted

Fe3O4/SiO2/CS/Nafion/GCE DPASV Cu2+ 5 nmol·L−1 5 nM [55]

GCE/GO/Fe3O4@PMDA/AuNPs SWASV
As3+ 0.15 ppb 2 nM

[64]
Cu2+ 0.11 ppb 2.4 nM

Fe3O4@PANI/MGCE DPASV
Cd2+ 0.3 nmol·L−1 0.3 nM

[59]
Pb2+ 0.03 nmol·L−1 0.03 nM

Fe3O4/F-MWCNTs/GCE SWASV

Cd2+ 0.014 µM 14 nM

[65]

Pb2+ 0.0084 µM 8.4 nM

Hg2+ 0.0039 µM 3.9 nM

Zn2+ 0.012 µM 12 nM

Cu2+ 0.0053 µM 5.3 nM

GO@Fe3O4@2-CBT/GCE SWASV
Cd2+ 0.03 ng·mL−1 0.27 nM

[66]
Pb2+ 0.02 ng·mL−1 0.1 nM

Fe3O4/GCE SWASV

Pb2+ 0.119 µM 119 nM

[54]
Cd2+ 0.154 µM 154 nM

Hg2+ 0.0839 µM 83.9 nM

Cu2+ 0.0765 µM 76.5 nM

DNA/Fe3O4@Au/MGCE SWV
Ag+ 3.4 nM 3.4 nM [44]

Hg2+ 1.7 nM 1.7 nM

Fe3O4@C/GCE SWASV

Cd2+ 40.9 nM 40.9 nM

[57]

Pb2+ 20.7 nM 20.7 nM

Cu2+ 79.3 nM 79.3 nM

NH2-Fe3O4@C/GCE SWASV

Cd2+ 23.1 nM 23.1 nM

Pb2+ 28.5 nM 28.5 nM

Cu2+ 38.4 nM 38.4 nM

Fe3O4/GN/GE/GCE SWASV Pb2+ 0.0123 pM 0.0123 pM [67]

TA/Fe3O4/GCE SWASV

Pb2+ 0.04 µM 40 nM

[68]Hg2+ 0.3 µM 300 nM

Cd2+ 0.2 µM 200 nM

GSH@Fe3O4/MGCE SWASV
Pb2+ 0.182 µg·L−1 0.9 nM

[69]
Cd2+ 0.172 µg·L−1 1.5 nM

Electrochemical techniques, especially voltammetry, include electroanalytical methods
for the determination of one or more analytes by measuring the current as a function of the
potential. There are a few component techniques used to obtain information on the analyte,
including CV, DPV, SWV, and stripping voltammetry [70]. Voltammetric techniques are
widely used in heavy metal ions detection due to their precision and sensitivity. The most
frequently chosen are DPV or alternative SWV techniques (Table 1.) due to their high
sensitivity and lower detection limits, which are suitable for trace level analysis. However,
square wave voltammetry is preferable for obtaining the response rate. The most frequently
used method for quantitative analysis is stripping voltammetry. There are two types of
stripping voltammetry, ASV and CSV, depending on the chosen concentration potential [71].
The two steps of stripping analysis include analyte deposition at the electrode surface (or in
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its volume, e.g., HDME [72]) and analyte quantification by potential sweeping [73]. During
stripping experiments, a certain voltage is applied to the GC electrode to reduce the metal
ions on the electrode surface into the elemental metal, following which linear voltammetry
is performed from negative to positive to oxidate the preconcentrated metal back into ions
(Figure 3). The ions detection is determined according to the oxidation current produced
by the process. According to the literature, the ions detection mechanism can be illustrated
with the following equations (M, metal; n, number of exchanged electrons) (Figure 3) [59]:

ne− + Mn+ →M0 (1)

M0 →Mn+ + ne− (2)
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Figure 3. Schematic visualisation of the sensor development and heavy metal ions electrochemical
detection.

In the stripping analysis, the most significant parameters are potential and time of
accumulation. Deposition potential should be slightly lower than the oxidation potentials of
analytes. Obviously, each experiment is preceded by the optimisation of the measurement
conditions. Nevertheless, in the case of metal ions, the anodic range with an optimum
potential of −1.2 V, and sometimes lower to −1.4 V, is most commonly used [65,69]. More-
over, with an accumulation potential more negative than −1.2 V, a decrease in the current
intensity was observed (Figure 4) [66]. The current intensity weakening can be attributed to
the H2 evolution that deteriorates the working electrode surface activity [64,68].
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and Hg2+ presented by Pu et al. [61] (A), Xu et al. [63] (B), Wei et al. [55] (C), Dahaghin et al. [66] (D), Deshmukh et al. [68] (E),
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The metal ions’ electro-reduction time on the electrode surface starts from 120 s and
reaches up to 480 s (Figure 5) [54,60]. However, the most common concentration time is
within 180 s. For example, Pu et al. examined the effect of accumulation times within
the range of 180 s to 420 s and observed that the peak currents of Cd2+ and Pb2+ increase
linearly as the deposition time increases from 180 s to 300 s, after which the peak currents
achieved plateau. Consequently, the deposition time of 300 s was used in all subsequent
experiments [61]. This is caused by the saturation of selective sites on the electrode surface
with the ions. Because of this phenomenon, the electrode surface does not tend to absorb
more species [64].

Additionally, after the stripping experiment, Fan et al., Wu et al., and Pu et al. in-
troduced heavy metal ions oxidation in the measurement method to remove the residual
metals and clean the electrode surface by applying the desorption potential: 0.9 V for 150 s,
1.0 V for 210 s, and 0.2 V for 120 s [54,61,62].

Another extremely important parameter optimised during the analysis of metal ions is
the selection of an appropriate electrolyte. The selection of a suitable supporting electrolyte
and its pH guarantees the achievement of excellent electrochemical responses as well-
formed, high-intensity current peaks. The electrolyte type affects the formation of various
metals’ peaks (Figure 6). In heavy metal ions analysis, 0.1 M NaNO3 [56], 1 M HCl [60],
and PBS [55] were selected, but a 0.1 M acetate buffer solution NaAc/HAc was the most
commonly used and delivered the best results. The highest and best-defined peaks of metal
ions are observed in the acetate buffer (Figure 6). The explanation of this phenomenon is
complex and affected by many factors. Firstly, different electrodes may exhibit different
electrochemical properties in the same electrolyte because an electrical double-layer is
formed on the electrode as a result of an interaction between the cations or anions present in
the solution. The double-layer model is described by many papers, including the Helmholtz,
Gouy–Chapman, and Stern–Grahame models [74–76]. The authors of this review suggest
that the increase of electrochemical signals of measured ions observed in the acetate buffer
solution (NaAc/HAc) is caused not only by the appropriate pH but also because the acetate
buffer enables the binding reaction as a result of intermolecular ion binding on the surface
of the Fe3O4-modified electrode. The acetate buffer enables the reduction of ions by the
intermolecular ion binding both the positively [55] and negatively charged species [69] and
due to their interaction with the organic ligand [66]. Additionally, the authors suggest that
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the hydroxyl groups in the carboxylic group of acetic acid serve as active sites to adsorb
heavy metal ions on the modified surface.
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tion by electrochemical methods presented by Pu et al. [61] (A), Wang et al. [60] (B), Xu et al. [63] (C),
Wei et al. [55] (D), Dahaghin et al. [66] (E), Deshmukh et al. [68] (F), and Baghayeri et al. [69] (G). All
Figures are adapted from references [55,60,61,63,66,68,69] with permission from Elsevier.
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Figure 6. Electrolyte selection in determination of Pb2+ and Cu2+, by Dahaghin et al. [66] (A), Pb2+ by Wei et al. [55] (B), and
Cd2+ and Pb2+ detection by Bagahayeri et al. [69] (C). All Figures are adapted from references [55,66,69] with permission
from Elsevier.

The pH value of the supporting electrolyte is the factor that inherently affects the
intensity of the peaks of metal ions. The optimisation of the pH value is usually carried out
in an acidic environment because above pH 7, the vast majority of metals form hydroxides,
with the highest probability in the range of pH 4 and 6. However, the peaks with the
highest intensity are obtained at pH 5 to 5.5 and less often within the range of pH 4 to 4.5.
Qureashi et al. described the formation of Pb2+ ions occurring in a solution depending on
the pH (Figure 7) [56].
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Figure 7 shows that Pb2+ ions dominate in an acidic medium with a pH lower than 6.
Subsequently, when the pH value increases to 8, the formation of a Pb(OH)+ complex
occurs, and with a further increase to pH 9, the Pb3OH4

2+ species is predominant. Pb(OH)2
shows maximum adsorption in a pH range from 9 to 11. The Pb(OH)3

– anionic complex
exists in a pH range higher than 12 [56]. Similar relationships can be presented for other
ions, for example Cd2+ [77] and Cu2+ [72].

Due to the ions species distribution, we can state that bi-positive ions adsorption
experiments should be performed below pH 7. At the same time, an extremely low pH
value may cause physiological changes in the Fe3O4 adsorbent. Based on these assumptions,
the optimal pH for heavy metal ions analysis is in the range of pH 4 to 6.

The presence of magnetic nanoparticles on the GC electrode surface increases the sen-
sor sensitivity even to the nano range. The electrode modification with bare Fe3O4 carried
out by Fan et al. resulted in the development of a sensor with a limit of detection range of
119 nM, 154 nM, 83.9 nM, and 76.5 nM for Pb2+, Cd2+, Hg2+, and Cu2+, respectively [54].
The presence of functional groups on the nanomagnetite surface or additional modifiers
increases the sensitivity even further. The highest sensitivity was reached by He et al.,
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who created an electrochemical sensor by the immobilisation of Fe3O4/GN composite
integrated with garlic extract (GE) onto the GC surface for the determination of Pb2+ in
wastewater. The sensor exhibited two dynamic linear ranges including 0.001 to 0.5 nM and
0.5 to 1000 nM with an excellent low detection limit of 0.0123 pM (S/N = 3) and quantifica-
tion limit (LOQ) of 0.41 pM (S/N = 10) [67]. A slightly lower sensitivity was obtained by
Wu et al. [62], Kong, et al. [59], Baghayeri et al. [69], Dahaghin et al. [66], and Hu et al. [63]
within tenths and hundredths of a nanomole for the variety of heavy metal ions. Among
those mentioned in Table 1, the detection limit remained at the highest level for the sensors
developed by Desmukh et al. They achieved LOD values in the range of 0.1, 0.05 µM, and
0.01 µM for individual analysis of Hg2+, Pb2+, and Cd2+ ions, respectively, whereas the
LOD values for the simultaneous analysis of these ions were found to be 0.3 µM, 0.04 µM,
and 0.2 µM, respectively, with the use of a sensor based on Fe3O4 nanoparticles capped
with terephthalic acid [68].

4. Conclusions and Perspectives

This review covers a general discussion of trace metal electrochemical sensors based
on the magnetic iron oxide, Fe3O4. Magnetite nanoparticles, which are a considerable part
of the world of nanomaterials, have gained extensive significance in many fields of science.
A multitude of applications has been progressed for the use of magnetite nanoparticles.
Thanks to their properties, these nanoparticles are successfully used in many fields of
chemistry, e.g., for remediation of contaminants using an external magnetic field, but are
mainly used as electrode modifiers in electrochemistry. Modifiers based on Fe3O4 were
used to create plenty of electrochemical sensors for various analytes detection, including
heavy metal ions. This overview of recently published articles indicates that the GCE
was the most commonly used conventional electrode surface for modification. However,
SWASV and DPASW were the most commonly used measurement techniques for the
detection of heavy metal ions.

In conclusion, the many possibilities and simplicity of the magnetite nanoparticles’
surface functionalisation provide the basis for the development of even more sensitive and
selective sensors for heavy metal ions detection in the future. We can expect a possible
development of commercial electrochemical sensors through the integration of standard
electrodes with Fe3O4-based nanoparticles.

The Fe3O4 nanoparticles’ properties and the possibility of surface functionalisation
are the foundation for obtaining new sensory platforms for a variety of analytes, not only
for heavy metal ions detection. This phenomenon not only creates an opportunity to use
nanomagnetite in many fields of chemistry but also in science in general.
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Abbreviations

2-CBT benzothiazole-2-carboxaldehyde
ASV anodic stripping voltammetry
CS chitosan
CSV cathodic stripping voltammetry
CV cyclic voltammetry
DMF N,N-Dimethylformamide
DPASV differential pulse anodic stripping voltammetry
DPV differential pulse voltammetry
F-MWCNTs fluorinated multi-walled carbon nanotubes
GCE glassy carbon electrode
GE garlic extract
GN graphene
GO graphene oxide
GSH glutathione
HDME hanging drop mercury electrode
IPA isopropyl alcohol
LOD limit of detection
LOQ limit of quantification
LSG laser scribed graphene
mGCE, MGCE magnetic glassy carbon electrode
MWCNTs multi-walled carbon nanotubes
NaAc/HAc acetate buffer solution
NPs nanoparticles
PANI polyaniline
PDA polydopamine
PMDA poly methyldopa
S/N signal to noise ratio
SWAdCSV square wave adsorptive cathodic stripping voltammetry
SWASV square wave anodic stripping voltammetry
SWV square wave voltammetry
TA terephthalic acid
PDA polydopamine
PMDA poly methyldopa
SWAdCSV square wave adsorptive cathodic stripping voltammetry
SWASV square wave anodic stripping voltammetry
TA terephthalic acid
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