Evaluation of ITS PCR and RFLP for Differentiation and Identification of Brewing Yeast and Brewery 'Wild' Yeast Contaminants

T. Pham¹, T. Wimalasena¹, W. G. Box¹, K. Koivuranta², E., Storgårds², K. A. Smart¹ and B. R. Gibson^{2,*}

ABSTRACT

J. Inst. Brew. 117(4), 556–568, 2011

A reference library of ITS PCR/RFLP profiles was collated and augmented to evaluate its potential for routine identification of domestic brewing yeast and known 'wild' yeast contaminants associated with wort, beer and brewing processes. This library contains information on band sizes generated by restriction digestion of the ribosomal RNA-encoding DNA (rDNA) internal transcribed spacer (ITS) region consisting of the 5.8 rRNA gene and two flanking regions (ITS1 and ITS2) with the endonucleases CfoI, HaeIII, HinfI and includes strains from 39 non-Saccharomyces yeast species as well as for brewing and non-brewing strains of Saccharomyces. The efficacy of the technique was assessed by isolation of 59 wild yeasts from industrial fermentation vessels and conditioning tanks and by matching their ITS amplicon sizes and RFLP profiles with those of the constructed library. Five separate, non-introduced yeast taxa were putatively identified. These included Pichia species, which were associated with conditioning tanks and Saccharomyces species isolated from fermentation vessels. Strains of the lager yeast S. pastorianus could be reliably identified as belonging to either the Saaz or Frohberg hybrid group by restriction digestion of the ITS amplicon with the enzyme HaeIII. Frohberg group strains could be further sub-grouped depending on restriction profiles generated with *Hinf*I.

Key words: brewery, contaminant, identification, ITS, rDNA, RFLP, yeast.

INTRODUCTION

The use of pure, uncontaminated cultures of specific strains of brewing yeast for fermentation has been a central tenet of the brewing industry for over a century⁴. Use of pure cultures minimizes the risk of microbial contamination and ensures consistent fermentation performance and product quality. The closed systems employed in modern breweries reduce the risk of contamination by 'wild' yeast, which may be considered to be any yeast

²VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Finland.

* Corresponding author. Email: brian.gibson@vtt.fi

Publication no. G-2011-1130-1177 © 2011 The Institute of Brewing & Distilling occurring other than the specified production yeast. Wild yeasts can therefore be non-*Saccharomyces* yeast, *Saccharomyces* yeast species other than brewing production yeast, or even production yeast strains other than those intended for a specific fermentation. In other words, yeast not deliberately used and under full control²⁰. Contamination, albeit at a low concentration and rarely influencing the fermentation process or product, is however normal⁵⁵ and is used a quality control indicator within modern breweries.

Beer spoilage due to the presence of wild yeast contaminants can take a number of forms and is influenced by the contaminant taxa^{10,31}. Reported problems include the production of off-flavours, particularly phenolic offflavours, which are formed by the carboxylation of ferulic and cinnamic acids⁴⁹, as well as the production of other off flavours such as acetic acid or esters. Competition for nutrients may also occur if wild yeast growth rates are sufficiently fast. An extreme case of competition involves the presence of so-called killer yeast, which can completely replace a brewing yeast through the production of killer factors or zymocins⁶¹. The presence of small or nonflocculating wild yeast cells can, in addition, result in unacceptably high levels of turbidity and difficulties with clarification¹⁰.

The wild yeast isolated from raw materials, brewery facilities, malt extract (wort) in fermentation vessels or beer in collection vessels, kegs or bottles are rarely identified to species level and little published data is available regarding the dynamics of wild yeast contamination in the brewery, i.e. the relative abundance of different species at different stages in the production of beer. An improved understanding of wild yeast and their occurrence is necessary to inform decisions regarding the optimization of processes to eliminate unwanted yeast contaminants and thus prevent unnecessary beer spoilage.

Conventional methods used to detect and isolate wild yeast contaminants have mainly been based on morphological traits and especially their physiological abilities^{5,30}. The most popular method for differentiation is cultivation of unknown yeasts on a wide range of selective media, e.g., lysine medium⁵⁷, actidione medium²³, crystal violet medium¹, MYGP+copper medium^{2,46} and CLEN media⁴⁶. Incubation at 37°C for detection of wild yeast in lager breweries has also been used⁵⁶. Different organisms have different growth requirements with regard to nutrients,

¹Bioenergy and Brewing Science, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.

carbon sources and oxygen availability, thus selective media can aid in detection of contaminants. However, no single medium is capable of detecting or differentiating all wild yeast strains and in many cases, e.g. selection of non-brewing *Saccharomyces* yeast based on Cu-sensitivity, the mechanistic reasons for the differentiation are obscure. Breweries typically focus on detection and differentiation of brewing and non-brewing yeast rather than identification of contaminant yeast taxa. Traditional identification of wild yeasts to species level is a complex, laborious and time-consuming process which requires approximately 50–100 biochemical tests^{5,30,34}. Final results are usually available several days or even weeks after beer packaging; therefore, these methods are often used as a retrospective view of quality rather than proactive process control⁵¹.

Though not routinely used in breweries, molecular techniques for the identification of wild yeast contaminants have the advantage over traditional techniques in that they can often be used to accurately identify yeast isolates to species level. One such technique is ITS-PCR involving the amplification of the ribosomal RNA-encoding DNA (rDNA) internal transcribed spacer (ITS) region consisting of the 5.8S rRNA gene and two variable flanking regions ITS1 and ITS2. Interspecific polymorphism in this region allows for differentiation of species⁵⁹. Restriction fragment length polymorphism (RFLP) can be used in conjunction with ITS-PCR to differentiate closely-related species such as those of the *Saccharomyces* sensustricto complex¹⁸.

PCR amplification of rDNA and restriction digestion of the amplicon has not been used extensively for the identification of yeasts isolated during brewing or from beer^{27,53}, but has seen wide application in other fermentation industries, particularly for the identification of yeasts occurring during oenological fermentations^{13,14,17,18,21,22,36,43,44,48,62}. The technique has also been used to identify yeasts occurring as contaminants or natural, spontaneous fermenters of cider^{15,39} and rice wine²⁸ as well as yeast associated with non-alcoholic citrus juice beverages^{3,32}. Despite its accuracy and relative ease of use, this technique has not been widely adopted for routine identification of isolated wild yeast in breweries. One possible reason for this is that there is currently no comprehensive reference library of ITS-PCR fragment sizes and RFLP band sizes for yeast associated with brewery fermentation and beer.

The aims of this study were, firstly, the collation and augmentation of rDNA-PCR (ITS1, 5.8S and ITS2) data and gel-detectable RFLP profiles for known brewery wild yeast contaminants, as well as common production yeast, for use as a reference tool and, secondly, to critically evaluate the potential of this reference library for identification of wild yeast contaminants isolated from industrial fermentation vessels and beer conditioning tanks.

MATERIALS AND METHODS

Yeast strains

Fifty-nine wild yeast isolates were obtained from wort and beer sampled from five different fermentation vessels and three different conditioning tanks used for the production of two different lager beers. All samples were obtained from one brewery and at the same time. Known yeast strains, including several type strains were also obtained from the National Collection of Yeast cultures (NCYC; Norwich, UK), Dipartimento Biologia Vegetale Perugia, Yeasts Industrial Collection (DBVPG; Perugia, Italy), European *Saccharomyces cerevisiae* Archive for Functional Analysis (EUROSCARF; University of Frankfurt, Frankfurt, Germany) and the VTT Culture Collection (VTT; Technical Research Centre of Finland, Espoo, Finland). Also included was the production lager strain CB11. Yeast strains were maintained on YPD agar (1% yeast extract, 2% neutralized bactopeptone, 2% dextrose and 1.2% agar) at 4°C.

Isolation of industrial wild yeast contaminants

Multiple wort samples (10 mL) and beer samples (100 mL) were filtered through Millipore[®] membrane (pore size of 0.45 µm) filters, which were transferred to MYGP+copper plates (0.3% malt extract, 0.3% yeast extract, 0.5% bactopeptone, 1% glucose, 1% agar technical and 100 ppm Cu added as copper sulphate). The high copper concentrations prevented growth of the production lager yeast strains and allowed single colony wild yeast strains to be isolated. These wild yeasts were taken from the original copper plates and subcultured on 100 and 200 ppm copper-supplemented BactoTM agar (Becton, Dickinson and Company) to ensure that the production yeast strain was not present. All plates were incubated at 25°C for 48 h before subsequent subculturing on plates without additional copper.

DNA extraction, PCR and RFLP

Rapid DNA extraction was carried out by transferring a fresh yeast colony (approx. 2 days old) to a 50 µL yeast DNA extraction buffer $(2 \times 10^{-3} \text{ M NaOH and } 0.001\%)$ sarcosine) and boiling for 10 min at 100°C. Sarcosine was included to permeabilise cell membranes. The supernatant containing DNA crude extract was collected by brief centrifugation and stored at -20°C. The PCR reactions were performed as described by White et al.⁵⁹ Briefly, 50 µL PCR reaction mixture contained 0.5 µM primer ITS1 (5' TCCGTAGGTGAACCTGCGG 3'), 0.5 µM primer ITS4 (5' TCCTCCGCTTATTGATATGC 3'), 25 µL Master mix (Quick Load Taq 2× from New England Biolabs), 3 µL DNA crude extract and water. The PCR conditions were as follows: 95°C for 15 min (initial denaturing), 35 cycles of 95°C for 1 min (denaturing), 55°C for 2 min (annealing), 72°C for 2 min (elongation) followed by a final elongation step at 72°C for 10 min. A quantity of 6 µL of product from each reaction was separated on a 1.4% (w/v) agarose gel in TAE buffer and 8 µL of the PCR product was digested with CfoI (Promega), HaeIII or HinfI endonucleases (New England Biolabs) and separated on a 4% agarose gel. Gels were stained with ethidium bromide, visualized under UV light and photographed. Band sizes were calculated with reference to a 100 bp ladder (New England Biolabs). Tentative identification of unknown brewery contaminant yeast was carried out by first comparing ITS amplicon sizes with those of known species, including type strains, to produce a short-list of candidate species and secondly by comparing restriction profiles produced using the enzymes CfoI, HaeIII and HinfI.

Where available, ITS sequence data was obtained from databases such as MycoBank (http://www.mycobank.org/), Genbank (http://www.ncbi.nlm.nih.gov/genbank/) and CBS-KNAW Fungal Biodiversity Centre database (http://www. cbs.knaw.nl/). Virtual restriction profiles of the full length sequences (ITS sequences containing sequences of both ITS1 and ITS4 oligonucleotides) were determined using DNAMAN v4.1 (Lynnon BioSoft) and Clone Manager 5 software (Scientific & Educational Software).

RESULTS

While numerous methods are available for the extraction of DNA from yeast cultures, the one used here was found to be particularly simple and rapid. Better results were obtained than with methods involving extraction with SDS or colony PCR (data not shown). However, any method that produces relatively pure DNA for PCR is sufficient.

Collation of the available data and grouping of yeasts according to ITS amplicon size in ascending order revealed that the many species and indeed genera can be separated according to amplicon size (Table I). Species of the genus Candida, with amplicon sizes ranging from 400-700 bp were found in all amplicon size categories. Candida rugosa, C. pararugosa, C. intermedia, C. sake and C. stellata, however, all had amplicon sizes of 500 bp or less. A characteristic of these species was the lack of restriction sites with the HaeIII enzyme. Restriction with Hinfl resulted in production of double bands, with restriction sites in each case being close to the centre of the amplified region. The similar amplicon sizes and restriction profiles of species within the group prevent definitive identification of individual species based on ITS/RFLP, though smaller amplicon sizes within this group may suggest C. rugosa or C. intermedia rather than, for example, C. stellata. Predicted bands sizes, based on available sequence data, were similar to observed gel-detectable band sizes, with differences in restricted band sizes typically less than 20 bp (Table I) when different strains are compared. Other Candida species, including C. tropicalis, C. norvegica and C. parapsilosis had larger amplicon sizes (>500 bp) and while the data suggests that C. tropicalis and C. parapsilosis are not differentiable based on ITS amplicon size and restriction pattern, C. norvegica due to its larger size (580 bp) and unique banding pattern may be differentiated using this technique. Banding patterns for C. tropicalis and parapsilosis corresponded well to predicted band sizes (Table I). Candida species with amplicon sizes above 600 bp included C. mesenterica, C. santamariae (basionym C. beechii) and C. tenuis. The latter species were observed to have similar amplicon sizes and restriction profiles. The exceptions here were the profiles generated with HaeIII and HinfI for C. tenuis by Guillamon et al.²², which deviated significantly from the predicted profile. Candida mesenterica, on the other hand could be distinguished due to its larger amplicon size (approx. 650 bp) and lack of restriction with CfoI. Amplicon size and restriction profile with HaeIII were similar to those of Scheffersomyces stipitis (basionym Pichia stipitis), emphasising the requirement for more than one restriction profile to be generated to reliably identify a species or genus. *Candida boidinii* can be distinguished from other members of the genus by its larger amplicon size (\geq 700 bp). Care should be taken however to avoid confusion of this strain with *Hanseniaspora uvarum* when basing identification on visible fragment sizes.

The *Dekkera* species, *D. bruxellensis* and *D. anomala*, while producing similar restriction profiles may be distinguished by the larger size of the *D. anomala* amplicon (>500 bp) compared to the *D. bruxellensis* amplicon (\leq 500 bp) and the tendency of *D. anomala* to generate a double band with the *HinfI* enzyme. *Dekkera bruxellensis* can likewise be distinguished from *Pichia fermentans* based on the *CfoI* restriction profile. Of note here is the discrepancy in the *D. anomala* results obtained by Granchi et al.²¹ and the authors of this study who found amplicon sizes of 514 and 540 bp, respectively, compared with an amplicon size of 800 bp obtained by Esteve-Zarzoso et al.¹⁷ and Morrissey et al.³⁹

Of the Pichia species, those with the smallest ITS amplicon sizes were P. fermentans, P. membranifaciens and P. kudriavzevii (basionym Issatchenkia orientalis), with P. fermentans strains normally having a smaller size (~450 bp) than the other two species. Results suggest that P. fermentans and P. membranifaciens cannot be reliably differentiated based purely on observation of gel-detectable fragment sizes with the enzymes used here. However, it is possible to differentiate these species with XhoII and MaeII restriction enzymes according to in silico data: P. fermentans ITS amplicon is digested into 322 and 123 bp fragments with XhoII and undigested with MaeII, whereas P. membranifaciens ITS amplicon is digested into 175, 170, 105 and 29 bp fragments with XhoII and 260, 125 and 94 bp fragments with MaeII (data not shown). These two species could, in the majority of cases, be differentiated from P. kudriavzevii by the restriction profiles obtained with CfoI and HaeIII.

The two Kazachstania species included here³¹, K. exigua and K. unispora could be distinguished from each other by the profiles generated with HaeIII and HinfI and could furthermore be differentiated from other species due to their large amplicon size and restriction profile with HaeIII. In the same amplicon size class were the Kluy*veromyces* species, which could not be distinguished from one another based on amplicon size or restriction profile, but could be distinguished from non-Kluyveromyces species as long as more than one restriction profile was available. The profile generated with CfoI was, for example, similar to that obtained from Zygosaccharomyces rouxii. Torulaspora delbrueckii was another species with a large ITS amplicon (800 bp) and which generated numerous bands with CfoI. A distinctive characteristic of this species was the lack of restriction sites for HaeIII. This unrestricted DNA could be distinguished from that of H. uvarum (also without restriction sites) by size. According to in silico data, it is possible to use restriction enzymes other than those employed here to differentiate Kluyveromyces species. Namely, AvaI, HindIII and MslI restriction enzymes do not cleave the K. lactis ITS amplicon, whereas the K. marxianus ITS amplicon is cleaved into two fragments, based on a partial ITS amplicon sequence available, having sizes of 458 and over 240 bp (AvaI), 573 and over 125 bp (HindIII) and 494 and over 204 bp (MslI).

Table I. Sizes of amplified products of the 5.8S-ITS regions and restriction fragments from non-*Saccharomyces* species identified as brewery contaminants. Italicised sizes represent virtual fragment sizes determined from published sequences and known restriction sites using DNAMAN v4.1 and Clone Manager 5 software.

	0		Rest	ciction fragments (bp)		Defermenter
Species	Code	sizes	CfoI	HaeIII	Hinft	identification
PCR amplicon ≤500 bp	CD5 213	000	101 800	300	170 144 60 0	ę
Canataa rugosa C rugosa	CDS 01.5 CFCT 1447	66C 420	200, 191	410	179, 144, 00, 0 180-150	3 1 0
C. rugosa	VTT C-02465	380	210.170	380	200, 180	This study
C. pararugosa	ATCC 38774 ^T (CBS 1010)	415	245, 170	415	218, 197	40
C. pararugosa	VTT C-02469	450	270, 180	450	210, 190	This study
C. intermedia	CBS 5159	386	212, 174	386	202, 184	= !
C. intermedia	CECT 10118, 11054, 11154	425	220, 190	410	225, 200	17
C. intermedia	VII C-98309 CBS 150	400	236 305	400	220, 180	I his study
C. sake	CBS 139 CFCT 1044	441	250, 203	144	220, 207, 0 230-210	3 1 0
C. sake	CECT 10034, 10276, 1044	450	250, 200	450	230, 220	17
C. sake	VTT C-94208	450	250, 200	450	230, 220	This study
C. stellata	$CBS 157^{T}$	468	220, 130	468	245, 230	21
C. stellata C. stellata	CECT 11406, 11109, 11110 CECT 11108, 11110	475 500	215, 110, 80, 60 220, 130	475 480	235, 235 260, 240	17 22
		1/0	FF 02 601 160	20,026	000 000	:
Dekkera bruxellensis D. hruvellensis	CBS /4 (CECI 1431) CBS 74 ^T	400	221, 123, 70, 44 226, 121, 82	350.95	200, 200	11
D. bruxellensis	$CECT 1009. 1010. 1451^{T}. 1452. 11045$	485	255, 140, 90	375, 95	270, 215	17
D. bruxellensis	CECT 1009 ^T (CBS 72)	500	230, 130, 80	375, 105	265, 105	22
D. bruxellensis	NCYC 2818	485	250, 140, 90	375,95	270, 215	39
D. bruxellensis	VTT C-00348	490	240, 120, 80, 50	390, 100	220, 180, 90	This study
D. bruxellensis	CECT 1452' (CBS 4914)	500	230, 130, 80	375, 105	265, 215	22
Pichia fermentans	CBS 187 ^T	445	154, 92, 87, 69, 23, 16, 2, 2	331, 79, 35	251, 194	19
P. fermentans	CECT 1455 ^T (CBS 187), 10064, 10078, 10413, 10454	450	170, 100, 100, 80	340, 80, 30	250, 200	17
P. fermentans	CECT 1455' (CBS 187)	470	170, 110, 80	340, 85	260, 210	22
P. fermentans D. fermentans	CBS 18/ NCVC 562	449	149, 139, 91, 74	325, 80	246, 193 250, 200	30
P. membranifaciens	CBS 5516	479	162 101 83 69 64	326.88.48.12.5	274, 205	61
P. membranifaciens	CECT 1115, 10570, 10568	500	175, 110, 90, 75	330, 90, 50	275, 200	17
P. membranifaciens	CECT 10037, 10113	500	260, 110, 75	330, 90, 50	275, 200	17
P. membranifaciens D. membranifaciens	CECT 1113 (CBS 107)	2000	160,110 90 80	340, 100 320 80 50	280, 220	77
r . memoranyaciens P. membranifaciens	VTT C-05624, C-86170	500	160, 110, 90, 80, 60	350, 100, 50	280, 220	This study
		000	020 010	000	100 100	
rarrowia upotynca Y. lipolytica	VTT C-02463, C-0038 ^T	380 380	210, 270	380 380	190, 110, 70	This study,
PCR amplicon 500–600 hp						
Candida norvegica	CECT 10310	580	510	370, 190	290, 260	22, 17
C. parapsilosis	CBS 604	520	295, 225	401, 105, 14	266, 246, 8	40
C. parapsilosis C. parameilosis	CECT 1043/ CFCT 10434 1440 10437	070	300 240	410,110 400 115	2/0, 250	27
C. parapsilosis	VTT C-82056	450	260, 190	450	230, 220	This study
C. tropicalis	ATCC 750	525	284, 241	444, 81	262, 255, 8	40
C. tropicalis	CECT 1440	066	280, 250	450, 90	270, 270	17,22
					(con	tinued on next page)

Table I. (continued from previous	page)		à	setriction froamonts (hn)		
Species	Code	PCR _	Cfol	HaeIII	Hinfl	 References for identification
Dekkera anomala D. anomala	VTT C-91183 Unknown	540 514	270, 150, 70, 50 270, 145, 72	400, 140 400, 110	270, 270 225, 225, 81	This study 21
Pichia kudriavzevii P. kudriavzevii P. kudriavzevii	CBS 5147 ^T CBS 5147 ^T VTT C-89178	509 494 500	<i>206, 169, 52, 6</i> 185, 170, 69, 56 200, 180, 70, 50	381, 90, 38 370, 90 360, 90, 50	221, 151, 137 225, 160, 145 220, 150, 130	11 21 This study
PCR amplicon 600–700 bp Candida mesenterica C. mesenterica C. santamariae C. santamariae C. tenuis C. tenuis	CECT 1025 CECT 1025 CBS 4261 CECT 11165 ^T CBS 7047 CECT 10188	640 650 623 650 629 680	580 600 300, 276, 47, 10 300, 300 288, 279, 52, 10 310, 275	490, 140 500, 150 412, 132, 79 400, 140, 90 412, 126, 78, 13 500, 150	305, 220 320, 220, 100 <i>309, 306, 8</i> 330, 330 <i>312, 309, 8</i> 305, 180, 140	22 17 29 20 22
Debaryomyces hansenii D. hansenii D. hansenii	CBS767 ^T CBS767 ^T CECT 10286	639 656 650	295, 284, 50, 10 295, 280 300, 300, 50	<i>421, 138, 80</i> 400, 120, 75 420, 150, 90	316, 315, 8 315, 315 325, 325	40 21 17
Filobasidium capsuligenum F. capsuligenum	CBS 4736 CECT 11190 (CBS 4736)	620 650	<i>324, 296</i> 340, 300	<i>499, 67, 54</i> 550, 100	345, 267, 8 360, 280	11 17
Millerozyma farinosa M. farinosa	ATCC MY A-4447 CECT 1447 (CBS 185), 10348	669 700	<i>296, 295, 68, 10</i> 300, 300, 80	<i>416, 174, 79</i> 440, 175, 80	<i>344, 166, 151, 8</i> 350, 185, 160	19 17
Meyerozyma guilliermondii M. guilliermondii M. guilliermondii M. guilliermondii	UAF-214 CECT 1019, 1021, 1438, 1456 ^T (CBS 2030 ^T) NCYC 443 (CBS 2030 ^T) CBS 2030 ^T	607 625 605 605	293, 255, 49, 10 300, 265, 60 300, 265, 60 320, 270	<i>390, 116, 79, 17, 5</i> 400, 110, 90 400, 115, 90 380, 120, 80	314, 285, 8 320, 300 320, 300 340, 300	19 39 21
Rhodotorula mucilaginosa R. mucilaginosa R. mucilaginosa R. mucilaginosa	CBS 316 CECT 11016 (CBS 316) VTT C-89179 CECT 11010	616 640 640 640	298, 222, 96 320, 240 300, 210 320, 240, 80	<i>401, 215</i> 425, 215 400, 200 425, 215	339, 210, 59, 8 340, 225 360, 220 340, 225, 75	11 22 This study 22, 17
Scheffersomyces stipitis S. stipitis S. stipitis	CBS 6054 CECT 1922 [¥] (CBS 5773) NCYC 1540, 1542	628 650 650	297, 273, 48, 10 300, 285 300, 280	<i>493, 135</i> 490, 140 500, 140	313, 307, 8 310, 310 325, 325	17 This study
Schwanniomyces occidentalis	VTT C-02471	600	280, 280, 40	400, 170, 130	320, 130, 100	This study
Wickerhamomyces anomalus W. anomalus W. anomalus W. anomalus W. anomalus W. subpeliculosus	MUCL 51252 CECT 1110,1114,10320, 10410,10590,10591,10667 NCYC 750 VTT C-74201 ^T , C94191 CBS 5759 ^T VTT C-82050	618 650 650 650 615 600	559, 49, 10 575 575 570 615 560, 40	618 600, 50 600, 50 650 615 600	310, 300, 8 310, 310 310, 310 310, 310 310, 320 300, 300 (con	19 17, 39 39 This study 21 This study tinued on next page)

Table I. (continued from previous pa	(eg					
		PCR	Restri	ction fragments (bp)		References for
Species	Code	sizes	CfoI	HaelII	Hinfl	identification
PCR amplicon ≥700 bp Candida boidinii C. boidinii C. boidinii C. boidinii	CBS 2428 CECT 1014 ⁷ CECT 1029 CECT 1014 ⁷ , 11153	704 700 750	321, 290, 73, 20 330, 330 330, 295 350, 310, 90	704 700 700	<i>352, 136, 33, 8</i> 370, 180, 145 370, 180, 145 390, 190, 160	11 22 17
Hanseniaspora uvarum H. uvarum H. uvarum H. uvarum H. uvarum H. valbyensis H. valbyensis	KW 2662 CBS 314 ^T CECT 1444, 11105, 11106, 11107, CECT 1120 ^T NCYC 2739 CECT 1444, 10389, 11105, 11106, 11107, 11156, 11172 CBS 104 ^T CBS 479 ^T CECT 1445 ^T , 10122	747 745 760 750 750 745 740	<i>319, 313, 105, 10</i> 324, 315, 105 320, 315, 105 320, 310, 105 320, 310, 105 324, 315, 105 640, 110 630, 120	747 745 760 750 750 733 750	342, 188, 155, 62 330, 180, 150, 70 360, 200, 180 350, 200, 180 350, 200, 180 330, 180, 150, 70 330, 180, 150, 70 235, 210, 155, 105 240, 220, 170, 105	12 51 13 55 51 6 12 51 13 55 51 6
Kazachstania exigua K. exigua K. unispora K. unispora K. unispora	IFO 1128 CECT 11192 ^T CECT 11192 ^{NT} MUCL 51234 CECT 10682 ^T (CBS 398)	720 675 750 740 775	349, 286, 75, 10 320, 200, 90 375, 300 337, 309, 84, 10 350, 310, 115	483, 237 400, 200, 75 500, 250 508, 117, 115 500, 110	342, 238, 132, 8 400, 275 350, 250, 150 374, 358, 8 400, 375	<u>0 8 8 0 8</u>
Kluyveromyces lactis K. lactis K. marxianus	UOA/HCPF BUL74 CECT 1121, 1961 ^{NT} , 10356, 10669 CECT 1123,10368,10585, 10668	719 740 740	283, 187, 159, 80, 10 285, 190, 165, 90 285, 185, 140, 100	645, 74 655, 80 655, 80	285, 181, 112, 77, 59, 5 290, 180, 120, 80, 65 240, 185, 120, 80, 65,	19 17 17
K. marxianus K. marxianus var. drosophilarum	VTT C-75007" (CBS 834) CECT 10390,11337	720 740	280, 200, 160, 80 285, 190, 165, 90	340, 380 655, 80	280, 190, 120 240, 185, 120, 80, 65, 50	This study 17
K. marxianus var. drosophilarum	CECT 11340	740	285, 190, 165, 90	655, 80	240, 185, 185, 65, 50, 15	17
Dekkera anomala	CECT 11162 [°] , NCYC 749	800	340, 340, 120	800	360, 190, 160, 80	17, 39
Torulaspora delbreuckii T. delbrueckii T. delbrueckii T. delbrueckii	MUCL 51211 VTT C-05716 ^T (CBS 1146 ^T) CBS 1146 ^T CECT 1880, 10558, 10589, 10651, 10676, 10683, 10693, 10694, 11146, 11199 (CBS 1146 ^T)	798 800 803 800	<i>327, 220, 139, 102, 10</i> 330, 220, 150, 100 330, 215, 140, 100 330, 220, 150, 100	798 800 803 800	<i>410, 380, 8</i> 410, 390 420, 380 410, 380	19 This study 21 17
Zygosaccharomyces bisporus Z. bisporus Z. bailti Z. bailti Z. bailti Z. bailti Z. rouxti Z. rouxti Z. rouxti	VTT C-94195 [°] (CBS 702) CECT 11055 [°] (CBS 702) ATCC MYA-4549 VTT C-05662 CECT 10674 [°] CECT 10674 [°] CECT 10674 [°] CBS 732 [°] CBS 732 [°] CBS 732 [°] CBS 732 [°] CECT 1232 [°] (CBS 732 [°]) CECT 1230, 1232, 10137, 11136, 11189	790 790 790 775 725 725 725 725	300, 280, 100, 90 300, 275, 110, 90 322, 272, 95, 84, 10, 2 320, 280, 100, 90 330, 295 313, 295 313, 273, 98 271, 191, 165, 88, 10 272, 186, 159 290, 200, 170, 90	750 690, 100 696, 89 500 690, 90 700, 75 395, 213, 84, 33 400, 220 400, 220 400, 210, 90	280, 240, 140, 90 390, 225, 150 347, 221, 158, 51, 8 360, 220, 160 340, 225, 160, 55 340, 226, 160 345, 224, 128 356, 250, 130 335, 240, 150 335, 240, 150 335, 260, 140	This study 17 19 17 17 22 21 21 21 21 21 21 21

Table II. Sizes of amplified products of the 5.8S-ITS regions and restriction fragments from *Succharomyces* species including type (T) and new type (NT) strains. Italicised sizes represent virtual fragment sizes determined from published sequences and known restriction sites using DNAMAN v4.1 and Clone Manager 5 software.

nhoe notietiond ittoit notitution	CINCS WIN MINARI LESUICON	using DIVENTATI VT. I and CIVIC Managel 2 SOLWARS.					
			PCR				References for
Species	Origin	Code	sizes	CfoI	HaeIII	Hinfl	identification
Restriction group 1							
Saccharomyces bayanus	Mesophylax adopersus	MCYC 623 (CBS 7001)	838	363, 336, 132, 10	311, 230, 172, 128	362, 352, 119, 8	19
Var. uvdrum			0,0	01 101 200 070		0 711 020 070	
S. cerevisiae	Intected blood	UOA/HCPF EM10049	842	305, 335, 154, 10	311, 231, 1/2, 1/8	302, 332, 110, 8	19
S. cerevisiae	Fig fruit	S288c	841	363, 336, 132, 10	311, 230, 172, 128	362, 352, 119, 8	SGD
S. cerevisiae	Fig fruit	BY4741	880	340, 320, 120	320, 240, 180, 140	380, 380	This study
S. cerevisiae	Ale	CECT 1485 (CBS 4309), 1883, 1942 ^{NT} (CBS 1171)	850	375, 325, 150	325, 230, 170, 125	375, 365, 110	18
S. cerevisiae	Ale	NCYC 2593, 1046	880	340, 320, 120	320, 240, 180, 140	390, 390, 100	This study
S. cerevisiae	Ale	NCYC 76	880	385, 365	325, 230, 170, 125	360, 350, 160	39
S. cerevisiae	Ale yeast	CBS 1171 ^T	850	380, 340	320, 225, 180, 145	360, 350, 120	21
S. cerevisiae	Ale yeast	CECT 1942 ^T (CBS 1171 ^T)	880	385, 365	320, 220, 180, 145	365, 155	22
S. cerevisiae	Ale	CECT 1942 ^T , 1971	880	385, 365	320, 230, 180, 150	365, 155	17
S. paradoxus	Tree exudate	NRRL Y-17217 (CBS 432, CECT 1939)	841	364, 335, 132, 10	312, 229, 172, 128	363, 351, 119, 8	19
S. paradoxus	Tree exudate, soil	CECT 1939 ^{NT} (CBS 432, 11143 (CBS 5829)	850	375, 325, 150	325, 230, 170, 125	375, 365, 110	18
S. paradoxus	Tree exudate	$CBS 432^{T}$	850	380, 340	320, 225, 180, 145	360, 350, 120	21
S. paradoxus	Tree exudate, soil	CECT 1939 ^T (CBS 432), 11143 (CBS 5829)	880	385, 365	320, 230, 180, 150	440, 440	17
S. pastorianus	Lager	DBVPG 6285, 6282, 6257 (CECT 11188, CBS 1260)	880	385, 365	320, 220, 180, 140	365, 365, 130	This study
(Hybrid group 2; Frohberg)	1						
S. pastorianus	Lager	W34, CB11	880	340, 320, 120	320, 220, 180, 140	365, 365, 130	This study
S. pastorianus	Lager	DBVPG 6560, 6283	880	385, 365	320, 220, 180, 140	365, 220, 180, 115	This study
(Hybrid group 2; Frohberg)							
S. pastorianus	Lager	NCYC 1056	880	385, 365	320, 220, 180, 140	365, 220, 180, 115	This study
Restriction group 2							
Saccharomyces bayanus	Turbid beer	CRS 380 ^T (CECT1941)	850	380 340	490 225 145	360 350 120	21
var. bavanus			220	010 000	011 (017 (011		1
S havanus	wine	CECT 1360 1960 ^T (CBS 395)	850	375 325 150	495, 230, 125	375, 365, 110	17.22.18
S bayanus	Turbid heer blackcurrant inice	CECT 1941 ^T (CBS 380), 1969 (CBS 395)	880	385.365	500. 220. 145	365, 155	22, 17, 18
S. pastorianus	Lager	IFO 1167 (CBS 1513)	838	361. 333. 134. 10	481, 229, 128	360.354.116.8	19
S. pastorianus	Lager	DBVPG 6047 (CECT 1940; CBS 1538), 6033 (CBS	880	385, 365	500, 220, 140	365, 130	This study
(Hybrid group 1; Saaz))	1513; CECT 11037), 6258 (CBS 1486, CECT 11201), 6261 (CBS 1503, CECT 1970), 6284					
S. pastorianus	Lager	CBS 1538 ^T	850	380, 340	490, 225, 145	360, 350, 120	21
S. pastorianus	Lager	CECT 1940 (CBS1538)	880	385, 365	500, 220, 145	365, 155	22
S. pastorianus	Lager	CECT 1940 ^{wr} (CBS1538) 1970 (CBS 1503)	850	375, 325, 150	495, 230, 125	375, 365, 110	18
S. pastorianus	Lager	CECT 1940 ^T (CBS1538), 1320 (CBS1538)	880	385, 365	500, 220, 145	365, 155	17
S. kudriavzevii	Decayed leaf	IFO 1802	841	364, 335, 132, 10	484, 229, 123, 5	363, 351, 119, 8	7, 19
S. mikatae	Soil	CBS 8839	841	364, 334, 130, 10	484, 228, 126	363, 350, 117, 8	19,31

Of the three Zygosaccharomyces species included in this study, all were in the largest amplicon size class with sizes ranging from 725–790 bp. Zygosaccharomyces rouxii could be distinguished from Z. bailii and Z. bisporus based on its smaller amplicon size, but as indicated previously care must be taken to avoid misidentification of this species as Kluyveromyces. The available data suggests that Z. bailii and Z. bisporus are not readily distinguishable using this technique and, furthermore, that there is the possibility of this species being confused with Hanseniaspora uvarum based on amplicon sizes and restriction profiles.

For the remaining non-Saccharomyces species within this library, amplicon sizes ranged from 600–700 bp and these species included Millerozyma farinosa (synonym P. farinosa), Meyerozyma guilliermondii (basionym P. guilliermondii), S. stipitis, Wickerhamomyces anomalus (synonym P. anomala), and Wickerhamomyces subpelliculosus (basionym P. subpelliculosa). (Table I). Of these, the most difficult to differentiate are the Wickerhamomyces species.

Yeasts belonging to the Saccharomyces sensu stricto group have ITS sizes of 840-880 bp (Table II), a feature which distinguishes them immediately from the known non-Saccharomyces contaminants. In many cases, restriction profiles were identical in different species. Restriction with HaeIII however reveals that these species fall into one of two groups. The first group yields 4 distinct bands (approx. 310, 230, 170, 130 bp) which correspond in size to the predicted ITS fragments that would be generated with HaeIII digestion of the S. cerevisiae S288c ITS region (Table II). All S. cerevisiae strains, including the investigated ale strains, belong to this group. Other species that fall into this group (based on observed and predicted restriction profiles) include S. bayanus var. uvarum and S. paradoxus. The second HaeIII restriction group generates three fragments of approx. 480, 230 and 130 bp and includes S. kudriavzevii and S. mikatae⁷.

Interestingly, HaeIII restriction can separate S. pastorianus strains into either restriction group 1 (with 4 bands) or restriction group 2 (with 3 bands); this differentiation is consistent with the study of hybrid groups of S. pastorianus¹⁶. The majority of S. pastorianus restriction group 1 strains were indistinguishable from S. cerevisiae ale strains as well as the sister laboratory strains BY4741 and S288c. Those belonging to restriction group 2 had profiles similar to those observed with several strains of S. bayanus including the S. bayanus var. bayanus type strain. Previously categorized hybrid group 1 (Saaz) strains included in this study showed the same restriction profiles with individual enzymes. Restriction group 1 lager strains could however be further sub-grouped depending on profiles generated with HinfI restriction of amplicons. This profile was found with three strains belonging to restriction group 1 lager yeasts. Otherwise, Hinfl could not differentiate different Saccharomyces species or strains investigated (fragment sizes were approx 360, 350 and 120, with the two larger bands frequently observed as a single band on gels). Strain W34 and the production strain (CB11) used in this brewery had RFLP patterns consistent with Frohberg strains. Some differences were observed when comparing restriction profiles with CfoI, though these differences were as often observed when comparing strains of one species as comparing different species and are therefore not applicable for differentiation of species within the *Saccharomyces sensu stricto* group.

Wild yeast contaminants, 59 in total, were isolated from samples collected from conditioning tanks and fermentation vessels. Results showed that ITS-PCR/RFLP can be used, to some extent, to differentiate a number of wild yeast taxa present in the brewing process. Wild yeast species putatively identified mainly belonged to the genera Candida, Pichia, Dekkera, Rhodotorula and Saccharomyces. Putative identifications are listed in Table III according to the constructed 5.8S ITS library. All isolates with PCR products of 880 bp belonged to Saccharomyces restriction group 1 (Table III), which includes S. cerevisiae, S. paradoxus, S. pastorianus hybrid group 2 (Frohberg) and S. bayanus var. uvarum. It is therefore not possible to differentiate the isolated Saccharomyces species. Pichia species were the most commonly isolated yeasts from conditioning tanks but were not detected in fermentation vessel samples. Saccharomyces spp. made up the largest proportion of yeast found in fermentation tanks. Strains belonging to Saccharomyces restriction group 1 were the most abundant contaminants found in fermentation vessels (Table III). They made up around 82% of the wild yeasts found in these vessels and 10% in conditioning tanks. Approximately 8-10% of Saccharomyces isolates found in both conditioning tanks and fermentation vessels were putatively identified as S. paradoxus based on a distinctive double band generated with Hinfl digestion. Dekkera bruxellensis made up 16% of wild yeast isolates in conditioning tanks. Candida species occurred at a low frequency of 3% in conditioning tanks and fermentation vessels. Composition of the wild yeast population varied depending on vessel and beer type; two fermentation vessels were only contaminated by Saccharomyces restriction group 1 species while the others had additional S. paradoxus, C. intermedia/C. pararugosa/ C. rugosa, D. bruxellensis and R. mucilaginosa as contaminants. One lager beer type was contaminated with Pichia spp. only while the other had a mixture of Saccharomyces, Pichia, Candida and Rhodotorula (data not shown).

DISCUSSION

Restriction analysis of the rDNA region spanning the 5.8S rRNA gene and flanking internal transcribed spacers (ITS1 and ITS2) has previously been shown to be an effective, rapid and simple method to identify a variety of yeasts isolated from alcoholic fermentations. Compared to traditional methods based on selective media and incubation conditions, this method has potential advantages in terms of speed, efficiency and reduced work load^{6,25,55}. Although the method has been applied for detection of wild yeast contaminants of food and wine, there are few reports of its application for differentiation of wild yeast contaminants in breweries and their occurrence at different stages of brewing process^{26,27,47,55,60}. Yeast contaminants in the brewing industry are rarely identified to species level, possibly due to a lack of appropriate reference strains, the continued use of traditional, non-specific

Table III. Identification	n of the predominant	yeast species isolate	d from an industrial	brewery and their	ir frequency at	different stage	s of the b	rewing
process								

Amplicon		Rest	riction frag	ment				References for	
size	Genera within size class	CfoI	HaeIII	HinfI	Putative identification	%	Origins	identification	
400	Candida/Dekerra/Pichia/ Yarrowia	240, 160	380	220, 180	C. intermedia, C. pararugosa, C. rugosa	3	Fermentation	This study	
600	Candida/Dekkera/ Meyerozyma/Rhodotorula/ Wickerhamomyces	300, 210, 80	400, 200	360, 320	R. mucilaginosa	7	Fermentation	This study	
880	Saccharomyces	385, 365	320, 230, 180, 150	440, 440	S. paradoxus	8	Fermentation	18	
880	Saccharomyces	340, 320, 120	320, 230, 180, 150	360, 350, 110	Restriction group 1	16	Fermentation	This study	
880	Saccharomyces	385, 365	320, 240, 170, 120	360, 350, 160	Restriction group 1	41	Fermentation	39	
880	Saccharomyces	385, 365	320, 230, 180, 150	365, 155	Restriction group 1	25	Fermentation	18,This study	
400	Candida/Dekerra/Pichia/ Yarrowia	240, 160	380	220, 180	C. intermedia, C. pararugosa, C. rugosa	3	Conditioning	This study	
450	Candida/Dekerra/Pichia/ Yarrowia	180, 100, 90, 80	340, 85, 25	260, 200	P. fermentans, P. membranifaciens	11	Conditioning	This study, 18	
450	Candida/Dekerra/Pichia/ Yarrowia	180, 100, 90, 80	310, 90, 40	250, 200	P. fermentans, P. membranifaciens	18	Conditioning	This study	
500	Candida/Dekerra/Pichia/ Yarrowia	160, 110, 90, 80, 60	350, 100, 50	280, 220	P. fermentans, P. membranifaciens	14	Conditioning	This study	
500	Candida/Dekerra/Pichia/ Yarrowia	260, 110, 75	330, 90	275, 200	D. bruxellensis	16	Conditioning	18	
450	Candida/Dekerra/Pichia/ Yarrowia	170, 100, 85, 80	340, 80, 30	250, 200	P. fermentans, P. membranifaciens	18	Conditioning	This study, 18	
880	Saccharomyces	385, 365	320, 230, 180, 150	440, 440	S. paradoxus	10	Conditioning	18	
880	Saccharomyces	340, 320, 120	320, 230, 180, 150	380, 380	Restriction group 1	3	Conditioning	This study	
880	Saccharomyces	385, 365	320, 240, 170, 120	360, 150	Restriction group 1	7	Conditioning	This study, 18	

means of identification and the occurrence of misleading information in brewing literature, for example, the name Candida mycoderma has been used to describe a mixture of different yeasts, moulds and bacteria, which contribute to surface films^{24,25} rather than the actual species. Additionally, nomenclature for asexual/sexual stages of yeasts cause confusion, e.g., Pichia kudriavzevii (basionym Issatchenkia orientalis) the teleomorph of Candida acidothermophilum (synonym Candida krusei)⁵⁴. For these reasons, we have constructed a reference library for known wild yeast contaminants found in breweries and tested this library using unknown yeast contaminants isolated from industrial fermentation vessels and conditioning tanks. A number of production and non-production yeast strains were included to determine if these can be differentiated using the PCR-RFLP technique. Strains included laboratory strains, ale strains and lager strains from both hybrid groups identified by Dunn and Sherlock¹⁶.

A comparison of PCR fragment sizes and restriction profiles indicated that the data compiled in Table I could be used to identify a number of non-*Saccharomyces* wild yeast contaminants. Species with unique restriction profiles that have been observed in two or more independent investigations and with multiple strains include *D. bruxellensis*, *H. valbyensis*, *K. exigua*, *K. unispora*, *M. farinosa*, *M. guilliermondii*, *P. kudriavzevii*, *R. mucilaginosa*, *S. stipitis*, *T. delbrueckii* and *Z. rouxii*. Other species may potentially provide reliable restriction profiles for identification but these first require verification, in most cases because only one strain has been included in one or more studies (C. mesenterica, C. norvegica, Filobasidium capsuligenum, Schwanniomyces occidentalis, W. subpelliculosus, Z. bisporus). In other cases, species within a genus have displayed similar restriction profiles (C. santamariae and C. tenuis or C. intermedia, C. rugosa, C. sake and C. stellata or C. tropicalis and C. parapsilosis or P. fermentans and P. membranifaciens as well as Z. bisporus and Z. bailii), meaning that the profiles generated cannot be considered to be species-specific. In other cases similar profiles are generated with species of different genera (Kluyveromyces lactis and W. anomalus or C. boidinii and H. uvarum) and such profiles can therefore only be considered indicative of a species and not reliable for definitive identification.

In some cases, there are discrepancies in restriction profiles among strains of a given species and, while the majority of these differences are observed with only one of the three restriction enzymes, there are cases in which profiles bear no similarity to each other. One notable example occurs with *Dekkera anomala*, in which a distinct profile was observed in two independent studies, while a different profile was obtained by two other independent studies. The strongly conflicting results in this case may suggest that mis-identification or mis-labelling of strains may have occurred, mostly likely as a consequence of the rapidly changing taxonomic status of yeasts. Otherwise, small differences in fragment sizes may be related to sequence differences between strains of a given species or due to the way in which the DNA was amplified and restricted or the bands sizes determined. It may be expected that differences in recorded fragment sizes as great as 20 bp are possible simply due to the manner in which band size was calculated and this would account for many of the small size variations reported by different researchers for the same strain of a species.

Previous studies suggested that the restriction enzyme HaeIII could divide four siblings of the Saccharomyces sensu stricto group into two categories: S. bayanus/S. pastorianus which has a three-band pattern and S. cerevisiae/S. paradoxus which has a four-band pattern^{18,27,38}. Interestingly, we found that HaeIII digestion of S. pastorianus amplicons could also yield either a three or four band pattern, depending on the strain involved. Studies in recent years have shown that the S. pastorianus lager strains belong to at least two discrete groups^{16,35}. The hybridization event^{41,58} which led to the creation of S. pastorianus, believed now to be a cross between an S. cerevisiae ale strain and the recently discovered S. eubayanus³³, and the subsequent isolation of the hybrid, is believed to have occurred on at least two separate occasions. These hybridizations led to the formation of the Saaz type (group 1) strains used originally in Denmark and Bohemia¹⁶ and the Frohberg type (group 2) used mainly in the Netherlands and Germany. It is probable that the success and proliferation of these strains in the brewing industry was brought about by improved cryotolerance due to the presence of the S. (eu)bayanus subgenome, as S. bayanus is known to be considerably more cryotolerant than S. cerevisiae⁵⁰ and S. eubayanus is found naturally in cold environments³³. Increased tolerance to stress is typical of hybrid strains and appears to bestow an advantage to strains, particularly those used in the brewing and winemaking industries⁴⁷. The increase in genome stability associated with the polyploid hybrid condition⁴⁷ may in fact encourage adaptive evolution of yeasts to their environment. Despite both lager hybrid groups sharing phenotypic characteristics allowing them to ferment wort efficiently at colder temperatures, they are genomically distinct and representatives of both groups were included in this study to determine the potential for ITS-PCR/RFLP to differentiate the two groups. This is the first study to directly compare ITS regions of strains from both of the known hybrids. Results were consistent with those reported by Dunn and Sherlock¹⁶ who used cross genome hybridization to differentiate the two lager strain types. In this study, the HaeIII enzyme was found also to distinguish the two hybrid groups, with one generating profiles typical of S. cerevisiae (hybrid group 2) and one generating profiles typical of S. bayanus var. bayanus (hybrid group 1). Dunn and Sherlock¹⁶ and Nakao et al.⁴¹ have established that, of the two hybrid groups, hybrid group 2 has retained more of the S. cerevisiae genome than the other, with 16 S. cerevisiae-type chromosomes, 12 S. bayanustype chromosomes and eight chimeric chromosomes^{16,41}. Hybrid group 2 strains appear to have also inherited their ITS region from S. cerevisiae.

Results of an investigation by Fernández-Espinar et al.¹⁸ showed that *S. bayanus* and *S. pastorianus* strains

could not be distinguished by ITS-PCR/RFLP using oligonucleotide primers and restriction enzymes identical to those used in this study¹⁸. Similarly, Manzano et al.³⁷ were unable to differentiate those yeasts using PCR-DGGE³⁷. It was supposed that this result was due to the similarity between the ITS regions of both S. bayanus and S. pastorianus, leading to the difficulty in designing specific primers to distinguish them²⁹. Those studies, however, only included S. pastorianus strains belonging to hybrid group 1 (Saaz type) and results are therefore in accordance with those of the current study. Barszczewski and Robak⁶ found that RFLP patterns generated by a strain of S. pastorianus could not be distinguished from those of several S. cerevisiae strains. This result may have been influenced by the oligonucleotide primers and restriction enzymes chosen in that study or may have been due to the S. pastorianus strain belonging to hybrid group 2 and therefore having an ITS region similar to that of S. cerevisiae. Likewise, Tornai-Lehoczki and Dlauchy⁵³ found that four lager yeast strains could not be differentiated from three type strains of S. cerevisiae (and 12 ale strains) but were different to three type strains of S. pastorianus. Again, this result may be influenced by the hybrid group to which the strains belonged. The reference strains of S. pastorianus used in that study all belonged to hybrid group 1, as determined by Dunn and Sherlock¹⁶. The four lager strains used in the study may conceivably belong to hybrid group 2 (three of the strains originated in Germany and could be closely related).

Restriction endonucleases used in this study, as well as distinguishing the *S. pastorianus strains* as either Saaz or Frohberg type, also placed the Frohberg strains into one of two groups depending on the RFLP profile generated with *Hinf*I. The reason for this separation is not known but suggests a different post-hybridization history for these lager strains.

We could not distinguish brewing and non-brewing *Saccharomyces cerevisiae* strains from each other based on the technology described probably due to a low level of phylogenetic separation of industrial and non-industrial strains of the species. Based on 5.8S rDNA restriction patterns, they all independently belong to the *S. cerevisiae* species. However, one study by Yamagishi et al.⁶⁰ employed a combination of specific PCR of flocculation gene *FLO1* and amplification of rDNA followed by RFLP to distinguish brewing and non-brewing strains suggesting that differentiation of these may be possible with the right combination of amplicon and restriction enzyme. Similarly, Barszczewski and Robak⁶ (2004) applied ITS-PCR RFLP and RAPD (randomly amplified polymorphic DNA) to discriminate between brewing and wild yeast isolates.

We have attempted to identify unknown contaminants found in conditioning tanks and fermentation vessels using the constructed ITS library. With reference to current taxonomy, 90% of isolates in fermentation vessels were found to be *Saccharomyces spp*. while *Pichia* species appeared to be dominant in conditioning tanks with 61% of the isolates further identified either as *P. fermentans* or *P. membranifaciens*. The genus *Pichia* is considered the most common of the non-fermentative spoilage yeasts which can cause turbidity and estery off-flavour of beer^{8,45}. The predominance of *Pichia* in conditioning

tanks, but not in fermentation vessels, highlighted the possible effect of oxygen in beer post-fermentation. Air, if inadvertently introduced, can be the source of yeast or bacterial contamination, but even if not, can allow the growth of aerobic yeasts such as those from the *Debaryomyces*, *Dekkera*, or *Candida* genera⁹. A more detailed study with frequent sampling of all stages in the brewing process is, however, necessary to fully appreciate the wild yeast population changes that occur in response to changing environmental conditions.

CONCLUSIONS

The ITS-PCR RFLP technique has a sufficient level of resolution to identify a number of yeasts associated with industrial breweries. Its advantages in terms of reproducibility and ease of use may overcome limitations of classic identification methods. It should however be noted that certain profiles were only genus specific, while others profiles were not specific to either species or genus. Of note was the fact that all profiles generated from the 59 unknown brewery-isolated yeasts corresponded to a profile in the constructed library. The library therefore may not, in all instances, be reliably used to identify an isolate to species level, but may still be used to at least produce a list of possible candidate species which can be verified by other means.

Identification of wild yeasts, even if not to species level, may help brewers to detect if specific problems are occurring at specific steps of the brewing process. Because different species and genera occur under different conditions, the presence of particular yeast types may be a good indication of which process parameters need to be reviewed. For example, *Candida, Kluyveromyces, Pichia* and *Torulaspora* are opportunistic contaminants and usually occur during the aerobic phase of fermentation. Although the majority of these yeasts are obligate aerobes, some *Candida* and *Torulaspora* species show some growth in anaerobic conditions. *Dekkera* species can ferment sugar to ethanol when oxygen is available and their presence is associated with accumulation of high concentrations of acetic acid¹².

Individual Saccharomyces sensu stricto species cannot be identified using this technique. Saccharomyces species can, however, be separated into two different groups based on the restriction profiles generated with *HaeIII*. This technique appears to be a simple and effective way to identify known lager yeast strains as belonging to either the traditional Saaz or Frohberg hybrid groups.

In this study, we generated and tested a 5.8S ITS RFLP library for brewery wild yeast contaminants as well as ale and lager brewing yeast strains based on findings in the literature. However, there are some yeasts reported as being brewery contaminants which have not been included here. Further studies should be conducted in order to strengthen and complete the database. ITS/ RFLP profiles have yet to be generated for *Candida solani, C. humilis, C. oleophila, C. versatilis, Debaryomyces marama, Kodamaea ohmeri* (synonym *Pichia ohmeri*) and *Wickerhamomyces onychis* (basionym *P. onychis*)^{5,25}.

ACKNOWLEDGEMENTS

Molson Coors, Burton-on-Trent, UK, are thanked for their technical assistance as well as their permission to publish this work. The authors gratefully acknowledge the gift of the Group 1 and 2 lager yeast strains from Gianni Liti and Ed Louis, University of Nottingham, UK. T. Wimalasena and K. A. Smart are funded by BBSRC Sustainable Bioenergy Centre programme LACE [BB/G01616X/1]. Facilities used in this work were part funded by the European Regional Development Fund [EMX05568]. K. A Smart also gratefully acknowledges the sponsorship of her chair by SABMiller. T. Pham was funded by the Society for Applied Microbiology, UK.

REFERENCES

- Anonymous. European Brewing Convention. Analytica Microbiologica: Part II. Institute of Brewing: London, 1981, 87, 303-321.
- Anonymous. Copper media for wild yeast detection. J. Am. Soc. Brew. Chem., 1992, 50, 153-157.
- Arias, C. R., Burns, J. K., Friedrich, L. M., Goodrich, R. M. and Parish, M. E., Yeast species associated with orange juice: evaluation of different identification methods. *Appl. Environ. Microbiol.*, 2002, 68, 1955-1961.
- Barnett, J. A. and Lichtenthaler, F. W., A history of research on yeasts 3: Emil Fischer, Eduard Buchner and their contemporaries, 1880-1900. *Yeast*, 2001, 18, 363-388.
- Barnett, J. A., Payne, R. W. and Yarrow, D., Yeasts, Characteristics and Identification, 2nd edition, Cambridge University Press: Cambridge, 1990.
- 6. Barszczewski, W. and Robak, M., Differentiation of contaminating yeasts in brewery by PCR-based techniques. *Food Microbiol.*, 2004, **21**, 227-231.
- Belloch, C., Pérez-Torrado, R., Gonzalez, S. S., Perez-Ortín, J. E., Martínez, J. G., Querol, A. and Barrio, E., Chimeric genomes of natural hybrids of *Saccharomyces cerevisiae* and *Saccharomyces kudriavzevii*. *Appl. Environ. Microbiol.*, 2009, **75**, 2534-2544.
- Briggs, D. E., Boulton, C. A., Brookes, P. A. and Stevens, R., Brewing: Science and Practice. Woodhead Publishing Limited and CRC Press LLC: Cambridge, 2004.
- Campbell, I., Wild yeasts in brewing and distilling. In: Brewing Microbiology, F. Priest and I. Campbell, Eds., Chapman& Hall: London, 2000, pp. 248-266.
- Campbell, I., Microbiological Methods in Brewing Analysis in Brewing Microbiology. 3rd edition, Kluwer Academic/Plenum Publishers: New York., 2003, pp. 367-392.
- CBS, CBS-KNAW Fungal Biodiversity Centre database http:// www.cbs.knaw.nl/ (Last accessed Nov. 2011)
- Ciani, M. and Ferraro, L., Role of oxygen on acetic acid production by *Brettanomyces/ Dekkera* in winemaking. J. Sci. Food Agric., 1997, 75, 489-495.
- Combina, M., Elía, A., Mercado, L., Catania, C., Ganga, A. and Martinez, C., Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. *Int. J. Food Microbiol.*, 2005, **99**, 237-243.
- Constantí, M., Reguant, C., Poblet, M., Zamora, F., Mas, A. and Guillamón, J. M., Molecular analysis of yeast population dynamics: Effect of sulphur dioxide and inoculum on must fermentation. *Int. J. Food Microbiol.*, 1998, **41**, 169-175.
- Coton, E., Coton, M., Levert, D., Casaregola, S. and Sohier, D., Yeast ecology in French cider and black olive natural fermentations. *Int. J. Food Microbiol.*, 2006, **108**, 130-135.
- 16. Dunn, B. and Sherlock, G., Reconstruction of the genome origins and evolution of the hybrid lager yeast *Saccharomyces* pastorianus. Genome Res., 2008, **18**, 1610-1623.
- Esteve-Zarzoso, B., Belloch, C., Uruburu, F. and Querol, A., Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal trancribed spacers. *Int. J. Syst. Bacteriol.*, 1999, **49**, 329-337.

- Fernández-Espinar, M. T., Esteve-Zarzoso, B., Querol, A. and Barrio, E., RFLP analysis of the ribosomal internal trancribed spacers and the 5.8S rRNA gene region of the genus *Saccharomyces:* a fast method for species identification and the differentiation of flor yeasts. *Antonie van Leeuwenhoek*, 2000, **78**, 87-97.
- Genbank, http://www.ncbi.nlm.nih.gov/genbank/ (Last accessed November 2011).
- 20. Gilliland, R. B., Yeast classification. J. Inst. Brew., 1971, 77, 276-284.
- Granchi, L., Bosco, M., Messini, A. and Vincenzini, M., Rapid detetion and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of rDNA ITS region. *J. Appl. Microbiol.*, 1999, **87**, 947-956.
- Guillamon, J. M., Sabate, J., Barrio, E., Cano, J. and Querol, A., Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. *Arch. Microbiol.*, 1998, **169**, 387-392.
- Harris, J. O. and Walson, W., The use of control levels of actidione for brewing and non-brewing strain differentiation. *J. Inst. Brew.*, 1968, **74**, 286-290.
- Ingledew, W. and Casey, G., The use and understanding of media used in brewing microbiology. Media for wild yeast. *Brew. Dig.*, 1982, 57, 18-22.
- Jespersen, L. and Jakobsen, M., Specific spoilage organisms in breweries and laboratory media for their detection. *Int. J. Food Microbiol.*, 1996, 33, 139-155.
- Jespersen, L., Lassen, S. and Jakobsen, M., Flow cytometric detection of wild yeast in lager breweries. *Int. J. Food Microbiol.*, 1993, 17, 321-328.
- 27. Jespersen, L., van der Aa Kuhle, A. and Petersen, K., Phenotypic and genetic diversity of *Sacchaomyces* contaminants isolates from lager breweries and their phylogenic relationship with brewing yeasts. *Int. J. Food Microbiol.*, 2000, **63**, 43-53
- Jeyaram, K., Singh, W. M., Capece, A. and Romano, P., Molecular identification of yeast species associated with 'Hamei'-a traditional starter used for rice wine production in Manipur, India. *Int. J. Food Microbiol.*, 2008, **124**, 115-25.
- Josepa, S., Guillamon, J. M. and Cano, J., PCR differentiation of Saccharomyces cerevisiae from Saccharomyces bayanus/Saccharomyces pastorianus using specific primers. FEMS Microbiol. Lett., 2000, 193, 255-259.
- Kreger-Van Rij, N. J. W., Classification of yeasts. In: The Yeast, A. H. Rose and J. S. Harrison, Eds., Academic press: London, 1987.
- Kurtzman, C. P., Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res., 2003, 4, 233-245.
- 32. Las Heras-Vazquez, F. J., Mingorance-Cazorla, L., Clemente-Jimenez, J. M. and Rodriguez-Vico, F., Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. *FEMS Yeast Res.*, 2003, **3**, 3-9.
- 33. Libkind, D., Hittinger, C. T., Valério, E., Gonçalves, C., Dover, J., Johnston M., Gonçalves, P. and Sampaio, J. P., Microbe domestication and the identification of the wild genetic stock of lagerbrewing yeast. *Proc. Nat. Acad. Sci.*, 2011, **108**, 14539-14544.
- Lin, C. C. and Fung, Y., Conventional and rapid methods for yeast indentification. *Crit. Rev. Microbiol.*, 1987, 14, 273-289.
- Liti, G., Barton, D. B. H. and Louis, E. J., Sequence diversity, reproductive isolation and species concepts in *Saccharomyces*. *Genetics*, 2006, **174**, 839-850.
- 36. Lopandic, K., Tiefenbrunner, W., Gangl, H., Mandl, K., Berger, S., Leitner, G., Abd-Ellah, G., Querol, A., Gardner, R. and Sterflinger, K., Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. *FEMS Yeast Res.*, 2008, **8**, 1063-1075.
- Manzano, M., Cocolin, L., Longo, B. and Comi, G., PCR-DGGE differentiation of strains of *Saccharomyces* sensu stricto. *Antonie van Leeuwenhoek*, 2004, 85, 23-27.

- McCullough, M., Clemons, K., McCusker, J. and Stevens, D., Intergenic transcribed spacer PCR ripotyping for differentation of *Saccharomyces* species and interspecies hybrids. *J. Clin. Microbiol.*, 1998, **36**, 1035-1038.
- Morrissey, W. F., Davenport, B., Querol, A. and Dobson, A. D., The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol., 2004, 97, 647-655.
- 40. Mycobank, http://www.mycobank.org/ (Last accessed November 2011).
- 41. Nakao, Y., Kanamori, T., Itoh, T., Kodama, Y., Rainieri, S., Nakamura, N., Shimonaga, T., Hattori, M. and Ashikari, T., Genome sequence of the lager brewing yeast, an Interspecies Hybrid. *DNA Res.*, 2009, **16**, 115-129.
- Naumova, E. S., Naumov, G. I., Masneuf-Pomarède, I., Aigle, M. and Dubourdieu, D., Molecular genetic study of introgression between *Saccharomyces bayanus* and *S. cerevisiae. Yeast*, 2005, **22**, 1099-1115.
- 43. Nisiotou, A. A. and Nychas, G.-J. E., Yeast populations residing on healthy or Botrytis-infected grapes from a vineyard in Attica, Greece. *Appl. Environ. Microbiol.*, 2007, **73**, 82765-2768.
- 44. Parapouli, M., Hatziloukas, E., Drainas, C. and Perisynakis, A., The effect of Debina grapevine indigenous yeast strains of *Metschnikowia* and *Saccharomyces* on wine flavour. J. Ind. *Microbiol. Biotechnol.*, 2010, **37**, 85-93.
- Passoth, V., Fredlund, E., Druvefors, U. and Schnürer, J., Biotechnology, physiology and genetics of the yeast *Pichia anomala*. *FEMS Yeast Res.*, 2005, 6, 3-13.
- 46. Powell, C. D. and Smart, K. A., A comparison of new and traditional techniques for the detection of brewery contaminants. Proceedings of the European Brewing Convention, Congress, Dublin, 2003, Verlag Hans Carl Getränke-Fachverlag: Nürnberg, 2003, 29(115), 1-13.
- 47. Querol, A. and Bond, U., The complex and dynamic genomes of industrial yeasts. *FEMS Microbiol lett.*, 2009, **293**, 1-10.
- Renard, A., Gómez di Marco, P., Egea-Cortines, M. and Weiss, J., Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. *Int. J. Food Microbiol.*, 2008, **126**, 195-201.
- Ryder, D. S., Murray, J. P. and Stewart, M., Phenolic off-flavour problems caused by *Saccharomyces* wild yeast. *Tech. Q. Master Brew. Assoc. Am.*, 1978, **15**, 79-86.
- Sato, M., Watari, J. and Takashio, M., Effect of growth media and strains on structural stability in small chromosomes (Chromosome I, VI and III) of bottom-fermenting yeast. *J. Inst. Brew.*, 2002, **108**, 283-285.
- Smart, K. A. and Powell, C. D., Wild yeasts in brewing: a review. The Inst. of Brewing & Distilling Africa Sect. - Proc. 10th Brewing Convention, Pilanesberg, South Africa 2005, 34-39.
- Storgårds, E., Tapani, K., Hartwall, P., Saleva, R. and Suihko, M.-L., Microbial attachment and biofilm formation in brewery bottling plants. J. Am. Soc. Brew. Chem., 2006, 64, 8-15.
- Tornai-Lehoczki, J. and Dlauchy, D., Delimination of brewing yeast strains using different molecular techniques. *Int. J. Food Microbiol.*, 2000, 62, 37-45.
- Tracey, R., van Vuuren, H. and du Toit, D., A method for the detection of *Issatchenkia orientalis* in a baker's yeast factory. *Appl. Microbiol. Biotechnol.*, 1984, **19**, 131-133.
- Walsh, R. M. and Martin, P. A., Growth of Saccharomyces cerevisiae and Saccharomyce uvarum in a temperature gradient incubator. J. Inst. Brew., 1977, 83, 169-172.
- 57. Walters, L. S. and Thiselton, M. R., Utilisation of lysine by yeasts. J. Inst. Brew, 1953, 59, 401-404.
- Wang, S. A. and Bai, F. Y., *Saccharomyces arboricolus* sp. nov., a yeast species from tree bark. *Int. J. Syst. Evol. Microbiol.*, 2008, 58, 510-514.

- 59. White, T. J., Bruns, T., Lee, S. and Taylor, J. W., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, Eds., Academic Press, Inc: New York, 1990, pp. 315-322.
- Yamagishi, H., Funahashi, O., Ogata, T. and Sakai, K., Differentiation between brewing and non-brewing yeasts using a combination of PCR and RFLP. J. Appl. Microbiol., 1999, 86, 505-513.
- 61. Young, T. W., The Yeasts. A. H. Rose and K. Harrison, Eds., Academic Press: London, 1987.
- Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A. and I., Masneuf-Pomarede, I., Dynamics and diversity of non-*Saccharomyces* yeasts during the early stages in winemaking. *Int. J. Food Microbiol.*, 2008, **125**, 197-203.

(Manuscript accepted for publication November 2011)