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There has been recent success in identifying disease-causing variants in Mendelian disorders by exome sequencing followed by
simple filtering techniques. Studies generally assume complete or high penetrance. However, there are likely many failed and
unpublished studies due in part to incomplete penetrance or phenocopy. In this study, the expected number of candidate single-
nucleotide variants (SNVs) in exome data for autosomal dominant or recessive Mendelian disorders was investigated under the
assumption of “no genetic heterogeneity.” All variants were assumed to be under the “null model,” and sample allele frequencies
were modeled using a standard population genetics theory. To investigate the properties of pedigree data, full-sibs were considered
in addition to unrelated individuals. In both cases, particularly regarding full-sibs, the number of SNVs remained very high without
controls. The high efficacy of controls was also confirmed. When controls were used with a relatively large total sample size (e.g.,
𝑁 = 20, 50), filtering incorporating of incomplete penetrance and phenocopy efficiently reduced the number of candidate SNVs.
This suggests that filtering is useful when an assumption of no “genetic heterogeneity” is appropriate and could provide general
guidelines for sample size determination.

1. Introduction

Understanding associations between human genetic varia-
tions and phenotypes, including risk of disease, is important
for successful realization of personalizedmedicine. Such vari-
ants can be used as biomarkers. Recent advances in high-
throughput sequencing technology (“next-generation DNA
sequencing” (NGS)) enable exploration of human genetic
variations on genome-wide and individual levels.

The international “1,000-Genome Project,” which uses
NGS technology, was launched in 2008. The project aims
to create a detailed catalog of human genetic variations by
sequencing at least 1,000 individuals [1]. This type of catalog
would provide a basis for studies on disease-causing variants
or genes. In the last decade, genome-wide association studies
(GWAS) using single-nucleotide polymorphism (SNP) geno-
typing arrays have been successful, although genetic variants
identified by GWAS only explain a small proportion of

heritability formany complex diseases [2]. Amajor reason for
this limitation is that the “common disease, common variant”
hypothesis is a prerequisite forGWAS [2].Thehypothesis that
many common diseases are caused by “common variants”
(i.e., variants present in more than 1–5% of a population)
as detected by SNP genotyping arrays is not likely realistic.
Attention has been gradually turned to “rare variants,” which
can be detected by NGS technology.

The cost of DNA sequencing is continuously being
reduced. However, whole genome sequencing is still too
expensive. Recently, sequencing the exome (all protein-
coding regions in the genome) has been considered for
identifying disease-causing genes or variants. The human
exome sequence consists of approximately 30Mb pairs
(nucleotides), corresponding to approximately 1% of the total
genome. Thus, exome sequencing is cost effective. Ng et al.
[3] provided a proof of concept that exome sequencing can
be used to identify disease-causing genes or variants using
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a simple filtering approach. To date, more than 100 disease-
causing genes for Mendelian disorders have been identified
using exome sequencing [4].

Analyses of exome data for Mendelian disorders are con-
ducted in a simple, intuitive manner. For example, Ng et al.
[3] “reidentified” the MYH3 gene, which is known to cause
the rare autosomal dominant disorder Freeman-Sheldon syn-
drome, as follows: (1) retention of genes in which at least one
nonsynonymous single-nucleotide variant (SNV), splice-site
variation or indel was present in four unrelated affected indi-
viduals and (2) filtering out (removing) variants present in the
exomes of eight control individuals or samples from a public
database (dbSNP). As an example of using whole genome
sequencing for a single patient in a pedigree, Sobreira et al. [5]
identified the causative gene of the rare autosomal dominant
disease metachondromatosis. In advance linkage analysis
using SNP genotyping arrays was conducted, and whole
genomes of a single patient and eight unrelated controls were
sequenced. The researchers focused on regions with high
positive LOD scores and used sequences from the eight con-
trols and dbSNP data as filters to remove variants. They then
identified a patient-specific deletion in an exon of PTPN11.

Exome sequencing is an effective method for identifying
disease-causing variants in Mendelian disorders. However,
there are likely a large number of failed and unpublished
studies due to incomplete penetrance, phenocopy, or geno-
typing error (including sequencing error). Is exome analysis
for Mendelian disease actually applicable under assumptions
of incomplete penetrance and phenocopy? What is the
necessary sample size? To answer such questions, theoretical,
simple model studies are suitable. Theoretical research is
rarely used for exome analysis in Mendelian disease, even in
cases of complete penetrance and no phenocopy.

In exome sequencing, short reads produced by NGS
are mapped to the reference sequence, which is the stan-
dard human genome sequence, and variants are detected
against the reference (Figure 1(a)). Disease-causing variants
are searched for based on variants detected in affected
individuals. In this study, the number of candidate SNVs for
diseases following Mendelian inheritance modes, including
autosomal dominant and recessive, was investigated under
the assumption of “no genetic heterogeneity” (i.e., no allelic
or locus heterogeneity or situations in which a genetic disease
is caused by a variant on a gene instead of several variants on
one or more genes). It was assumed that allelic types of all
variants are independent of the affected status (i.e., all variants
are under the “null model”).This is valid because there is only
one disease-causing variant. Allelic frequencies in a sample
were modeled using a standard population genetics theory.
Exome sequences with andwithout controls were considered,
and incomplete penetrance and phenocopy were incorpo-
rated as filtering conditions (Figures 1(b), 1(c), and 1(d)).
Differences between data from unrelated individuals and
pedigrees were also evaluated (Figures 1(e) and 1(f)). Public
databases (e.g., dbSNP or 1,000 Genome Project database),
which can include errors and generally do not provide
phenotype information, are often used to filter out SNVs in
exome analysis, but were not considered in this study. Zhi
and Chen [6] modeled an analysis of exome sequencing.

The authors investigated the power of various conditions,
including the number of mutations identified after filtering
(corresponding to the number of SNVs after filtering in
this study), inheritance modes of disease (i.e., autosomal
dominant and recessive), locus heterogeneity, gene length,
sample size, and others. Common or low quality variants
were filtered out in advance and disease-causing genes were
explored under genetic heterogeneity.The authors treated the
number of SNVs after filtering as a known constant. In con-
trast, we directly filtered disease-causing variants according
to modes of inheritance under the assumption of “no genetic
heterogeneity” and evaluated the number of candidate
SNVs after filtering. In addition, although the term “SNV”
means “single-nucleotide variant” as shown in Figure 1(a),
it can be interpreted simply as a “variant,” including “splice-
site variant” or “indel.” The term “SNV” is used in this study
because there are fewer splice-site variants or indels than
SNVs in exome sequences [3].

2. Method

There are roughly 20,000 SNVs in a single human exome
[3]. That is, diploid exome sequences (two haploid exome
sequences) have different allelic types (alternative types, 𝐴)
from haploid reference sequences (reference types, 𝑅) at
∼20,000DNA sites (Figure 1(a)). According to the population
genetics theory described below, the expected number of
SNVs with 𝑖 mutant and 𝑛 − 𝑖 ancestral alleles in 𝑛 haploid
sequences randomly sampled from a population can be
obtained using a simple formula. In Section 2.1, we used this
formula to derive an expression for the expected number of
SNVs with 𝑛

𝐴
alternative and 𝑛 − 𝑛

𝐴
reference alleles in 𝑛

haploid sequences randomly sampled from a population. In
Section 2.2, exome sequences of𝑁unrelated affected individ-
uals (Figure 1(e)) were considered, and the expected number
of SNVs for individuals with genotypes𝑅𝑅,𝑅𝐴, and𝐴𝐴 (𝑛

𝑅𝑅
,

𝑛
𝑅𝐴

and 𝑛
𝐴𝐴

, resp.) was obtained. This enabled calculation
of the expected number of SNVs after filtering, as illustrated
in Figures 1(b) and 1(c). In Section 2.3, a case with addi-
tional controls was considered (Figure 1(d)). In Section 2.4,
we considered data from full-sibs with and without controls
in a nuclear family to investigate the properties of the expect-
ed number of SNVs using exome sequences from a pedigree
(Figure 1(f)).

2.1. Site Frequency Spectrum of the Alternative Allele. We con-
sidered 𝑛 haploid sequences randomly sampled from a popu-
lation under theWright-Fisher diffusion model.The infinite-
site model of neutral mutations was assumed. We denoted
the diploid population size and mutation rate per haploid
sequence per generation by PopSize and 𝜇, respectively. 𝑀

𝑖

indicates the number of SNVs with 𝑖 mutant (derived) and
𝑛 − 𝑖 ancestral alleles in 𝑛 haploid sequences. 𝑀

𝑖
is the “site

frequency spectrum” of the mutant (derived) allele in a sam-
ple. According to Fu [7], the expectation of𝑀

𝑖
is the result of

𝐸 [𝑀
𝑖
] =

𝜃

𝑖
, 1 ≤ 𝑖 ≤ 𝑛 − 1, (1)
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Figure 1: Setting for our study. (a) Alternative (𝐴) allele and reference (𝑅) allele. (b) Stringent filtering for affected individuals. (c) Filtering
incorporating phenocopy. (d) Filtering incorporating incomplete penetrance and phenocopy. (e) Case of unrelated individual. (f) Case of
full-sibs.

where 𝜃 = 4 × 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 × 𝜇. This simple formula does not
include the sample size 𝑛. As described in the following
section, the point estimate of 𝜃 for the human exome is
∼13,333. For example, when considering four haploid exomes
(equivalent to two unrelated diploid exomes), the number of
SNVs with one, two, and three mutant alleles is expected to
be 13,333, 6,666.50, and 4,444.33, respectively.

However, in practice it is often not known if the DNA
type at a segregating site is mutant or ancestral. In exome

analysis, DNA types are generally expressed as “reference
(𝑅)” or “alternative (𝐴)” because variants in exome sequences
are detected based on comparison with a reference genome
sequence (Figure 1(a)). This study was also carried out in
terms of “Reference type (𝑅)” or “Alternative type (𝐴)”. Thus,
as a first step, we defined 𝑀

󸀠

𝑛𝐴
in place of 𝑀

𝑖
to derive the

expression 𝐸[𝑀
󸀠

𝑛𝐴
].

In addition to 𝑛 haploid sequences, we considered that
a reference sequence was also randomly sampled from a



4 Computational and Mathematical Methods in Medicine

population (𝑛+1 sequences). We defined𝑀
󸀠

𝑛𝐴
as the number

of SNVs with 𝑛
𝐴
alternative and 𝑛−𝑛

𝐴
reference alleles in the

𝑛 haploid sequences. In a segregating site in 𝑛 + 1 sequences,
reference DNA is either mutant or ancestral. The expected
number of SNVs in which reference DNA is mutant and
𝑛
𝑅
reference alleles in the 𝑛 haploid sequences is derived by

the product of the expected number of SNVs with 𝑛
𝑅
+ 1

mutant alleles in 𝑛+1 sequences, 𝜃/(𝑛
𝑅
+1) based on (1), and

the probability that a mutant allele is chosen as a reference
from 𝑛 + 1 alleles with 𝑛

𝑅
+ 1mutant alleles, (𝑛

𝑅
+ 1)/(𝑛 + 1).

This is represented as

𝜃

𝑛
𝑅
+ 1

𝑛
𝑅
+ 1

𝑛 + 1
=

𝜃

𝑛 + 1
. (2)

Similarly, the expected number of SNVs in which refer-
ence DNA is ancestral and 𝑛

𝑅
reference alleles in 𝑛 haploid

sequences was obtained.The expectation is represented as the
product of the expected number of SNVs with (𝑛 + 1) − (𝑛

𝑅
+

1) = (𝑛 − 𝑛
𝑅
) mutant alleles in (𝑛 + 1) sequences, 𝜃/(𝑛 − 𝑛

𝑅
)

based on (1), and the probability that amutant allele is chosen
as a reference from 𝑛 + 1 alleles with 𝑛

𝑅
+ 1 mutant alleles,

(𝑛
𝑅
+ 1)/(𝑛 + 1). The resulting equation is

𝜃

𝑛 − 𝑛
𝑅

𝑛
𝑅
+ 1

𝑛 + 1
. (3)

The expectation of 𝑀󸀠
𝑛𝐴
, 𝐸[𝑀󸀠

𝑛𝐴
], is equal to the sum of

(2) and (3), resulting in

𝐸 [𝑀
󸀠

𝑛𝐴
] =

𝜃

𝑛 + 1
+

𝜃

𝑛 − 𝑛
𝑅

𝑛
𝑅
+ 1

𝑛 + 1
=

𝜃

𝑛 − 𝑛
𝑅

=
𝜃

𝑛
𝐴

, 1 ≤ 𝑛
𝐴
≤ 𝑛.

(4)

The formula does not include sample size. Interestingly,
this result is obtained by (1), assuming that the alternative
alleles are a mutant. Note that 𝑛

𝐴
can be equal to 𝑛 at most

in (4) (𝑛 alleles are all alternatives at a particular DNA site).

2.2. Unrelated 𝑁 Affected Individuals. Next, consider exome
sequences of unrelated 𝑁 affected individuals under the
Wright-Fisher diffusion model (Figure 1(e)). The infinite-site
model of neutral mutations was assumed again. Assuming
that𝑁 diploid exome sequences and a reference sequence are
“randomly sampled” from the population, we obtained the
expected number of SNVs in which the number of individ-
uals with genotypes 𝑅𝑅, 𝑅𝐴, and 𝐴𝐴 is 𝑛

𝑅𝑅
, 𝑛
𝑅𝐴
, and 𝑛

𝐴𝐴
,

respectively. Here, “randomly sampled”means that𝑁 diploid
exome sequences and a reference sequence are “randomly
sampled” (𝑁+1 times), which is equivalent to 2𝑁+1 haploid
exome sequences that are “randomly sampled” (2𝑁+1 times),
followed by one sequence chosen as a reference from the
2𝑁+1 sequences.The remaining 2𝑁 sequences are randomly
joined to form 𝑁 diploids. The latter is used for illustrative
purposes.

Conditions of the variables were collected. As in
Section 2.1 𝑛

𝑅
and 𝑛

𝐴
denote the number of reference and

alternative alleles in a site, respectively. One has

𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴

∈ nonnegative integers, (5a)

2𝑁 = 𝑛
𝑅
+ 𝑛
𝐴
, (5b.1)

𝑁 = 𝑛
𝑅𝑅

+ 𝑛
𝑅𝐴

+ 𝑛
𝐴𝐴

, (5b.2)

𝑛
𝑅
= 2𝑛
𝑅𝑅

+ 𝑛
𝑅𝐴

, (5b.3)

𝑛
𝐴
= 2𝑛
𝐴𝐴

+ 𝑛
𝑅𝐴

. (5b.4)

(5b)

Note that given 𝑛
𝐴
or 𝑛
𝑅
(and constant 𝑁), there is only one

independent variable among 𝑛
𝑅𝑅
, 𝑛
𝑅𝐴

and 𝑛
𝐴𝐴

. For example,
if 𝑛
𝐴
, and 𝑛

𝐴𝐴
are fixed, the other two variables, 𝑛

𝑅𝑅
and 𝑛
𝑅𝐴
,

are automatically determined.
Let 𝐾(𝑁, 𝑛

𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) be the number of SNVs
in which the number of reference and alternative alleles
is 𝑛
𝑅
and 𝑛

𝐴
, respectively, and the number of individuals

with genotypes 𝑅𝑅, 𝑅𝐴, and 𝐴𝐴 is 𝑛
𝑅𝑅
, 𝑛
𝑅𝐴
, and 𝑛

𝐴𝐴
,

respectively, in total 𝑁 individuals. The expected number of
SNVs, 𝐸[𝐾(𝑁, 𝑛

𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)], is defined only when
all conditions of (5a) and (5b) are met. First, we consid-
ered 2𝑁 haploid exome sequences and a reference to be
“randomly sampled” (2𝑁 + 1 times). The number of SNVs
with 𝑛

𝐴
alternative and 𝑛 − 𝑛

𝐴
reference alleles in the

2𝑁 + 1 haploid samples can be readily obtained by (4). The
probability that the genotype configuration (𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)

was determined given that a DNA site has 𝑛
𝐴
alternative

alleles was denoted as Prob(𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
). The number

of distinct permutations of 2𝑁 is given by (2𝑁)!/(𝑛
𝑅
!𝑛
𝐴
!).

How many permutations result in the genotype configura-
tion (𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)? The number of ways to determine the
genotype of each individual in distinct 𝑁 individuals and
generate a genotype configuration of (𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) is equal
to 𝑁!/(𝑛

𝑅𝑅
!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!). The genotype 𝑅𝐴 can be generated
from the two runs, 𝑅𝐴 and 𝐴𝑅. Therefore, the number of
permutations used to generate the genotype configuration
(𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) is derived from (2
𝑛𝑅𝐴𝑁!)/(𝑛

𝑅𝑅
!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!) and
Prob(𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
) = (2

𝑛𝑅𝐴𝑁!)/(𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!) ×

(𝑛
𝑅
!𝑛
𝐴
!)/(2𝑁)!. The expression of Prob(𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
)

was shown elsewhere and used to perform the exact test of
Hardy-Weinberg equilibrium [8]. Let us give a proof of the
following proposition.

Proposition 1. 𝐸[𝐾(𝑁, 𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)] = 𝐸[𝑀
󸀠

𝑛𝐴
] ×

Prob (𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
).

Proof. 𝐸[𝐾] = 𝐸diff[𝐸samp[𝐾 | 𝑀
󸀠

𝑛𝐴
]], where 𝐸diff is

the expectation with respect to the diffusion model and
𝐸samp is the expectation with respect to the binomial sam-
pling. Binomial sampling is 𝑀

󸀠

𝑛𝐴
-times Bernoulli trial, ad-

dressing whether a site indicates genotype counts of (𝑛
𝑅𝑅

,

𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

). Probability of the Bernoulli trial is Prob(𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

,

𝑛
𝐴𝐴

| 𝑛
𝐴
). Therefore, 𝐸diff[𝐸samp[ 𝐾 | 𝑀

󸀠

𝑛𝐴
]] = 𝐸diff[𝑀

󸀠

𝑛𝐴
×

Prob(𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
)] = 𝐸diff[𝑀

󸀠

𝑛𝐴
] Prob(𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

|

𝑛
𝐴
). 𝐸diff[𝑀

󸀠

𝑛𝐴
] is represented by (4) and the proposition

follows.



Computational and Mathematical Methods in Medicine 5

Then, we have

𝐸 [𝐾 (𝑁, 𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)]

= 𝐸 [𝑀
󸀠

𝑛𝐴
] × Prob (𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑛
𝐴
)

=
𝜃

𝑛
𝐴

×
2
𝑛𝑅𝐴𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!

𝑛
𝑅
!𝑛
𝐴
!

(2𝑁)!
.

(6)

Here, 𝐸[𝐾(𝑁, 𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)] is not defined if (5a)
and (5b) are not satisfied. For example, in the case of 𝑁 =

2 (4 haploid sequences), the expected number of SNVs
for (𝑁, 𝑛

𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) = (2, 3, 1, 1, 1, 0), (2, 2, 2, 0, 2, 0),
(2, 2, 2, 1, 0, 1), (2, 1, 3, 0, 1, 1), (2, 0, 4, 0, 0, 2) satisfying (5a)
and (5b) is 𝜃, 𝜃/3, 𝜃/6, 𝜃/3, and 𝜃/4, respectively. If we use
13,333 as human exome 𝜃, 𝐸[𝐾(𝑁, 𝑛

𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)] is
13,333, 4,444.33, 2,222.17, 4,444.33, and 3,333.25, respectively.
If both individuals are affected by a certain recessive disease
with the genotype 𝐴𝐴 at a causal DNA site, we can use
a filter to retain variants in which both individuals have
the genotype 𝐴𝐴. The expected number of SNVs after
filtering is 𝐸[𝐾(2, 0, 4, 0, 0, 2)] = 3,333.25. Similarly, when
both individuals are affected by a dominant disease with
genotypes 𝐴𝐴 or 𝑅𝐴 at a causal DNA site, the expected
number of SNVs after filtering is 𝐸[𝐾(2, 2, 2, 0, 2, 0)] + 𝐸

[𝐾(2, 1, 3, 0, 1, 1)]+𝐸[𝐾(2, 0, 4, 0, 0, 2)] = 4,444.33 + 4,444.33
+ 3,333.25 = 12,221.91. In thisway, by summing𝐸[𝐾(𝑁, 𝑛

𝑅
, 𝑛
𝐴
,

𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)] for all sets of (𝑁, 𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) that
satisfy (5a) and (5b) and including a filtering condition, the
expected number of SNVs after filtering can be calculated.

In some cases, factors such as reduced penetrance, pheno-
copy (including misdiagnosis), or genotyping errors should
be taken into account. So, consider filtering to retain only
SNVs in which at least𝑋(≥𝑋) of𝑁 affected individuals have
𝐴𝐴 in cases of recessive disease or 𝐴𝐴 or 𝑅𝐴 in cases of
dominant disease (Figure 1(c)). At the disease-causing variant
site, this allows the phenocopy (or genotyping error) from
genotype𝑅𝑅 or𝑅𝐴 to𝐴𝐴 in cases of recessive disease or from
genotype 𝑅𝑅 to 𝐴𝐴 or 𝑅𝐴 in cases of dominant disease. The
following are detailed methods of calculating the expected
number of SNVs after filtering.

As noted, given 𝑛
𝐴
or 𝑛
𝑅
(and constant 𝑁), there is only

one independent variable in the conditions of (5b). In case of
recessive disease, we can express 𝐾(𝑁, 𝑛

𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)

as a function of 𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

using (5b), denoted by
𝐸[𝐾(𝑁, 𝑛

𝐴
, 𝑛
𝐴𝐴

)]. Specifically, this can be expressed as

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

)]

=
𝜃

𝑛
𝐴

2
(𝑛𝐴−2𝑛𝐴𝐴)𝑁!

(𝑁 − 𝑛
𝐴
+ 𝑛
𝐴𝐴

)! (𝑛
𝐴
− 2𝑛
𝐴𝐴

)!𝑛
𝐴𝐴

!

×
(2𝑁 − 𝑛

𝐴
)!𝑛
𝐴
!

(2𝑁)!
.

(7)

𝐸[𝐾(𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

)] is not defined if (5a) is not satisfied.
After filtering, the expected number of SNVs in which at least
𝑋(≥𝑋) of𝑁 affected individuals have 𝐴𝐴 is calculated by

∑

𝑛𝐴, 𝑋≤𝑛𝐴𝐴

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

)] . (8)

In cases of dominant disease, denoting 𝑛
𝐴𝐴+𝑅𝐴

as the
number of individuals with genotypes 𝐴𝐴 or 𝑅𝐴 (𝑛

𝐴𝐴+𝑅𝐴
=

𝑛
𝐴𝐴

+𝑛
𝑅𝐴

) can be expressed as𝐸[𝐾(𝑁, 𝑛
𝑅
, 𝑛
𝐴
, 𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

)]

as a function of 𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

using (5b), denoted by
𝐸[𝐾(𝑁, 𝑛

𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)]. This results in

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)]

=
𝜃

𝑛
𝐴

2
(2𝑛𝐴𝐴+𝑅𝐴−𝑛𝐴)𝑁!

(𝑁 − 𝑛
𝐴𝐴+𝑅𝐴

)! (2𝑛
𝐴𝐴+𝑅𝐴

− 𝑛
𝐴
)! (𝑛
𝐴
− 𝑛
𝐴𝐴+𝑅𝐴

)!

×
(2𝑁 − 𝑛

𝐴
)!𝑛
𝐴
!

(2𝑁)!
.

(9)

𝐸[𝐾(𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)] is not defined if (5a) is not satisfied.
After filtering, the expected number of SNVs in which at least
𝑋(≥𝑋) of𝑁 affected individuals have𝐴𝐴 or𝑅𝐴 is calculated
by

∑

𝑛𝐴, 𝑋≤𝑛𝐴𝐴+𝑅𝐴

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)] . (10)

2.3. Unrelated𝑁
𝑎
Affected Individuals with𝑁

𝑐
Controls. Con-

sider exome sequences of unrelated𝑁 individuals consisting
of 𝑁
𝑎
affected individuals and 𝑁

𝑐
controls. In cases of

recessive disease, we considered a filter to retain only SNVs
in which at least 𝑋(≥𝑋) of 𝑁

𝑎
affected and at most 𝑌(≤𝑌)

of 𝑁
𝑐
control individuals have 𝐴𝐴 (Figure 1(d), left). This

allows the phenocopy (or genotyping error) from genotype
𝑅𝑅 or 𝑅𝐴 to 𝐴𝐴 and/or the reduced penetrance of 𝐴𝐴 at a
disease-causing variant site. Similarly, in cases of dominant
disease, we considered a filter to retain only SNVs in which at
least𝑋(≥𝑋) of𝑁

𝑎
affected and at most 𝑌(≤𝑌) of𝑁

𝑐
control

individuals have 𝐴𝐴 or 𝑅𝐴 (Figure 1(d), right).
First we did not distinguish affected individuals from

controls in total 𝑁 individuals. The expected number of
SNVs in which the number of alternative alleles is 𝑛

𝐴
and

the number of individuals with genotype 𝐴𝐴 is 𝑛
𝐴𝐴

is still
given by (7). Next we assumed that 𝑁

𝑎
affected individuals

and𝑁
𝑐
controls were randomly selected from𝑁 individuals.

Considering recessive diseases, for a given 𝑛
𝐴𝐴

, the number
of individuals with genotypes 𝐴𝐴, 𝑛

𝐴𝐴(𝑎)
, in 𝑁

𝑎
affected

individuals follows a hypergeometric distribution. As a result,
the expected number of SNVs,𝐸[𝐾

2
(𝑁,𝑁

𝑎
, 𝑛
𝐴
, 𝑛
𝐴𝐴

, 𝑛
𝐴𝐴(𝑎)

)],
in which the number of alternative alleles is 𝑛

𝐴
and the



6 Computational and Mathematical Methods in Medicine

number of individuals with genotype 𝐴𝐴 is 𝑛
𝐴𝐴(𝑎)

in 𝑁
𝑎

affected individuals is represented as

𝐸 [𝐾
2
(𝑁,𝑁

𝑎
, 𝑛
𝐴
, 𝑛
𝐴𝐴

, 𝑛
𝐴𝐴(𝑎)

)]

= Prob (𝑛
𝐴𝐴(𝑎)

| 𝑛
𝐴,
𝑛
𝐴𝐴

) × 𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

)]

=

(
𝑛𝐴𝐴
𝑛𝐴𝐴(𝑎)

) × (
𝑁−𝑛𝐴𝐴

𝑁𝑎−𝑛𝐴𝐴(𝑎)
)

(
𝑁

𝑁𝑎
)

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴

)] .

(11)

After filtering, the expected number of SNVs in which at
least𝑋(≥ 𝑋) of𝑁

𝑎
affected individuals and at most 𝑌(≤𝑌) of

𝑁
𝑐
control individuals have the 𝐴𝐴 genotype is obtained by

summing 𝐸[𝐾
2
]:

∑

𝑛𝐴, 𝑛𝐴𝐴, 𝑛𝐴𝐴(𝑎)

𝐸 [𝐾
2
(𝑁,𝑁

𝑎
, 𝑛
𝐴
, 𝑛
𝐴𝐴

, 𝑛
𝐴𝐴(𝑎)

)] , (12)

where the sum of 𝑛
𝐴𝐴(𝑎)

is over the value satisfying the fil-
tering condition, {𝑛

𝐴𝐴(𝑎)
: 𝑋 ≤ 𝑛

𝐴𝐴(𝑎)
∧ 𝑛
𝐴𝐴(𝑐)

= (𝑛
𝐴𝐴

−

𝑛
𝐴𝐴(𝑎)

) ≤ 𝑌}. 𝑛
𝐴𝐴(𝑐)

denotes the number of individuals with
𝐴𝐴 genotypes in the𝑁

𝑐
controls.

Similarly, considering dominant diseases the expected
number of SNVs in which the number of alternative alleles
is 𝑛
𝐴
and the number of individuals with genotypes 𝐴𝐴 or

𝑅𝐴 (𝑛
𝐴𝐴+𝑅𝐴(𝑎)

) in𝑁
𝑎
affected individuals is represented by

𝐸 [𝐾
2
(𝑁,𝑁

𝑎
, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

, 𝑛
𝐴𝐴+𝑅𝐴(𝑎)

)]

= Prob (𝑛
𝐴𝐴+𝑅𝐴(𝑎)

| 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

) × 𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)]

=

(
𝑛𝐴𝐴+𝑅𝐴
𝑛𝐴𝐴+𝑅𝐴(𝑎)

) × (
𝑁−𝑛𝐴𝐴+𝑅𝐴

𝑁𝑎−𝑛𝐴𝐴+𝑅𝐴(𝑎)
)

(
𝑁

𝑁𝑎
)

𝐸 [𝐾 (𝑁, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

)] .

(13)

After filtering, the expected number of SNVs in which at
least 𝑋(≥𝑋) of 𝑁

𝑎
affected individuals and at most 𝑌(≤𝑌)

of 𝑁
𝑐
control individuals have the 𝐴𝐴 or 𝑅𝐴 genotypes is

obtained by summing 𝐸[𝐾
2
]:

∑

𝑛𝐴, 𝑛𝐴𝐴, 𝑛𝐴𝐴+𝑅(𝑎)

𝐸 [𝐾
2
(𝑁,𝑁

𝑎
, 𝑛
𝐴
, 𝑛
𝐴𝐴+𝑅𝐴

, 𝑛
𝐴𝐴+𝑅𝐴(𝑎)

)] , (14)

where the sum of 𝑛
𝐴𝐴+𝑅𝐴(𝑎)

is over the value satisfying the
filtering condition, {𝑛

𝐴𝐴+𝑅𝐴(𝑎)
: 𝑋 ≤ 𝑛

𝐴𝐴+𝑅𝐴(𝑎)
∧ 𝑛
𝐴𝐴+𝑅𝐴(𝑐)

=

(𝑛
𝐴𝐴+𝑅𝐴

− 𝑛
𝐴𝐴+𝑅𝐴(𝑎)

) ≤ 𝑌}. Here, 𝑛
𝐴𝐴+𝑅𝐴(𝑐)

denotes the
number of individuals with 𝐴𝐴 or 𝑅𝐴 genotypes in 𝑁

𝑐

controls.

2.4. 𝑁 Full-Sibs with and without Controls. To investigate
the properties of the number of SNVs using exomes from a
pedigree, we considered𝑁 full-sibswith andwithout controls
in a nuclear family (Figure 1(f)). Assumptions were that four
haploid exome sequences of both parents and a reference
sequence were randomly sampled from a population under
theWright-Fisher diffusion model.The infinite-site model of
neutral mutations was also assumed.

The expected number of SNVs with a particular genotype
configuration from both parents was obtained by (6). Other-
wise using formula (4), the expected number was obtained

as follows: the expected number of SNVs with both parents
genotypes 𝑅𝑅 × 𝑅𝐴, 𝑅𝐴 × 𝐴𝐴, and 𝐴𝐴 × 𝐴𝐴 is readily
obtained by substituting 𝑛

𝐴
= 1, 3 and 4 into (4) to be 𝜃,

𝜃/3 and 𝜃/4, respectively. Here, 𝑅𝑅 × 𝑅𝐴 indicates that the
genotype of one parent is 𝑅𝑅 and that of the other is 𝑅𝐴,
and so on. Although the expected number of SNVs in which
𝑛
𝐴
= 2 in four haploid sequences is 𝜃/2 by substituting 𝑛

𝐴
= 2

into (4), SNVs likely result in two genotype configurations,
𝑅𝑅 × 𝐴𝐴 and 𝑅𝐴 × 𝑅𝐴. Considering random combinations
of {𝑅, 𝑅, 𝐴, 𝐴}, the expected number of SNVs with 𝑅𝑅 × 𝐴𝐴

and 𝑅𝐴 × 𝑅𝐴 is represented by 𝜃/2 × 2 × (
2

2
) / (
4

2
) = 1/6𝜃,

𝜃/2 × 2/ (
4

2
) = 1/3𝜃. Given the genotype configuration of

both parents, the number of sibs with genotypes 𝑅𝑅, 𝑅𝐴, and
𝐴𝐴 follows a polynomial distribution. For possible genotype
configurations of both parents, Table 1 shows the expected
number of SNVs and probabilities that a sib with a particular
genotype would be born (i.e., parameters of a polynomial
distribution).

The expected number, 𝐸[𝐾sib(𝑛𝑅𝑅, 𝑛𝑅𝐴, 𝑛𝐴𝐴)], of SNVs in
which the number of sibs with genotypes 𝑅𝑅, 𝑅𝐴, and 𝐴𝐴 is
𝑛
𝑅𝑅
, 𝑛
𝑅𝐴
, and 𝑛

𝐴𝐴
, respectively, is represented as

𝐸 [𝐾sib (𝑛𝑅𝑅, 𝑛𝑅𝐴, 𝑛𝐴𝐴)]

= 𝐸 [𝐾
𝑅𝑅×𝑅𝐴

] × Prob (𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝑅𝑅 × 𝑅𝐴) + ⋅ ⋅ ⋅

+ 𝐸 [𝐾
𝐴𝐴×𝐴𝐴

] × Prob (𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

| 𝐴𝐴 × 𝐴𝐴)

= 𝜃 ×
𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
×

1

2

𝑛𝑅𝑅 1

2

𝑛𝑅𝐴

0
𝑛𝐴𝐴

+
1

6
𝜃 ×

𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
× 0
𝑛𝑅𝑅1
𝑛𝑅𝐴0
𝑛𝐴𝐴

+
1

3
𝜃 ×

𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
×

1

4

𝑛𝑅𝑅 1

2

𝑛𝑅𝐴 1

4

𝑛𝐴𝐴

+
1

3
𝜃 ×

𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
× 0
𝑛𝑅𝑅

1

2

𝑛𝑅𝐴 1

2

𝑛𝐴𝐴

+
1

4
𝜃 ×

𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
× 0
𝑛𝑅𝑅0
𝑛𝑅𝐴1
𝑛𝐴𝐴 ,

(15)

where 𝑛
𝑅𝑅

+ 𝑛
𝑅𝐴

+ 𝑛
𝐴𝐴

= 𝑁, 00 = 1 and 0
1
= 0
2
= ⋅ ⋅ ⋅ = 0.

Being simplified, this is shown as

𝐸 [𝐾sib (𝑛𝑅𝑅, 𝑛𝑅𝐴, 𝑛𝐴𝐴)]

=
𝑁!

𝑛
𝑅𝑅

!𝑛
𝑅𝐴

!𝑛
𝐴𝐴

!
𝜃

× {
1

2

𝑛𝑅𝑅+𝑛𝑅𝐴

0
𝑛𝐴𝐴 +

1

6
0

𝑛𝑅𝑅+𝑛𝐴𝐴

+
1

3

1

2

2𝑛𝑅𝑅+𝑛𝑅𝐴+2𝑛𝐴𝐴

+
1

3
0

𝑛𝑅𝑅 1

2

𝑛𝑅𝐴+𝑛𝐴𝐴

+
1

4
0
𝑛𝑅𝑅+𝑛𝑅𝐴} .

(16)

Here, 𝑛
𝑅𝑅
, 𝑛
𝑅𝐴
, 𝑛
𝐴𝐴

∈ nonnegative integers and 𝑁 =

𝑛
𝑅𝑅

+ 𝑛
𝑅𝐴

+ 𝑛
𝐴𝐴

. Using (16), the expected number of SNVs
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Table 1: Expected numbers of SNVs for the parents genotypes and
probabilities for sibs genotypes.

Genotype
configuration
of the parents

Expected number
of SNVs

Genotype
of sib

Probability
for genotype

𝑅𝑅 × 𝑅𝐴 𝐸 [𝐾
𝑅𝑅×𝑅𝐴

]: 𝜃 𝑅𝑅 1/2

𝑅𝐴 1/2

𝑅𝑅 × 𝐴𝐴 𝐸 [𝐾
𝑅𝑅×𝐴𝐴

]: 𝜃/6 𝑅𝐴 1

𝑅𝐴 × 𝑅𝐴 𝐸 [𝐾
𝑅𝐴×𝑅𝐴

]: 𝜃/3
𝑅𝑅 1/4

𝑅𝐴 1/2

𝐴𝐴 1/4

𝑅𝐴 × 𝐴𝐴 𝐸 [𝐾
𝑅𝐴×𝐴𝐴

]: 𝜃/3 𝑅𝐴 1/2

𝐴𝐴 1/2

𝐴𝐴 × 𝐴𝐴 𝐸 [𝐾
𝐴𝐴×𝐴𝐴

]: 𝜃/4 𝐴𝐴 1

after filtering is calculated as shown.This calculation is easier
than that in unrelated individuals. In recessive diseases, the
expected number of SNVs in which at least 𝑋(≥ 𝑋) of 𝑁
affected individuals have 𝐴𝐴 after filtering is calculated as

∑𝐸[𝐾sib (𝑛𝑅𝑅, 𝑛𝑅𝐴, 𝑛𝐴𝐴)] , (17)

where the summation is over (𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

), satisfying the
filter condition {(𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) : 𝑋 ≤ 𝑛
𝐴𝐴

}. Similarly, in
cases of dominant disease, the expected number of SNVs
in which at least 𝑋(≥𝑋) of 𝑁 affected individuals have an
𝐴𝐴 genotype after filtering is calculated using (17), where if
𝑛
𝐴𝐴+𝑅𝐴

= 𝑛
𝐴𝐴

+ 𝑛
𝑅𝐴
, the summation is over (𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

),
satisfying the filter condition {(𝑛

𝑅𝑅
, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) : 𝑋 ≤ 𝑛
𝐴𝐴+𝑅𝐴

}.
We considered 𝑁

𝑎
affected sibs with 𝑁

𝑐
control sibs.

Given genotype configurations of both parents at a site, the
number of 𝑁

𝑎
and 𝑁

𝑐
sibs with genotypes 𝑅𝑅, 𝑅𝐴, and

𝐴𝐴 at the site follows independent polynomial distribution.
𝑛
𝑅𝑅(𝑎)

, 𝑛
𝑅𝐴(𝑎)

, and 𝑛
𝐴𝐴(𝑎)

were the number of 𝑅𝑅, 𝑅𝐴, and
𝑅𝐴, respectively, in 𝑁

𝑎
affected sibs, and 𝑛

𝑅𝑅(𝑐)
, 𝑛
𝑅𝐴(𝑐)

, and
𝑛
𝐴𝐴(𝑐)

were the number of 𝑅𝑅, 𝑅𝐴 and 𝐴𝐴, respectively, in
𝑁
𝑐
control sibs. The expected number, 𝐸[𝐾sib2(𝑛𝑅𝑅(𝑎), 𝑛𝑅𝐴(𝑎),

𝑛
𝐴𝐴(𝑎)

, 𝑛
𝑅𝑅(𝑐)

, 𝑛
𝑅𝐴(𝑐)

, 𝑛
𝐴𝐴(𝑐)

)], of SNVs with the genotype con-
figuration of sibs (𝑛

𝑅𝑅(𝑎)
, 𝑛
𝑅𝐴(𝑎)

, 𝑛
𝐴𝐴(𝑎)

, 𝑛
𝑅𝑅(𝑐)

, 𝑛
𝑅𝐴(𝑐)

, 𝑛
𝐴𝐴(𝑐)

) is
represented as

𝐸 [𝐾sib2 (𝑛𝑅𝑅(𝑎), 𝑛𝑅𝐴(𝑎), 𝑛𝐴𝐴(𝑎), 𝑛𝑅𝑅(𝑐), 𝑛𝑅𝐴(𝑐), 𝑛𝐴𝐴(𝑐))]

= 𝜃 ×
𝑁
(𝑎)

!

𝑛
𝑅𝑅(𝑎)

!𝑛
𝑅𝐴(𝑎)

!𝑛
𝐴𝐴(𝑎)

!

𝑁
(𝑐)
!

𝑛
𝑅𝑅(𝑐)

!𝑛
𝑅𝐴(𝑐)

!𝑛
𝐴𝐴(𝑐)

!

× {
1

2

𝑛𝑅𝑅+𝑛𝑅𝐴

0
𝑛𝐴𝐴 +

1

6
0

𝑛𝑅𝑅+𝑛𝐴𝐴

+
1

3

1

2

2𝑛𝑅𝑅+𝑛𝑅𝐴+2𝑛𝐴𝐴

+
1

3
0

𝑛𝑅𝑅 1

2

𝑛𝑅𝐴+𝑛𝐴𝐴

+
1

4
0
𝑛𝑅𝑅+𝑛𝑅𝐴} ,

(18)

where 𝑛
𝑅𝑅

= 𝑛
𝑅𝑅(𝑎)

+ 𝑛
𝑅𝑅(𝑐)

; 𝑛
𝑅𝐴

= 𝑛
𝑅𝐴(𝑎)

+ 𝑛
𝑅𝐴(𝑐)

; 𝑛
𝐴𝐴

=

𝑛
𝐴𝐴(𝑎)

+ 𝑛
𝐴𝐴(𝑐)

; 𝑛
𝑅𝑅(a), 𝑛𝑅𝐴(𝑎), 𝑛𝐴𝐴(a), 𝑛𝑅𝑅(c), 𝑛𝑅𝐴(𝑐), 𝑛𝐴𝐴(c) ∈

nonnegative integers; 𝑁
(𝑎)

= 𝑛
𝑅𝑅(a) + 𝑛

𝑅𝐴(a) + 𝑛
𝐴𝐴(a) and

𝑁
(𝑐)

= 𝑛
𝑅𝑅(c) + 𝑛

𝑅𝐴(c) + 𝑛
𝐴𝐴(c). The expected number of SNVs

after filtering is calculated as shown just below. In cases of
recessive disease, the expected number of SNVs in which at
least𝑋(≥𝑋) of𝑁

𝑎
affected and at most 𝑌(≤𝑌) of𝑁

𝑐
control

individuals have the genotype 𝐴𝐴 after filtering is obtained
by

∑𝐸[𝐾sib2 (𝑛𝑅𝑅(𝑎), 𝑛𝑅𝐴(𝑎), 𝑛𝐴𝐴(𝑎), 𝑛𝑅𝑅(𝑐), 𝑛𝑅𝐴(𝑐), 𝑛𝐴𝐴(𝑐))] ,

(19)

where the summation is over (𝑛
𝑅𝑅(𝑎)

, 𝑛
𝑅𝐴(𝑎)

, 𝑛
𝐴𝐴(𝑎)

, 𝑛
𝑅𝑅(𝑐)

,

𝑛
𝑅𝐴(𝑐)

, 𝑛
𝐴𝐴(𝑐)

), satisfying the filter condition {𝑛
𝐴𝐴(𝑎)

: 𝑋 ≤

𝑛
𝐴𝐴(𝑎)

∧ 𝑛
𝐴𝐴(𝑐)

≤ 𝑌}. Similarly, in cases of dominant disease,
the expected number of SNVs in which at least 𝑋(≥ 𝑋) of
𝑁
𝑎
affected and at most 𝑌(≤𝑌) of 𝑁

𝑐
control individuals

have 𝐴𝐴 or 𝑅𝐴 after filtering is calculated using (18), where
if 𝑛
𝐴+𝑅𝐴(𝑎)

= 𝑛
𝐴𝐴(𝑎)

+ 𝑛
𝑅𝐴(𝑎)

and 𝑛
𝐴𝐴+𝑅𝐴(𝑐)

= 𝑛
𝐴𝐴(𝑐)

+

𝑛
𝑅𝐴(𝑐)

, the summation is over (𝑛
𝑅𝑅(𝑎)

, 𝑛
𝑅𝐴(𝑎)

, 𝑛
𝐴𝐴(𝑎)

, 𝑛
𝑅𝑅(𝑐)

,

𝑛
𝑅𝐴(𝑐)

, 𝑛
𝐴𝐴(𝑐)

), satisfying the filter condition {(𝑛
𝑅𝑅

, 𝑛
𝑅𝐴

, 𝑛
𝐴𝐴

) :

𝑋 ≤ 𝑛
𝐴𝐴+𝑅𝐴(𝑎)

∧ 𝑛
𝐴𝐴+𝑅𝐴(𝑐)

≤ 𝑌}.

3. Results and Discussion

3.1. An Estimator of 𝜃 for Human Exome. According to Table
2 in Ng et al. [3], there are roughly 20,000 SNVs in a single
human exome, including synonymous and non-synonymous
variants. All results in this study are based on the estimate
𝜃 = 13,333, which was obtained based on 20,000 SNVs per
individual as follows: the expected number of SNVs detected
in one human is represented as 𝐸[𝑀󸀠

𝑛𝐴=1
] + 𝐸[𝑀

󸀠

𝑛𝐴=2
] = 3𝜃/2

using (4), with possible 𝑛 = 2 values of 𝑛
𝐴

∈ {1, 2}. If the
observed number of SNVs detected in one human is 20,000,
then 3𝜃/2 = 20,000 is used to obtain 𝜃 = 13,333. Note that
the number of SNVs per single human exome (20,000) varies
between races and is based on different methods of exome
capture, mapping to a reference genome, genotype calling
algorithms, or by definition of an exome. The results of this
study also varied slightly based on the 𝜃 estimators used.

3.2. Unrelated Individuals without Controls in Dominant Dis-
ease. The expected number of SNVs after filtering in cases of
dominant disease and unrelated individuals without controls
is plotted in Figure 2(a). Several values used in Figure 2
are listed in Table 2. When a stringent filter (i.e., set to retain
only SNVs in which 100% of individuals sampled have the
genotype 𝐴𝐴/𝑅𝐴) was used, the number of SNVs appeared
to decay exponentially with sample size 𝑁. However, the
decrease in the number of SNVs was slower as 𝑁 increased.
As shown in Table 2, the expected number of SNVs for 𝑁 =

1, 2, 3, 4, 50, and 51 were 19999.50, 12221.92 (61.11%), 9333.10
(76.36%), 7761.71 (83.16%), 1808.56, and 1789.36 (98.94%),
respectively, with ratios of the expected SNVs for 𝑁 to those
for𝑁−1 shown in parentheses.The first few individuals were
highly effective in removing SNVs, but additional individuals
were not. This was obvious when nonstringent filters (i.e.,
remaining SNVs in which at least 90% or 80% of individuals
have the genotype𝐴𝐴/𝑅𝐴) were used. In those cases, certain
asymptotic values likely exist. For example, ≥90% of the
filtered expected number of SNVswas 5540.39 for𝑁 = 50, but
only 5306.36 for𝑁 = 100. From the perspective of identifying
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Figure 2:The expected number of SNVs after filtering in dominant disease using unrelated individuals (a) without controls (b) with controls.
For example, crossmarks represent the expected number of SNVs in which≥80% individuals have the genotype𝐴𝐴/𝑅𝐴 of𝑁

𝑎
= 𝑁/2 affected

individuals and ≤20% individuals have the genotype 𝐴𝐴/𝑅𝐴 of𝑁
𝑐
= 𝑁/2 controls.

Table 2: The expected number of SNVs after filtering in dominant disease using unrelated individuals.

𝑁

𝑁
𝑎
= 𝑁

𝑁
𝑎
= 𝑁/2

𝑁
𝑐
= 𝑁/2

𝑁
𝑎
= 𝑁 − 1

𝑁
𝑐
= 1

𝑁
𝑎
= 𝑁 − 1

𝑁
𝑐
= 1

𝑁
𝑎
= 𝑁 − 3

𝑁
𝑐
= 3

𝑁
𝑎
= 𝑁/2

𝑁
𝑐
= 𝑁/2

𝐴𝐴/𝑅𝐴:
100% 𝐴𝐴/𝑅𝐴: 90% 𝐴𝐴/𝑅𝐴: 80%

𝐴𝐴/𝑅𝐴:
100% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
100% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥ 80% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥80% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥80% (𝑎)
≤20% (𝑐)

1 19999.50 — — — — — — —
2 12221.92 — — 7777.58 7777.58 — — —
3 9333.10 — — — 2888.82 — — —
4 7761.71 — — 1317.43 1571.39 — — —
5 6751.15 — 11803.94 — 1010.56 — — —
10 4450.20 7292.89 9899.74 12.68 284.27 — — 487.69
11 4209.42 — — — 240.77 1325.27 — —
13 3821.65 — — — 180.60 — 111.07 —
20 2992.04 6220.39 8915.41 0.01 87.51 — — 28.51
21 2911.32 — — — 80.72 944.79 — —
23 2767.09 — — — 69.48 — 45.77 —
50 1808.56 5540.39 8311.92 — 19.82 — — 0.02
51 1789.36 — — — — 736.85 — —
53 1752.68 — — — — — 21.74 —
100 1249.75 5306.36 8108.38 — — — — —
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disease-causing variants, it is clear that nonstringent filters
that take phenocopy into account do not work well even if the
sample size is very large. However, using stringent filters, the
expected number of SNVs remains high even if the sample
size is large (1249.75 SNVs for 𝑁 = 100). This shows that it
is generally difficult to identify a disease-causing variant by
filtering without a control.

3.3. Unrelated Individuals with Controls in Dominant Disease.
As shown in Figure 2(b), filtering with controls is highly
effective in removing SNVs. When half of the samples were
controls and a stringent filter was used, the expected number
of SNVs was less than one at 𝑁 = 14 and 0.001 at 𝑁 = 20.
Even with a single control, the situation changed drastically
compared to cases without controls. For example, for 𝑁 =

10, the expected number of SNVs was 4450.2 without a
control, which dropped to 284.27 with one control. Using
nonstringent filters that take phenocopy into account (i.e.,
remaining SNVs in which 80% of affected individuals have
the genotype 𝐴𝐴/𝑅𝐴), an asymptotic value of approximately
700 may occur with one control, but filtering efficiency is
improved if the number of controls totals 3 (21.74 SNVs
for 𝑁 = 53). In addition to phenocopy, filters that take
reduced penetrance into account also work reasonably well if
half of the exome samples (𝑁/2) are controls. For example,
the expected number of SNVs in which 80% of affected
individuals and 20% of controls have the genotype 𝐴𝐴/𝑅𝐴

was 28.51 and 0.02 for𝑁 = 20 and 50, respectively.

3.4. Unrelated Individuals and Recessive Disease. Thenumber
of SNVs after filtering in recessive disease shows a similar
tendency to SNVs in dominant disease, as shown in Figures
3(a) and 3(b). Table 3 lists some of the values used in Figure 3.
Without controls, filtering does not work well, particularly
when phenocopy is taken into account. With controls,
filtering efficiency is highly improved even when phenocopy
and reduced penetrance are considered. However, filtering
efficiency for recessive disease is at most ten times higher
compared to dominant disease. For example, stringent filter-
ing of 𝑁 = 100 without a control resulted in an expected
number of SNVs of 1249.75 for dominant disease, but only
66.67 for recessive disease. Using stringent filtering, the
expected number of SNVs for recessive disease was

𝜃

2𝑁
, (20)

which is derived from (7) or directly from (4) by substituting
𝑛
𝐴

= 2𝑁. In contrast, the expected number of SNVs for
dominant disease is represented as

2𝑁

∑

𝑖=𝑁

𝜃

𝑖

2
(2𝑁−𝑖)

(
2𝑁

2𝑁−𝑖
)

(
2𝑁

2𝑁−𝑖
)

, (21)

which is derived from (9) and (10).

3.5. Full-Sibs with and without Controls. The expected num-
ber of SNVs after filtering in the case of full-sibs for dominant
disease is shown in Figure 4. Table 4 lists several of the

values used in Figure 4. Filtering efficacy in sibs was clearly
worse than that in unrelated individuals (cf. Figure 4(a) with
Figure 2(a)). For a given sample size𝑁, the expected number
of SNVs for 100%, 90%, and 80% filtering was relatively
similar compared to unrelated individuals. There was also a
higher asymptotic value for 100%, 90% and 80% filtering.The
asymptotic value was 3𝜃/4 = 9999.75, as explained below
based on 100% filtering. When the sample size 𝑁 is large,
DNA sites in which the parents have genotypes 𝑅𝑅 × 𝑅𝐴 or
𝑅𝐴×𝑅𝐴 are removed by filtering because a certain proportion
of sibs have the genotype 𝐴𝐴 (Table 1). In contrast, even if
the sample size is large, DNA sites in which the parents have
genotypes of𝑅𝑅×𝐴𝐴,𝑅𝐴×𝐴𝐴, or𝐴𝐴×𝐴𝐴 are not removed
and the expected site is shown as 𝜃/6 + 𝜃/3 + 𝜃/4 = 3𝜃/4

(Table 1). With 90% and 80% filtering, this is correct.
However, the situation drastically improved when we

used controls (Figure 4(b)). For a given sample size 𝑁, the
expected number of SNVs in sibs was comparable to the
expected number in unrelated individuals. For example, if
half of the exome samples were controls, the expected SNVs
in which at least 80% of affected individuals and at most 20%
of controls have the genotype 𝐴𝐴/𝑅𝐴 were 487.69 (𝑁 = 10),
28.51 (𝑁 = 20) and 0.02 (𝑁 = 50) when unrelated exomes
were used and 512.68 (𝑁 = 10), 40.85 (𝑁 = 20), and 0.06 (𝑁 =

50) when full-sibs exomes were used.
The number of SNVs after filtering in sibs for recessive

disease shows a similar tendency to dominant disease, as
shown in Figures 5(a) and 5(b). Table 5 lists some of the
values used in Figure 5. Without controls, the efficiency of
filtering in sibs was clearly worse. The asymptotic value for
recessive disease was 𝜃/4 = 3333.25, which was obtained the
same way as for dominant disease. The number of SNVs for
recessive disease reached asymptotic values for 100%, 90%,
and 80% filtering faster than for dominant disease. The effect
of controls in recessive and dominant disease was high. For
a given sample size 𝑁, the expected number of SNVs in sibs
was comparable to that in unrelated individuals. For example,
if half of the exome samples were controls, the expected SNVs
in which at least 80% of affected individuals and at most 20%
of controls have the genotype 𝐴𝐴 were 203.70 (𝑁 = 10), 11.86
(𝑁 = 20), and 0.01 (𝑁 = 50) when unrelated exomes were
used and 200.09 (𝑁 = 10), 14.26 (𝑁 = 20), and 0.02 (𝑁 = 50)
when full-sibs exomes were used.

3.6. Assumptions. We assumed that 𝑛 + 1 haploid sequences
were randomly sampled from a population under theWright-
Fisher diffusion model with a constant population size, with
𝑛 = 2𝑁 in 𝑁 unrelated individuals and 𝑛 = 2 in
full-sibs (Figures 1(e) and 1(f)). The infinite-site model of
neutral mutations was also assumed.The expected frequency
spectrum of 𝑛 + 1 sequences is represented by formula (1).
All of the results derived from this method are based on this
formula. However, human populations have expanded and
mutations in non-synonymous sites are not at least strictly
neutral but might be averagely deleterious, which may skew
the frequency spectrum toward rare variants (e.g., see [9] for
population expansion and [10] for non-synonymous muta-
tions). The skew is more pronounced when the sample size is
large (e.g., 500), but not when the sample size is small [9]. In
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Figure 3:The expected number of SNVs after filtering in recessive disease using unrelated individuals (a) without control using and (b) with
controls.

Table 3: The expected number of SNVs after filtering in recessive disease using unrelated individuals.
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𝐴𝐴: ≥80% (𝑎)
0% (𝑐)

𝐴𝐴: ≥80% (𝑎)
0% (𝑐)

𝐴𝐴: ≥80% (𝑎)
≤20% (𝑐)

1 6666.50 — — — — — — —
2 3333.25 — — 3333.25 3333.25 — — —
3 2222.17 — — — 1111.08 — — —
4 1666.63 — — 555.54 555.54 — — —
5 1333.30 — 2999.93 — 333.33 — — —
10 666.65 1407.37 2240.68 5.29 74.07 — — 203.70
11 606.05 — — — 60.60 422.55 — —
13 512.81 — — — 42.73 — 41.83 —
20 333.33 1054.55 1863.36 0.00 17.54 — — 11.86
21 317.45 — — — 15.87 276.10 — —
23 289.85 — — — 13.17 — 15.73 —
50 133.33 843.18 1637.71 — 2.72 — — 0.01
51 130.72 — — — — 199.84 — —
53 125.78 — — — — — 6.80 —
100 66.67 772.77 1562.62 — — — — —
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Figure 4: The expected number of SNVs after filtering in dominant disease using full-sibs (a) without control using and (b) with controls.

Table 4: The expected number of SNVs after filtering in dominant disease using full-sibs.
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100% 𝐴𝐴/𝑅𝐴: 90% 𝐴𝐴/𝑅𝐴: 80% 𝐴𝐴/𝑅𝐴: 100% (𝑎)

0% (𝑐)
𝐴𝐴/𝑅𝐴: 100% (𝑎)

0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥80% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥80% (𝑎)
0% (𝑐)

𝐴𝐴/𝑅𝐴:
≥80% (𝑎)
≤20% (𝑐)

1 19999.50 — — — — — — —
2 15832.94 — — 4166.56 4166.56 — — —
3 13541.33 — — — 2291.61 — — —
4 12239.28 — — 989.56 1302.05 — — —
5 11471.07 — 15312.12 — 768.21 — — —
10 10263.05 11227.51 13064.81 14.05 96.45 — — 512.68
11 10193.97 — — — 69.08 948.55 — —
13 10106.96 — — — 36.82 — 127.64 —
20 10013.86 10408.02 11922.23 0.01 4.71 — — 40.85
21 10010.33 — — — 3.53 500.32 — —
23 10005.70 — — — 1.98 — 38.66 —
50 9999.75 10031.07 11165.22 — 0.00 — — 0.06
51 9999.75 — — — — 291.41 — —
53 9999.75 — — — — — 18.23 —
100 9999.75 10000.36 10661.20 — — — — —
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Figure 5: The expected number of SNVs after filtering in recessive disease using full-sibs (a) without control using and (b) with controls.

Table 5: The expected number of SNVs after filtering in recessive disease using full-sibs.
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1 6666.50 — — — — — — —
2 4722.10 — — 1944.40 1944.40 — — —
3 3958.23 — — — 763.87 — — —
4 3628.38 — — 434.02 329.85 — — —
5 3476.48 — 4236.01 — 151.91 — — —
10 3337.59 3381.12 3578.15 5.37 4.35 — — 200.19
11 3335.42 — — — 2.17 122.91 — —
13 3333.79 — — — 0.54 — 31.16 —
20 3333.25 3334.14 3359.51 0.00 0.00 — — 14.26
21 3333.25 — — — 0.00 13.13 — —
23 3333.25 — — — 0.00 — 3.28 —
50 3333.25 3333.25 3333.30 — 0.00 — — 0.02
51 3333.25 — — — — 0.03 — —
53 3333.25 — — — — — 0.01 —
100 3333.25 3333.25 3333.25 — — — — —
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addition, the reference sequence is known to be a mosaic of a
number of humanDNA.The fact does not affect the expected
number of candidate SNVs since any small chromosomal
region or anyDNA site of the reference sequence is still a hap-
loid sample from a population. On the other hand, our results
may be affected by the fact that the reference sequence and the
exome sequences have different ethnic background. But it is
surely that those are derived from a human population. As a
whole, the expected frequency spectrum given by (1) is rough
approximation and the effect of various filtering manner,
incorporating modes of inheritance, incomplete penetrance
or phenocopy, and control, on the number of candidate SNVs
can be assessed as described above.

4. Conclusions and Practical Implications

Using a standard population genetics model, we modeled
exome analysis for Mendelian disease and developed a
method for calculating the expected number of candidate
SNVs after filtering under a “no genetic heterogeneity”
assumption. Exome sequences of unrelated individuals and
full-sibs were considered with and without controls for dom-
inant and recessive diseases. Without controls, particularly
for full-sibs, the filtering approach had poor efficiency in
reducing the number of candidate SNVs even when using a
stringent filter (Figures 2(a), 3(a), 4(a), and 5(a)). With con-
trols, the filtering efficacy was considerably improved, even
when incorporating phenocopy or incomplete penetrance
(Figures 2(b), 3(b), 4(b), and 5(b)). This was true in cases of
unrelated individuals and full-sibs for dominant and recessive
diseases.

For rare dominant diseases, it is plausible that affected
individuals in a pedigree share one disease-causing vari-
ant, even if the disease shows genetic heterogeneity. This
indicates that the assumption of “no genetic heterogeneity”
is appropriate because the frequencies of variants of the
rare disease are also rare in a population, and only one
founder in the pedigree should have one of the disease-
causing variants (e.g., see Sobreira et al. [5] or Wang et
al. [11]). For rare recessive diseases, affected members in a
pedigree generally do not share one disease-causing variant.
It is possible that affected individuals in the pedigree may be
“compound heterozygotes” at a disease locus or heterozygotic
for two disease-causing variants in a gene (e.g., Lalonde et
al. [12]). For a consanguineous pedigree with a rare recessive
disease, the assumption of “no genetic heterogeneity” is still
appropriate in that affected individuals in the pedigree are
expected to be autozygous for the disease-causing variant
(e.g., see Walsh et al. [13]).

As described in Section 3.5 and shown in Figure 4(b),
filtering by incorporating incomplete penetrance and pheno-
copy can efficiently reduce the number of candidate SNVs
when the sample size is relatively large. If the property of
results for full-sibs is extrapolatable to those for general pedi-
grees, this means that filtering approach works well in case
of a pedigree data for dominant disease or a consanguineous
pedigree data for recessive disease even in cases of incomplete
penetrance and phenocopy. The approach presented in this

study could provide general guidelines for sample size deter-
mination in exome sequencing for Mendelian disease.
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