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Abstract

IL-10 is an important regulatory cytokine which can modulate excessive immune mediated injury. 

Several distinct cell types have been demonstrated to produce IL-10 including most recently CD8+ 

cytotoxic T lymphocytes (CTL) responding to respiratory virus infection. Here we report that 

CD4+ T cell help in the form of IL-2 is required for IL-10 production by CTL, but not for the 

induction of CTL effector cytokines. We show that IL-2 derived from CD4+ TH cells cooperates 

with innate-derived IL-27 to amplify IL-10 production by CTL through a Blimp-1 dependent 

mechanism. These findings reveal a previously unrecognized pathway that coordinates signals 

derived from both innate and TH cells to control the production of a regulatory cytokine by CTL 

during acute viral infection.

IL-10 is an important anti-inflammatory cytokine that can suppress both innate and adaptive 

immune responses to infectious agents or auto-antigens1,2. Certain pathogens exploit IL-10 

to suppress the host response and establish chronic infection2. However, during acute 

infections that induce strong inflammatory responses, IL-10 often acts beneficially to 

moderate excessive inflammation2.

While various innate and adaptive immune cell types have been identified as IL-10 

producers3, there is increasing evidence that effector T cells are an important source of 

IL-10 especially during certain parasitic and viral infections4-6. Thus, the cells that often 

produce or enhance inflammation during infection can regulate their pro-inflammatory 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: Thomas J. Braciale Mailing address: Carter Immunology Center, UVA, P.O. Box 801386, Charlottesville, VA 
22908. Phone: (434) 924-1219. Fax: (434) 924-1221. tjb2r@virginia.edu. 

Author Contributions
J.S. designed the project, performed most of the experimental work, analyzed the data and wrote the manuscript. H.D. and E. K. M. 
performed some of the quantitative RT-PCR and ELISA experiments. R.S. contributed to critical reagents and suggestions. T.J.B. 
supervised the project, analyzed the data and wrote the manuscript.

Competing financial interests
The authors declare that they have no competing financial interests.

HHS Public Access
Author manuscript
Nat Immunol. Author manuscript; available in PMC 2011 October 01.

Published in final edited form as:
Nat Immunol. 2011 April ; 12(4): 327–334. doi:10.1038/ni.1996.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity through IL-10 production7. However, the cellular and molecular mechanisms 

controlling in vivo IL-10 expression in T cells and particularly in effector T cells are 

imperfectly understood. In certain regulatory T-cells, stiThatmuli such as, dexamethasone 

plus vitamin D3, IL-27, IL-21, TGF-β and aryl hydrocarbon receptor (AhR) ligands as well 

as IL-10 itself promote IL-10 production3,8-12 while IL-27, IL-21 and IL-12 are reported to 

augment IL-10 production by CD4+ effector T cells13-17. However, despite the multiple 

signals identified to promote IL-10 production by T cells, the in vivo significance and 

relative contribution of these signals is poorly defined. Similarly the intracellular signaling 

intermediates activated by these IL-10 promoting signals in T cells remain under-explored, 

although STAT3, c-maf and recently AhR have been implicated in controlling IL-10 gene 

expression in CD4+ T cells3,11,12.

Anti-viral CD8+ CTL are a major producer of IL-10 in the respiratory tract during influenza 

infection 6. CTL-derived IL-10 plays a critical role in preventing excess inflammation 

during immune-mediated virus clearance6. In this report, we investigate the signals 

necessary to drive the production of IL-10 by CTL in the infected respiratory tract. Our data 

reveals a novel interplay between products of TH cells and infiltrating innate immune cells 

in shaping the function of anti-viral CTL at the site of infection.

Results

IL-10+ CTL development requires IL-27 and TH cells

To investigate the mechanisms regulating IL-10 production by anti-viral CTL during 

influenza infection, we first examined whether interferon-γ (IFN-γ) is required since the 

IL-10-producing CTL co-express IFN-γ (Supplementary Fig. 1). IFN-γ is dispensable for the 

induction of IL-10 producing CTL (Supplementary Fig. 1). Similarly, although IL-12 is 

important to induce IL-10-producing T cells in some settings17, it is not required for the 

induction of IL-10 producing CTL during influenza infection as CD8+ T cells from p35−/− 

mice (which lack both IL-12 and IL-3518) can produce IL-10 (Fig. 1a). IL-27 induces the 

development of IL-10 producing CD4+ T cells3, therefore we examined the role of IL-27 in 

controlling the induction of IL-10-producing CTL during influenza infection. Influenza 

infection induces IL-27 gene expression in the respiratory tract (Supplementary Fig. 2). We 

then infected Ebi3−/− mice (which lack both IL-27 and IL-3518) with influenza and 

measured IL-10 production by influenza specific CTL. EBI-3 deficiency does not affect the 

induction of IFN-γ producing CTL, but substantially impairs the induction of IL-10 

producing CTL in both draining lymph nodes (i.e. mediastinal lymph nodes, MLN) and the 

infected lungs (Fig. 1b, c). Consistent with the impaired production of IL-10 by CTL, 

Ebi3−/− mice exhibited impaired IL-10 release in the airway and enhanced pulmonary 

inflammation during influenza infection (Supplementary Fig. 3). The induction of IL-10 

producing CD4+ T cells by IL-27 is dependent on IL-21 signaling10, however the induction 

of IL-10 producing CTL during influenza infection is intact in mice lacking IL-21 receptor 

(Fig. 1d).

The absence of IL-27 did not completely abrogate IL-10 producing CTL, suggesting 

additional signals contribute to the induction of IL-10 producing CTL. Release of IL-10 in 

vivo is dependent on both CD8+ and CD4+ T cells6, suggesting a possible role of CD4+ T 
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cells in the induction of IL-10 producing CTL. To this end, we have eliminated both IL-27 

and CD4+ T cells in vivo and examined the induction of IL-10 producing CTL following 

influenza infection. Depletion of CD4+ T cells, together with EBI-3 deficiency, almost 

completely abrogated the induction of IL-10 producing CTL (Fig. 1e, f). Elimination of 

CD4+ T cells and IL-27 also compromised the production of IL-10 at the single cell level 

(Fig. 1g) in the few remaining IL-10+ CTL (Fig. 1g). Taken together, these data suggests 

that the induction of IL-10 producing CTL during influenza infection is dependent on the 

presence of both IL-27 and TH cells, but is independent of IL-12, IL-21, IL-35 and IFN-γ.

TH cells selectively induce IL-10+ CTL development

The finding that the induction of IL-10 producing CTL in vivo requires the presence of 

CD4+ T cells raised the possibility that CD4+ T cell “help” is required for the physiologic 

CTL responses to influenza infection. We therefore examined the role of CD4+ T cells in the 

accumulation and differentiation of CTL in the respiratory tract during influenza infection. 

The depletion of CD4+ T cells severely impairs the production of IL-10, but not IFN-γ nor 

tumor necrosis factor (TNF) by CTL (Fig. 2a, b). These data agree with reported 

findings19,20 and suggest that CD4+ T cell “help” is minimally required for the 

differentiation and accumulation of CTL. CD4+ T cell depletion at various time points 

impaired the development of IL-10 producing CTL even at d 6 p.i., i.e. when T cells have 

entered the infected lungs, suggesting that CD4+ T cells are able to help CD8+ T cells in the 

lung as well as in the MLN (Supplementary Fig. 4).

To further confirm the impact of CD4+ T cell depletion, we infected MhcII−/− mice (which 

lack CD4+ T cells) with influenza and found that CD8+ T cells from MhcII−/− mice were 

likewise impaired in IL-10 but not IFN-γ or TNF production (Fig. 2c). The absence of CD4+ 

T cells only minimally affected the expression of the cytolytic molecule Granzyme B by 

CTL (Supplementary Fig. 5). We next directly examined the role of CD4+ T cell “help” in 

the in vivo induction of IL-10 producing CTL by utilizing IL-10 reporter mice (Vert-X)21. 

IL-10 gene expression in CTL is primarily restricted to the site of infection i.e. the lungs 

(Supplementary Fig. 6). Importantly, the depletion of CD4+ T cells significantly impaired 

the development of IL-10-expressing cells among both total lung-infiltrating CD8+ T cells 

as well as gated influenza antigen specific cells (Fig. 2 d and Supplementary Fig. 6). We 

also bred Vert-X mice to MhcII−/− mice and infected Vert-X-MhcII−/− mice with influenza. 

Compared to the influenza-specific CD8+ T cells from littermate Vert-X-MhcII+/− mice, 

influenza-specific T cells from Vert-X-MhcII−/− mice had diminished IL-10-expressing cells 

(Fig. 2e) and IL-10 expression intensity at the single cell level (Supplementary Fig. 7). We 

also verified in vivo that CD4+ T cell help is not required for the induction of IFN-γ-

expressing cells using IFN-γ eYFP reporter mice (Yeti) which were constructed similarly to 

the Vert-X mice (Fig. 2 f and Supplementary Fig. 8)22. Collectively, these data suggest that 

CD4+ T cell “help” is critical for inducing an optimal anti-inflammatory cytokine profile 

(i.e. IL-10 production) but not for the activation and differentiation of the effector features 

of influenza specific CTL in vivo.
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IL-2 provides the “help” for IL-10+ CTL development

To identify the molecule(s) that mediate the “help” from CD4+ T cells, we developed an in 

vitro T cell-DC co-culture system. We labeled influenza HA-specific CD8+ T cell receptor 

(TCR) transgenic T cells (CL-4) with CFSE and stimulated them with influenza-infected DC 

in the absence or presence HA-specific CD4+ TCR transgenic T cells (TS-1). CL-4 T cells 

stimulated with influenza-infected DC expanded and expressed IFN-γ but failed to produce 

IL-10 (Fig. 3a). However, when CD4+ TS-1 cells were included in the culture, CL-4 cells 

acquired the ability to produce IL-10. Importantly, all IL-10-producing cells were also IFN-

γ+ (Supplementary Fig. 9). These data recapitulate our in vivo findings that CD4+ T cells are 

able to provide the “help” to CD8+ T cells to induce the development of IL-10 producing 

CTL.

IL-2 is one of the major cytokine produced by CD4+ T cells and has been shown to support 

expansion and differentiation of CTL23,24. We therefore evaluated the impact of IL-2 on 

IL-10 expression by CL-4 T-cells in the co-culture system. Neutralization of murine IL-2 

completely blocked the induction of IL-10 producing CL-4 CTL in vitro but only modestly 

affected cell proliferation and IFN-γ production by CTL (Fig. 3a). Importantly, addition of 

human IL-2 to cultures reversed the effects of mIL-2 neutralization (Fig. 3a). In companion 

experiments, we purified CD8+ T cells from ovalbumin (OVA)-specific TCR transgenic 

OT-I-Vert-X double transgenic mice (V-OT-I) and cultured the CD8+ T cells with DC 

simultaneously infected with recombinant influenza strains expressing MHC I or MHC II 

OVA epitopes (influenza-ova) in the presence or absence of OVA-specific CD4+ transgenic 

OT-II T cells. The inclusion of OT-II cells enhanced the development of IL-10-producing 

V-OT-I CTL which was dependent on IL-2 but independent of IL-6, IL-12 or IL-21 (Fig. 3b 

and Supplementary Fig. 10a). We further established that CD4+ T cells are the major IL-2 

producing cells in the culture (Fig. 3c). IL-2 is therefore likely the primary molecule derived 

from CD4+ T cells which provides “help” to CD8+ T cells to drive the development of IL-10 

producing CTL.

Our finding (Supplementary Fig. 4) that depletion of CD4+ T-cells as late as day 6 p.i. 

inhibited IL-10 production by CTL in the infected lungs suggested that CD4+ T cell-derived 

IL-2 may not only act at the induction phase of the CD8+ T cell response in the draining 

MLN but also on previously activated CTL in the lungs. To further explore this, we purified 

V-OT-I and OT-II cells and activated the transgenic CD8+ and CD4+ T-cells independently 

in culture for 4 days and then assessed the impact of IL-2 supplementation and/or activated 

CD4+ T cell addition on IL-10 production by the V-OT-I CTL (Supplementary Fig. 10b). 

Antibody-mediated TCR activation of V-OT-I alone modestly upregulated IL-2-independent 

expression of IL-10 (Fig. 3d, top row). IL-10 expression was further enhanced by the 

addition of exogenous IL-2 (Fig. 3d, top row). By contrast, co-cultures of previously 

activated CD8+ and CD4+ T cells resulted in robust IL-10 expression by CTL following 

TCR cross-linking (Fig. 3d, bottom row) which is inhibited by IL-2 neutralization (Fig. 3d, 

bottom row). This finding supports the view that activated CD4+ T cells acting via IL- 2 can 

promote the production of IL-10 by differentiated effector CD8+ T cells (CTL). In keeping 

with this concept, only effector CD4+ T cells exhibited robust production of IL-2 (Fig. 3e). 

When these in vitro activated CD8+ CTL were treated with IL-2 alone in short-term culture 
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(4h) IL-2 exposure like TCR engagement can stimulate IL-10 expression by CTL but the IL- 

2 effect was more potent when signaling in co-operation with TCR engagement (Fig. 3f), 

suggesting that IL-2 can directly promote the expression of IL-10 independent of its role in 

promoting CTL proliferation and survival.

IL-2 signaling is required to induce IL-10+ CTL in vivo

We next assessed the contribution of CD4+ T cell-derived IL- 2 and IL- 2 signaling to the 

induction of IL-10 production by anti-viral CTL in vivo during influenza infection. We first 

established in vivo that CD4+ T cells are the dominant source of IL-2 (Fig. 4 a, b and 

Supplementary Fig. 11a) and the depletion of CD4+ T cells abrogates most IL-2 production 

in both MLN and the lung (Fig. 4c). Furthermore, the absence of CD4+ T cells impaired 

IL-10 but not IL-2 production by CD8+ T cells (Supplementary Fig. 11b), suggesting that 

the amount of IL-2 produced by CD8+ T cells is not sufficient to drive the maximal 

production of IL-10 by CTL in vivo. In addition, co-transfer of wild-type (WT) CD4+ T cells 

but not Il2−/− CD4+ T cells with WT CD8+ T cells into Rag2−/− mice resulted in augmented 

IL-10 production by CTL (albeit at lower levels than observed with CTL from infected WT 

mice, likely due to non-specific homeostatic proliferation of transferred CD8+ T cells in 

Rag2−/− recipient), suggesting CD4+ T cells-derived IL-2 is required for the optimal 

generation of IL-10 producing CTL in vivo (Supplementary Fig. 12). In addition, we 

determined that IL-10-expressing CTL in the infected lungs are IL-2Rα (CD25)+, indicating 

that they are competent for IL-2 signaling (Supplementary Fig. 13). To directly establish the 

requirement for IL-2 receptor signaling, we transferred either WT or Il2ra−/− T cells into 

Thy1 mis-matched congenic mice and then infected the recipient mice with influenza. While 

transferred WT CD8+ T cells or endogenous WT CD8+ T cells produced IL-10 in the 

infected lungs, transfered Il2ra−/− CD8+ T cells failed to produce IL-10 during influenza 

infection (Fig. 4d). We also made a WT:Il2ra−/− mixed bone marrow chimera mice and 

infected these mice with influenza. Il2ra−/− CTL mounted an antigen-specific IFN-γ 

response which was moderately diminished compared to WT cells. In contrast, Il2ra−/− 

CTL failed to produce IL-10 even when we accounted for the diminished pro-inflammatory 

cytokine response by normalizing the IL-10 producing cells to antigen specific IFN-γ 

producing cells (Fig. 4e, f). On the other hand, the Il2ra−/− CTL are able to produce 

equivalent level of TNF and only slightly diminished level of Granzyme B compared to WT 

CTL in the lung (Fig. 4f and Supplementary Fig. 14). IL-21 is another important CD4+ T 

cell derived “helper” cytokine. However Il21r−/− CTL are able to produce IL-10 at levels 

comparable to WT CTL when influenza infection was carried out in the WT: Il21r−/− mixed 

bone marrow chimera mice (Fig. 4g). These data collectively demonstrated that IL-2 (rather 

than IL-21) is the major CD4+ T cell-derived molecule driving the development of IL-10-

producing CTL during influenza infection. Furthermore, rIL-2 administration to influenza 

infected CD4+ T cell-depleted mice at the time of effector T cell infiltration into the lung i.e. 

d5- 6 p.i. enhanced the induction of IL-10 production by CTL (Fig. 4 h, i). Taken together, 

these data strongly suggest a critical role for IL-2 and IL-2R dependent signaling in 

stimulating IL-10 production by CTL at the site of virus infection.
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IL-2 and IL-27 cooperate to induce IL-10+ CTL

Our analysis so far indicates that both CD4+ T- cell-derived IL-2 as well as the cytokine 

IL-27 are necessary for the development of IL-10 producing CTL during influenza infection. 

Next, we sought to determine if IL-27 and CD4+ T cell-derived IL-2 act synergistically to 

activate IL-10 gene expression by CTL. To this end, we again co-cultured CFSE labeled 

CL-4 cells with influenza-infected DC in the presence or absence of TS-1 cells. Inclusion of 

TS-1 cells or IL-27 alone in the culture enhanced the induction of IL-10 producing CTL 

(Fig. 5a). However, the presence either of TS-1 cells plus IL-27 or IL-2 plus IL-27 together 

in co-cultured with the CD8+ T cells had a synergistic effect on the induction of IL-10 

producing CTL (Fig. 5a). Likewise, the synergy between IL-27 and CD4+ T cells was 

dependent primarily on the CD4+ T cell-derived IL-2 (Fig. 5a). Although CD4+ T cells are 

the major source of IL-2, CD8+ T cells are capable of producing a small amount of IL-2 

during activation (Fig. 3c). This small amount of IL-2 produced by CD8+ T cells alone was 

insufficient to drive the development of IL-10 producing CTL. However, in the absence of 

CD4+ T cell derived IL-2, the small amount of CTL derived IL-2 is essential for enhancing 

the effect of IL-27 on induction of IL-10 producing CTL (Fig. 5a), suggesting that the 

induction of IL-10 producing CTL by IL-27 likewise requires the presence of IL- 2. The 

synergy between IL-27 and CD4+ T cell -derived IL-2 is also evident at the single cell level 

(Fig. 5b). Furthermore, IL-27 and IL-2 act synergistically to induce IL-10 producing CTL in 

the OT-I & OT-II culture system during the initial (primary) activation (Supplementary Fig. 

15) or at the effector stage (Supplementary Fig. 16).

Having established the contribution of CD4+ T cells acting via IL-2 to stimulate IL-10 

expression by CD8+ T cells we wanted to probe the source(s) of the IL-27 in vivo. Innate 

immune cells in the infected lungs are the main source of IL-27 (Fig. 5c). In this regard it is 

noteworthy that neutrophils may be a major source of IL-27. Interestingly, consistent with 

the finding that production of IL-10 by CTL is largely restricted to the site of infection, 

potential IL-27 producing cells including neutrophils and monocytes/macrophages as well as 

IL-27 mRNA were enriched at the infection site compared to the draining MLN 

(Supplementary Fig. 17). Furthermore, CD4+ cell depletion did not affect IL-27 production 

in vivo (Fig. 5d). This confirms that the impaired induction of IL-10 producing CTL in 

CD4+ T cell-depleted mice is not due to the lack of IL-27. IL-27 deficiency also did not 

impair IL-2 production by T cells (Supplementary Fig. 18), suggesting that the impaired 

induction of IL-10 producing CTL in IL-27-deficient mice is not due to a lack of IL-2 

production. Taken together, these data demonstrated that innate cell-derived IL-27 and 

CD4+ T cell derived IL-2 are independently regulated but act in a coordinate manner to 

induce IL-10 production by CTL in the respiratory tract during influenza infection.

The unexpected finding of cooperation between these two cytokines in the murine system 

prompted us to investigate whether IL-2 and IL-27 likewise act co-operatively to induce 

IL-10 production by human CD8+ T cells. IL-2 and IL-27 co-operatively induces both IL-10 

mRNA expression and IL-10 protein production by CD8+ T cells (Supplementary Fig. 19 

and Fig. 5e).
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Induction of IL-10 producing CTL require Blimp-1

To begin to define the signaling pathways within CTL controlling the induction of IL-10 

gene expression, we investigated transcription factors potentially implicated in controlling 

IL-10 production by CTL. IL-10+ cells expressed higher levels of the transcriptional 

regulator Blimp-1 than IL-10− CD8+ T cells (Fig. 6a). Blimp-1 expression is known to be 

induced by IL-2 and Blimp-1 deficient CD4+ T cells show comparable production of IFN-γ 

and IL-4 but diminished IL-10 in response to TCR stimulation25,26. We therefore 

investigated the role of Blimp-1 in the production of IL-10 by CTL. CD8+ T cells from 

infected lungs of MhcII−/− mice express significantly lower levels of Blimp-1 and IL-10 (but 

not IFN-γ or T-bet) than T cells isolated from littermate control (Fig. 6b). Similarly, T cells 

from Ebi3−/− mice display lower levels of Blimp-1 and IL-10 than controls but comparable 

levels of IFN-γ and c-maf (Fig. 6c). Furthermore, exposure to either IL-2 or IL-27 can 

enhance Blimp-1 expression in CTL but simultaneous treatment of CTL with both cytokines 

act synergistically to enhance Blimp-1 expression (Fig. 6d). We then ectopically expressed 

Blimp-1 in CD8+ T cells by transducing CD8+ T cells with a Blimp-1 expressing retrovirus. 

Ectopic expression of Blimp-1 enhanced IL-10 production by CTL (Fig. 6e), although it did 

not induce IL-10 production by CTL as effectively as IL-2 plus IL-27 (data not shown), 

suggesting additional factors may contribute to maximal IL-10 production by CTL. We next 

wished to determine if IL-2 or IL-27 induced IL-10 production by CTL requires Blimp-1 

expression by CTL. To this end, we isolated CD8+ T cells from WT mice or mice with 

Prdm1 (the gene encoding Blimp-1) selectively disrupted in T cells (CD4-Cre-Prdm1fl/fl) 

and stimulated them with DC plus soluble anti-CD3 in the absence or presence of IL-27, 

IL-2 or the combination of the two cytokines. CD8+ T cells lacking Blimp-1 proliferated 

normally but failed to produce IL-10 in response to IL-2, IL-27 or IL-2 plus IL-27 (Fig. 6f). 

Thus, IL-2-IL-27 mediated induction of IL-10 production by CTL in vitro is Blimp-1 

dependent.

The in vivo induction of IL-10+ CTL requires Blimp-1

We next evaluated whether Blimp-1 is required for IL-10 production by CTL in vivo. To 

evaluate this, we infected CD4-Cre Prdm1fl/fl (cKO) mice with influenza and at day 7 p.i. 

measured IL-10 production by CTL in the MLN and infected lungs. Compared to CD8+ T 

cells from influenza infected control Blimp-1 sufficient (CD4-Cre Prdm1fl/+) mice, Blimp-1 

deficient CD8+ T cells exhibited markedly diminished IL-10 production (Fig. 7a, b) with 

comparable production of IFN-γ or TNF following influenza infection (Fig. 7a, b). The 

selective deficit in IL-10 production was also evident in the bronchioalveolar lavage fluid 

(BALF) of the infected Prdm1 cKO mice (Fig. 7c). The diminished release of IL-10 into the 

BALF likely also reflects defective IL-10 production by CD4+ T cells since the production 

of IL-10 by CD4+ T cells is also impaired in Prdm1 cKO mice (data not shown). Prdm1 

cKO mice also demonstrated enhanced pulmonary inflammation in response to infection 

characterized by increased infiltration of the infected lungs by mononuclear and 

granulocytic inflammatory cells and enhanced production of proinflammatory cytokines 

similar to the impact of IL-10R blockade (Fig. 7d and Supplementary Fig. 20)6. Next we 

sought to address whether the impaired IL-10 production by CD8+ T cells from Prdm1 cKO 

mice is a CD8+ T cell intrinsic defect. We first observed that infected Prdm1 cKO mice 
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exhibited comparable levels of IL-27 in the respiratory tract as infected WT mice along with 

moderately diminished IL-2 production due to the diminished production of IL-2 by CD4+ T 

cells but increased production of IL-2 by CD8+ T cells respectively (Supplementary Fig. 21 

and data not shown). To directly examine the role of Blimp-1 expression in regulating IL-10 

production by CTL, we transferred WT or Blimp-1 deficient T cells into Thy1 mismatched 

mice and analyzed IFN-γ, TNF and IL-10 production by CTL following influenza infection. 

Transferred Blimp-1 deficient but not WT CTL failed to produce IL-10 in response to 

antigenic stimulation (Fig. 7e and Supplementary Fig. 22). Together these data suggest that 

the role of Blimp-1 in regulating IL-10 production by CTL is cell-intrinsic.

Discussion

CD4+ T-cell “help” for CD8+ T cell responses have been previously demonstrated to be 

required for memory CTL formation, maintenance and recall responses27-29, in CTL 

migration to mucosal surfaces30 and in certain experimental settings for optimum primary 

CTL responses to weak stimuli31-33. Strong inflammatory stimuli like influenza infection, 

however, trigger potent primary CTL responses independent of CD4+ T cell “help”19,20. 

Our results support this concept as CD4+ T cell “help” is minimally required for expression 

of type 1 effector cytokines such as IFN-γ and cytolytic machinery such as Granzyme B by 

CTL in vivo. However, without CD4+ T cell “help”, anti-virus CTL activation and 

differentiation is incomplete since CTL are unable to optimally produce IL-10, a critical 

regulatory cytokine necessary to control excess lung inflammation during immune mediated 

virus clearance6.

IL-2 has been shown to promote CTL memory and to support terminal effector cell 

differentiation by up regulating cytolytic molecules e.g. Granzyme B in secondary lymphoid 

organs23,34,35. Our findings on the impact of defective IL-2 signaling on Granzyme B 

expression by proliferating and/or differentiating CTL in the draining MLN support these 

earlier findings23,34,35. However, within the inflammatory milieu of the infected lungs, 

other signals can replace IL- 2 in the induction of CTL Granzyme B. Proinflammatory 

molecules such as type I interferons which can induce antigen-independent Granzyme B 

expression in CTL within the respiratory tract36, may replace IL-2. By contrast we find that 

IL-2 has a critical non-redundant role in promoting the induction of IL-10 producing CTL.

Here we also demonstrated a synergistic role for IL-27 in the CD4+ T cell mediated 

induction of IL-10 by CTL. Although recognized as a stimulator of TH1 responses, IL-27 

has more recently been appreciated as an important IL-10 independent and dependent 

regulator of host immune responses37 e.g. induction of IL-10 expression by CD4+ Tr1 and 

CD4+ effector cells in vivo10,14,15. Our findings suggest that anti-viral CTL within the 

virally-infected lungs are also targets of IL-27 in vivo. While IL-27 is generally believed to 

be the product of activated macrophages and DC38, our results suggest that neutrophils may 

also be an important source of IL-27 during acute respiratory viral infections. This interplay 

between inflammatory myeloid cell-derived IL-27 and CTL-derived IL-10 suggests a novel 

regulatory loop where influx of inflammatory myeloid cells into the infected lungs in 

response to infection augments IL-10 production by CTL responding to infection which in 
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turn dampens both the activation state of the innate immune cells and additional infiltration 

of these myeloid inflammatory cells6.

Blimp-1 is a transcriptional repressor that plays a role in B cell differentiation, as well as T 

cell homeostasis, T effector cell differentiation and migration39. As previously reported 40, 

Blimp-1deficient CTL demonstrated a modest deficit in migration into the influenza infected 

lungs but the Blimp-1 deficient CTL within the infected lungs exhibit no deficit in pro-

inflammatory effector cytokine production. Blimp-1 deficient CTL were, however, 

drastically impaired in IL-10 production, suggesting stringent requirements for Blimp-1 

expression by IL-10 producing CTL in vivo in the infected lungs. Consistent with this 

hypothesis, IL-2- and/or IL-27- dependent IL-10 production by CTL in vitro required their 

expression of Blimp-1. Of note both IL-10 non-producing (IL-10−) and IL-10+ CTL express 

Blimp-1 but the IL-10+ CTL express 2-3 fold higher levels of Blimp-1. Thus a modest 

difference in the level of expression of this transcriptional regulator appears to markedly 

influence the ability of the activated CTL to express the IL-10 gene, a result consistent with 

recently published evidence relating Blimp-1 gene dosage to CD8+ T cell exhaustion41. 

While our findings indicate a likely non-redundant requirement for both Blimp-1 and IL-2 to 

generate IL-10 producing CTL, both IL-10+ and IL-10−CTL express Blimp-1 and are 

exposed to IL-2 and IL-27 in the infected lungs. Undoubtedly other, as yet unidentified 

factors, also play a part in controlling IL-10 gene expression by CTL in the infected 

respiratory tract.

In summary, we have described the cellular and molecular mechanisms controlling a 

regulatory cytokine production by anti-viral CTL. Our data reveals a novel co-ordination 

between innate cell-derived signal and TH cell-derived signal in fine-tuning the anti-viral 

CTL responses during acute respiratory virus infection. Our findings may provide the 

groundwork for future studies in manipulating IL-10 production in anti-viral T cells to 

control excessive host inflammation during acute respiratory virus infection.

Online Methods

Mouse and infection

C57/BL6, BALB/c, Rag2−/−, Ebi3−/−, Ifng−/−, p35−/−, OT-II, Prdm1fl/fl, MhcII−/−, CD4-Cre 

transgenic mice were purchased from Taconic Farm or The Jackson Laboratories. Vert-X 

mice 21 were from Dr. Christopher Karp at Cincinnati Children Hospital Medical Center, 

Il21r−/− mice were from Dr. Warren Leonard at NIH, Yeti mice 22 were from Dr. Markus 

Mohrs at Trudeau Institute. CL-4, TS-1, Il2ra−/−, Il2−/−, MhcII−/−-Vert-x and Vert-X-OT-I 

mice were bred in house. All mice were housed in a specific pathogen-free environment and 

all animal experiments were performed in accordance with protocols approved by the 

University of Virginia Animal Care and Use Committee. For virus infection, mice were 

infected with sub-lethal dose of A/PR/8-34 in serum free Iscove's media intranasally 

following anesthesia with ketamine and xylazine.
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Quantitative RT-PCR

Lung cell suspensions were prepared as described42. CD8+ cells were purified through 

MACS-beads (Miltenyi Biotech). mRNA isolation, reverse transcription and realtime PCR 

were performed as previously described6. Data were generated with the Delta CT method by 

normalizing to hypoxanthine phosphoribosyltransferase (HPRT).

Influenza-specific CD8+ T cell restimulation by BMDC

BMDC were harvested on day 6-7 post culture with GM-CSF and infected with influenza at 

approximated 100 M.O.I. overnight. Then BMDC were counted and mixed with lung or 

MLN cells at a 1.5 to 1 ratio in the presence of Golgi-Stop (BD Biosciences) and hIL-2 

(40U/ml) for additional 6-7 h. The surface staining of cell surface markers, intracellular 

staining of cytokines were performed as described6.

DC/T cell co-culture

CD4+ and CD8+ transgenic T cells were isolated from spleen and lymph nodes of indicated 

mice through MACS-beads (Miltenyi Biotech). Splenic DC were isolated from spleen of 

WT mice through MACS-beads (Miltenyi Biotech). Then DC were infected with 

approximately with 100 M.O.I. of virus (For CL-4/TS-1 experiments, DC were infected with 

influenza A/PR8; for OT-I/OT-II experiments, DC were infected with recombinant influenza 

A/PR8-OT-I plus A/PR8-OT-II virus). Then, DC were mixed with CFSE labeled CD8+ T 

cells (5×104) at the ratio of 1 DC : 10 T cells in round-bottom 96 wells. In some wells, we 

included the same number of CD4+ T cells. The conditions of the culture are indicated in the 

text. For experiments cultured with WT or Blimp-1 deficient CD8+ T cells. We stimulated T 

cells with soluble α-CD3 (0.05 μg/ml) with influenza infected BMDC at the ratio of 1 DC : 

10 T cells. The T cells were cultured for 4 d and restimulated with either cognate peptide (1 

μg/ml) or PMA (100ng/ml) plus ionomycin (1 μg/ml) in the presence of Golgi-Stop (1 μl/

ml). For the secondary culture with activated effector T cells. V-OT-I or OT-II cells were 

activated separately as described above. Then 5×104 V-OT-I cells or V-OT-I (5×104) plus 

OT-II cells (5×104) were left unstimulated or stimulated with plate-bound α-CD3 (coated 

with 50μl 1μg/ml in PBS for 3-4h in 37 °C) for 2d. All blocking Abs are used at the 

concentration of 20 μg/ml. recombinant human IL-2 and mouse IL-27 were used as 300 

U/ml and 10 ng/ml respectively.

Human CD8+ T cell culture

CD8+ T cells were isolated from periphery blood of healthy individuals via MACS. 5×104 

CD8+ T cells were then stimulated with plate bound α-CD3 plus α-CD28 (50μl 4μg/ml in 

PBS for 3-4h in 37 °C) for 3d in the presence or absence of hIL-2 (300 U/ml) and/or rhIL-27 

(10 ng/ml). Then the culture supernatant were harvested for human IL-10 ELISA and cells 

were harvested for quantitative RT-PCR analysis for IL-10 expression.

Bone marrow Chimera

To generate WT and Il2ra−/− mixed bone marrow chimera, we lethally irradiated (1020 

Rads) WT mice and reconstituted the irradiated mice with Thy1.1+ WT bone marrow mixed 

with Thy1.2+ Il2ra−/− bone marrow. To generate WT and Il21r−/− mixed bone marrow 
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chimera, we lethally irradiated (1020 Rads) WT mice and reconstituted the irradiated mice 

with CD45.1+ WT bone marrow mixed with CD45.2+ Il21r−/− bone marrow. After 8-10 

weeks, the reconstituted mice were then infected influenza.

Cell transfer and infection

For T cells transferring into WT mice: cells were isolated from Thy1.2+ WT, Il2ra−/− or 

CD4-Cre Prdm1fl/fl spleen and lymph nodes. A total of 50 million cells were then 

transferred into Thy1.1+ mice. 24h later, the recipient mice were infected with influenza. For 

CD4+ and CD8+ T cell transferring into Rag2−/− mice: 15 million purified WT CD8+ T cells 

were either alone or mixed with 30 million purified WT CD4+ T cells or Il2−/− CD4+ T cells 

and then transferred into Rag2−/− mice. 24h later, recipient mice were infected with 

influenza. At d9 p.i., lung cells were collected and IL-10/IFN-γ production by CD8+ T cells 

were determined.

Cell sorting

For experiments to measure IL-27 expression, WT mice were infected with influenza and at 

different cell populations were sorted based on following markers at d5 p.i.: Neutrophils: 

CD11b+Ly6G+; DCs, MHCIIhiCD11chi; Monocytes/macrophages, 

CD11b+MHCII+CD11c− or low; T cells, Thy1.2+, lung resident cells, CD45−. For effector T 

cells sorting from infected Vert-X mice, we sorted CD44hiIL-10-eGFP+ or CD44hiIL-10-

eGFP− CD8+ T cells from d7 infected lungs.

Retroviral transduction

Control pMI retroviral vector and Blimp-1 containing pMI retroviral vector were a gift from 

Dr. Thomas R. Malek at the University of Miami 25. Retroviral supernatants were generated 

by transient transfection of HEK-293T cells with TransIT-LT1 reagent (Mirus) in the 

presence of pCL-Eco Retrovirus packaging plasmid. Retrovirus-containing supernatants 

were collected 48 h after transfection and used for spin infection (2,500 rpm, 2 h) of pre-

activated OT-I cells (BMDC plus 1 μg/ml of OVA peptide for 24h). Then cells were washed 

and placed into culture with influenza-OVA infected DC for additional 3d.

Flow cytometry analysis

Antibodies were purchased from BD Biosciences or eBioscience. Cells were acquired 

through a 6-color FACS-Canto system (BD Biosciences). Data were then analyzed by 

FlowJo software (Treestar).

Statistical analysis

Data are mean ± s.e.m. Two-tailed Student's t-test was used. *, P values <= 0.05. **, P 

values <= 0.01.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Induction of IL-10 producing CTL in vivo requires IL-27 and CD4+ T cells
(a) WT or p35−/− mice were infected with influenza. At d7 p.i., the production of IL-10 and 

IFN-γ by CTL from MLN or lungs was measured by ICS. (b, c) WT or Ebi3−/− mice were 

infected with influenza. At d7 p.i., the production of IL-10 and IFN-γ by CTL from MLN or 

lungs was measured by ICS. (c) The normalized percentages of IL-10+ cells in influenza-

specific CTL (IFN-γ+) from MLN or lungs of infected WT and Ebi3−/− mice are depicted. 

(d) WT or Il21r−/− mice were infected with influenza. At d7 p.i., the production of IL-10 and 

IFN-γ by CTL from MLN or lungs was measured by ICS. (e, f, g) WT, Ebi3−/− or CD4+ T 

cell-depleted (α-CD4) Ebi3−/− mice were infected with influenza. At d7 p.i., the production 

of IL-10 and IFN-γ by CTL from MLN or lungs was measured by ICS. (f) The normalized 

percentages of IL-10+ cells in influenza-specific CTL (IFN-γ+) from MLN or lungs of WT 

and Ebi3−/− mice are depicted. (g) The mean fluorescence intensity (MFI) of IL-10 in 

IL-10+ cells from infected lungs is depicted. Numbers are the percentages of cells in gated 

population. *, P <= 0.05; **, P <= 0.01. Data are from one experiment, but are typical of 

those obtained from at least two.
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Figure 2. CD4+ T cell “help” is selectively required for the induction of IL-10 producing CTL in 
vivo
(a, b) WT mice were injected with Rat IgG or anti-CD4 (α-CD4) depleting Ab and infected 

with influenza. At d8 p.i., the production of IL-10, IFN-γ and TNF by CTL from MLN or 

lungs was measured by ICS. (b) The normalized percentages of IL-10+ or TNF+ cells in 

influenza-specific CTL (IFN-γ+) from MLN or lungs are depicted. (c) WT or MhcII−/− mice 

were infected with influenza. At d7 p.i., the normalized percentages of IL-10+ or TNF+ cells 

in influenza-specific CTL (IFN-γ+) from lungs of WT and MhcII−/− are depicted. (d) Vert-X 

mice were injected with Rat IgG or anti-CD4 Ab and infected with influenza. At d7 p.i., the 

percentages of IL-10-eGFP+ cells in influenza-specific PA224 or NP366 tetramer+ cells are 

depicted. (e) MhcII+/−-Vert-X or MhcII−/−-Vert-X mice were infected with influenza. At d7 

p.i., the percentages of IL-10-eGFP+ cells in influenza-specific lung PA224 or NP366 

tetramer+ cells are depicted. (f) Yeti mice were injected with Rat IgG or α-CD4 Ab and 

infected with influenza. At d7 p.i., the percentages of IFN-γ-eYFP+ cells in influenza-

specific lung PA224 or NP366 tetramer+ cells are depicted. Numbers are the percentages of 

cells in gated population. *, P <= 0.05; **, P <= 0.01. (a-d, f) Data are from one experiment, 

but are typical of three. (e) Data are pooled from total of four experiments.
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Figure 3. IL-2 provides the “help” from CD4+ T cell to CTL for IL-10 production in vitro
(a) CFSE labeled CD8+ CL-4 cells were stimulated with influenza-infected DC in the 

presence or absence of CD4+ TS-1 cells for 4d. The cultured cells were treated with 

indicated conditions. Then the production of IL-10 and IFN-γ by CL-4 cells were measured 

through ICS. (b, c) CD8+ Vert-X-OT-I (V-OT-I) cells were stimulated with influenza-OVA-

infected DC in the absence or presence of OT-II cells. (b) The percentages of IL-10-eGFP+ 

cells in V-OT-I cells are depicted. (c) The release of IL-2 into medium after 2d in culture 

was measured by ELISA. (d, e) V-OT-I or OT-II cells were activated separately by 

influenza-OVA-infected DC for 4d. The activated V-OT-I cells were unmanipulated or co-

cultured with the activated OT-II cells. Cells were then either left unstimulated or stimulated 

with plate-bound anti-CD3 (α-CD3). The cultured cells were treated as indicated. (d) The 

expression of IL-10-eGFP by V-OT-I cells after 2d in culture was measured by flow 

cytometry. (e) The release of IL-2 into medium after overnight in culture was measured by 

ELISA. (f) OT-I cells were stimulated with influenza-OVA-infected DC. After 4 d in 

culture, OT-I cells were treated with hIL-2 or hIL-2 plus plate-bound α-CD3 for 4h. The 

expression of IL-10 was measured by quantitative RT-PCR. Numbers are the percentages of 

cells in the gated population. Data are from one experiment, but are representatives of at 

least 3 replicates.
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Figure 4. IL-2 is required for the induction IL-10-producing CTL in vivo
(a, b). IL-2 production by gated Thy1+ cells from influenza infected lung is measured by 

ICS. (a) IL-2 production by Thy1+CD4+ and Thy1+CD4− cells depicted (b) with the 

indicated IL-2 MFI (c) IL-2 production by cultured MLN and lung cells from influenza 

infected mice treated with indicated antibodies is determined by ELISA. (d) Following 

transfer of WT or Il2ra−/− T cells into Thy1.1 mice and influenza infection, the normalized 

percentages of IL-10+ cells among influenza-specific CTL (IFN-γ+) from infected lungs at 

d8 p.i. is determined. (e, f) WT:Il2ra−/− chimeric mice were infected with influenza. At d7 

p.i., the production of IL-10, TNF and IFN-γ by CTL was measured by ICS. (f) The 

normalized percentages of IL-10+ or TNF+ cells among lung influenza-specific CTL (IFN-

γ+) are depicted. (g) Following infection of WT:Il2ra−/− chimeric mice the normalized 

percentages of lung IL-10+ cells among specific IFN-γ+ CD8+ T cells at d7 p.i., are 

depicted. (h, i) Following α-CD4 Ab treatment and influenza infection Vert-X mice received 

rmIL-2 or PBS at d5 and 6 p.i.,. The expression of IL-10-eGFP by CTL was measured by 

flow cytometry. (i) At d7 p.i, the percentages of IL-10-eGFP+ cells among gated CTL are 

depicted. Numbers represent percentages of cells in gated population. *, P <= 0.05; **, P <= 

0.01. Data are representative of at least two experiments.
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Figure 5. IL-2 and IL-27 synergistically induce IL-10 production by both murine and human 
CTL
(a, b) CFSE labeled CD8+ CL-4 cells were stimulated with influenza-infected DC in the 

presence or absence of CD4+ TS-1 cells for 4d. The cultured cells were treated with 

indicated conditions. Then the production of IL-10 and IFN-γ by CL-4 cells were measured 

through ICS. (b) The MFI of IL-10 in IL-10+ cells is depicted. (c) WT mice were infected 

with influenza and various cell types of the infected lungs were sorted out as described in 

methods. The expression of IL-27 EBI-3 and p28 subunits was measured through 

quantitative RT-PCR. (d) WT mice were injected with Rat IgG or α-CD4 Ab and infected 

with influenza. At d6 p.i., the levels of IL-27 p28 in BALF were measured through ELISA. 

(e) Purified human CD8+ T cells were stimulated with α-CD3 plus α-CD28 with indicated 

conditions for 3d. Then the levels of IL-10 in the medium were measured by ELISA. 

Numbers are the percentages of cells in gated population. (a-d) Data are representative of at 

least three separate experiments. (e) Data are representative of at least two separate 

experiments employing an additional donor.
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Figure 6. Induction of IL-10 producing CTL by IL-2 and IL-27 is Blimp-1 dependent
(a) Vert-X mice were infected with influenza. At d7 p.i., lung CD8+ CD44hiIL-10-eGFP− 

cells and CD8+ CD44hiIL-10-eGFP+ cells were FACS sorted. The expression of IL-10 and 

Blimp-1 were measured by quantitative RT-PCR. (b) MhcII+/− or MhcII−/− mice were 

infected with influenza. At d7 p.i., lung CD8+ cells were isolated and the expression of 

IL-10, Blimp-1, IFN-γ and T-bet was determined by quantitative RT-PCR. (c) WT or 

Ebi3−/− mice were infected with influenza. At d7 p.i., lung CD8+ cells were isolated and the 

expression of IL-10, Blimp-1, IFN-γ and T-bet was determined by quantitative RT-PCR. (d) 

OT-I cells were cultured with influenza-OVA infected DC in the absence or presence of 

hIL-2, IL-27 or hIL-2 plus IL-27 for 4d. The expression of Blimp-1 was measured by 

quantitative RT-PCR. (e) OT-I cells were transduced with control vector (mock) or Blimp-1 

expressing retrovirus (Blimp-1). Then cells were cultured for additional 3 days and IL-10 

production by OT-I cells measured by ICS. hCD2− (untransduced cells), hCD2+ (transduced 

cells). (f) CFSE labeled CD8+ T cells from WT or CD4-Cre Prdmfl/fl (Prdm1 cKO) mice 

were stimulated with DC plus soluble α-CD3 for 4 days under indicated conditions and 

IL-10 production by CTL then measured by ICS. Numbers are the percentages of cells in the 

gated population. Data are representative of at least two independent experiments.
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Figure 7. Blimp-1 deficiency in T cells results in diminished IL-10 production and enhanced 
pulmonary inflammation
CD4-Cre Prdm1fl/+ or CD4-Cre Prdm1fl/fl mice were infected with influenza. (a, b) At d7 

p.i., the production of IL-10 and IFN-γ by CTL was measured by ICS. (b) The normalized 

percentages of IL-10+ or TNF+ cells in influenza-specific CTL (IFN-γ+) in CD4-Cre 

Prdm1fl/+ or CD4-Cre Prdm1fl/fl mice are depicted. (c) At d7 p.i., the levels of IL-10 and 

IFN-γ in BALF were determined through ELISA. (d) At d9 p.i., the numbers of lung 

monocytes and neutrophils were measured through flow cytometry. Numbers are the 

percentages of cells in gated population. *, P <= 0.05; **, P <= 0.01. (b, c) Data are from 

three pooled experiments. (e) WT or CD4-Cre Prdm1fl/fl T cells were transferred into 

Thy1.1+ WT mice and infected with influenza. At d7 p.i., the production of IL-10 and IFN-γ 

by CTL was measured by ICS following restimulation with influenza-infected BMDC. The 

normalized percentages of IL-10+ cells in influenza-specific CTL (IFN-γ+) from infected 

lungs are depicted. Pooled data from two experiments are represented.
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