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To investigate whether the abscopal effects of cranial irradiation (C-irradiation) cause 
testicular damage in mice, male C57BL/6 mice (9 weeks of age) were randomly divided 
into a sham irradiation group, a shielded group and a C-irradiation group and administered 
sham/shielded irradiation or C-irradiation at a dose rate of 2.33 Gy/min (5 Gy/d for 4 d 
consecutively). All mice were sacrificed at 4 weeks after C-irradiation. We calculated the 
testis index, observed testicular histology by haematoxylin-eosin (HE) staining and 
observed testicular ultrastructure by transmission electron microscopy. Western blotting 
was used to determine the protein levels of Bax, Bcl-2, Cleaved caspase 3, glial cell line-
derived neurotrophic factor (GDNF) and stem cell factor (SCF) in the testes of mice. 
Immunofluorescence staining was performed to detect the expression of Cleaved caspase 
3 and 3β hydroxysteroid dehydrogenase (3βHSD), and a TUNEL assay was used to 
confirm the location of apoptotic cells. The levels of testosterone (T), GDNF and SCF were 
measured by ELISA. We also evaluated the sperm quality in the cauda epididymides by 
measuring the sperm count, abnormality, survival rate and apoptosis rate. The results 
showed that there was no significant difference in testicular histology, ultrastructure or 
sperm quality between the shielded group and sham group. Compared with the sham/
shielded group, the C-irradiation group exhibited a lower testis index and severely damaged 
testicular histology and ultrastructure at 4 weeks after C-irradiation. The levels of apoptosis 
in the testes increased markedly in the C-irradiation group, especially in spermatogonial 
stem cells. The levels of serum T and testicular 3βHSD did not obviously differ between 
the sham group and the C-irradiation group, but the levels of GDNF and SCF in the testes 
increased in the C-irradiation group, compared with the sham group. In addition, the 
sperm count and survival rate decreased in the C-irradiation group, while the abnormality 
and apoptosis rate increased. Under these experimental conditions, the abscopal effects 
of C-irradiation induced testicular damage with regard to both structure and function and 
ultimately decreased sperm quality in mice. These findings provide novel insights into 
prevention and treatment targets for male reproductive damage induced by C-irradiation.
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INTRODUCTION

According to recent WHO statistics, head and neck cancer is 
the seventh most common cancer overall (and the fifth most 
common cancer in men) worldwide, accounting for an estimated 
888,000 new cases in 2018 (Wild et  al., 2020). Notably, its 
incidence is increasing each year, and there is a trend towards 
a decreasing age at onset; thus, this disease seriously threatens 
human health. Cranial irradiation (C-irradiation) therapy is 
one of the major treatment modalities for primary and metastatic 
head and neck cancer (Siegel et  al., 2020; Turnquist et  al., 
2020). Hypofractionated radiation (single dose >2.5 Gy) is a 
promising new strategy for radiotherapy due to its higher 
treatment ratio, shorter total treatment time and lower cost 
than conventional radiotherapy (single dose = 2.0 Gy; Azoulay 
et al., 2017; Isfahanian et al., 2017; Rudat et al., 2017; Vischioni 
et  al., 2019).

Notably, cell and tissue injuries can occur in organs other 
than the irradiated tumour sites over the course of radiotherapy; 
such effects are called radiation-induced abscopal effects (RIAEs; 
Siva et  al., 2015; Hu and Shao, 2020). Most previous literature 
on RIAEs has focused on the regression of nonirradiated 
metastatic lesions after localised tumour radiotherapy (Ishiyama 
et  al., 2012; Siva et  al., 2015; Abuodeh et  al., 2016; Seggelen 
et  al., 2020). However, RIAEs also include serious side effects 
in normal tissues (Aravindan et  al., 2014; Tu et  al., 2019). 
Extracranial abscopal effects of C-irradiation are particularly 
unusual given the brain’s distinctive immune microenvironment 
(Lin et  al., 2019). However, multiple reports have shown that 
C-irradiation can cause serious abscopal effects in normal 
peripheral tissues, such as the haemopoietic system, thymus, 
lungs and spleen (Koturbash et  al., 2008; Lei et  al., 2015; Cai 
et  al., 2017; Mohye et  al., 2017).

A recent study demonstrated that adult survivors experience 
a greater decline in sexual functioning after C-irradiation therapy 
at a dose of >22 Gy than after C-irradiation therapy at lower 
doses (Huang et  al., 2020). To date, there have been only two 
reports about the abscopal effects of C-irradiation on male 
reproduction in animal models, which focused on DNA damage 
in the germline (Tamminga et  al., 2008) and sperm quality 
impairment (Zhang et  al., 2006). Overall, data on the abscopal 
effects of C-irradiation on distant testes are scarce, and the 
effects remain poorly understood. To provide a possible target 
for improving radiation protection and safety, we  studied the 
abscopal effects of C-irradiation in a hypofractionated regime 
on the structure and function of the testes in adult mice.

MATERIALS AND METHODS

Animals
Healthy adult male C57BL/6 mice [9 weeks of age, certificate 
number: XK (Shaan 2014–002)] were purchased from the 
Laboratory Animal Center of the Fourth Military Medical 
University (Xi’an, China) and maintained (four mice per cage) 
in the animal facility (12-h light/dark cycle; temperature, 
20–26°C; and humidity, 45–65%) with free access to food and 

water. After 1 week of adaptive feeding, the mice were randomly 
divided into a sham irradiation group and a C-irradiation 
group (n = 16 for each group). Notably, to ensure that no 
radiation leaked through the lead shield and that protection 
of the shielded ‘bystander’ tissue was complete, we  added a 
shielded irradiation group (shielded group, eight mice). All 
procedures in this study were approved and conducted following 
the guidelines of the Animal Welfare Committee of the Fourth 
Military Medical University (Xi’an, China).

Procedure of C-Irradiation
For the C-irradiation group, the mice were kept in a conscious 
state and administered C-irradiation in four hypofractionated 
doses of X-rays (RAD Source RS 2000 series, Suwanee, 
United  States; working electric current 25 mA, working voltage 
160 kV) 5 Gy/d for 4 d consecutively at a dose rate of 2.33 Gy/
min, which was monitored in real time by a radiation dosimeter 
(Radcal Accu-Dose, United  States). The remainder of each 
mouse’s body was completely protected by a 2-cm thick lead 
shield. The dose rate of the testes under the lead shield was 
0.01 Gy/min, which was equivalent to four thousandths of the 
cranial dose. For the shielded group, the whole body of each 
mouse was placed under a 2-cm lead shield and then irradiated 
in the same way as the C-irradiation group. Besides, the dose 
rate was 0.01 Gy/min and the total does was 0.08 Gy. For the 
sham group, the mice were subjected to the same procedure 
as the mice in the C-irradiation group except for X-ray irradiation.

Sample Collection and Testis Index 
Calculation
The body weight of each mouse was recorded every 3 days. 
All mice were fed for 4 weeks after C-irradiation and then 
euthanized with 1% sodium pentobarbital (50 mg/kg). 
Immediately, the bilateral testes were quickly freed from the 
surrounding connective tissues and excised after transcranial 
perfusion with 0.9% sodium chloride. The tissues were rinsed 
with precooled phosphate-buffered saline (PBS), immediately 
weighed, snap-frozen in liquid nitrogen and stored at −80°C 
until analysis. The testis index was calculated using the following 
formula: bilateral testes weight (g)/body weight (g) × 100%.

Observation of Testicular Histology by 
HE Staining
After anaesthesia, mice (n = 2–4 for each group) were fixed 
via cardiac perfusion with 4% paraformaldehyde (PFA, pH = 7.3) 
after transcranial perfusion with 0.9% sodium chloride. The 
bilateral testes were fixed in Bouin’s fixative solution (Lilai, 
Chengdu, China) for morphological examination. After fixation 
for 24 h, the fixed testes were routinely trimmed, dehydrated, 
embedded in paraffin and then serially sectioned on a rotary 
microtome (RM2135, Leica, Heidelberg, Germany) at a thickness 
of 4 μm. Before staining, the tissue sections were preheated at 
60°C for 2 h, deparaffinised, rehydrated in graded ethanol and 
stained with haematoxylin-eosin (HE) according to routine 
protocols. Then, histological changes were observed with a 
light microscope (Leica).
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Histological Analysis of Testis
For histological analysis of testis, the diameter of seminiferous 
tubules and height of seminiferous epithelium were measured 
using ImageJ software (NIH, MD, United  States) from 50 
random round or nearly round seminiferous tubules at × 100 
magnification for each group, according to the methods in 
a previous study (Babazadeh and Najafi, 2017; Guo et  al., 
2019). Briefly, the diameter was calculated as the mean of 
the major and minor axes of the seminiferous tubules, and 
the height of the seminiferous epithelium was calculated as 
follows (average diameter – average inner diameter) of 
seminiferous tubule/2. In addition, according to the appearance 
of cells present in the seminiferous tubules, the seminiferous 
tubules were divided into normal or abnormal (Ibáñez et al., 
2017), and the percentage of abnormal seminiferous tubules 
was counted from 10 random fields at × 100 magnification 
for each group.

Observation of Testicular Ultrastructure by 
Transmission Electron Microscopy
After anaesthesia, mouse testes (n = 2 for each group) were 
separated, trimmed to 1 mm × 1 mm × 1 mm samples, fixed 
in 3% glutaraldehyde and 1% osmic acid, dehydrated in a 
graded series of acetone (30, 50, 70, 80, 90, 95 and 100%) 
and then embedded in Araldite. Ultrathin slices (50 nm 
thick) were double-stained with saturated uranyl acetate and 
lead citrate. A transmission electron microscope 
(JEM-1400FLASH; JEOL Ltd., Tokyo, Japan) was used to 
observe the ultrastructure of seminiferous tubules. The 
testicular ultrastructure observed in this study included 
mainly Sertoli cells, Leydig cells, spermatogonia, spermatocytes 
and spermatids.

Western Blotting
Total testicular protein (n = 4 for each group) was extracted 
and quantified as described previously. Equal amounts of 
testis samples (30 μg) were subjected to 10–12% Bis-Tris gel 
electrophoresis and transferred to polyvinylidene fluoride 
immunoblot membranes (0.22 μm). The membranes were 
blocked with 5% non-fat milk for 2 h at room temperature 
and probed with primary antibodies overnight at 4°C. Primary 
antibodies against β-actin (20536-1-AP, 1:5000), Bcl-2 (12789-
1-AP, 1:2000) and Bax (50599-2-Ig, 1:3000) were obtained 
from Proteintech (Wuhan, China); primary antibodies against 
SCF (21670–1, 1:300) were obtained from SAB (MD, 
United States); and primary antibodies against Cleaved caspase 
3 (ab214430, 1:4000) and GDNF (ab176564, 1:2000) were 
obtained from Abcam (MA, United  States). The following 
morning, the membranes were incubated with species-matched 
horseradish peroxidase (HRP)-conjugated secondary antibodies 
(1:5000, CWBIO, Beijing, China) for 2 h at room temperature 
and then incubated with chemiluminescent HRP substrate 
to visualise the bands. Quantity One 4.62 software (Bio-Rad, 
CA, United  States) was used to analyse the optical density 
of each target band. To normalise the protein levels, β-actin 
was used as a loading control.

Immunofluorescence Staining and TUNEL 
Assay
After initial deparaffinization and rehydration, testis sections 
were processed by antigen retrieval using citrate buffer in a 
high-power microwave oven, treated with 3% bovine serum 
albumin for 30 min and incubated with a rabbit monoclonal 
Cleaved caspase 3 antibody (9664S, 1:200, CST, MA, United States) 
and a rabbit polyclonal 3β hydroxysteroid dehydrogenase (3βHSD) 
antibody (DF6639, 1:150, Affinity Biosciences, OH, United States) 
at 4°C overnight. Next day, the sections were subsequently 
treated with a FITC-conjugated goat anti-rabbit antibody (ab6717, 
1:1000, Abcam, MA, United States). Testicular cell apoptosis 
was assessed by terminal deoxynucleotidyl transferase (TdT) 
enzymaticated dUTP nick end labelling (TUNEL) assay using 
an in situ Cell Death Detection Kit (Roche, Basel, Switzerland). 
Briefly, after initial deparaffinization and antigen recovery, the 
section was permeabilised with Triton X-100 (ST795, Beyotime, 
Shanghai, China), followed by 30 μl TUNEL reaction mixture 
for 60 min at 37°C. Negative controls were performed without 
the enzyme TdT. Finally, 10 random fields for each group were 
chosen at random for analysis using a fluorescence microscope 
(Leica), and the average fluorescence intensity was calculated 
using ImageJ software.

Detection of Testicular Secretory Function 
by ELISA
Blood samples were taken from the heart and centrifuged at 
3000 rpm for 15 min at 4°C to obtain serum, which was stored 
at −80°C and used for detection of the secretory function of 
Leydig cells. The levels of serum testosterone (T; n = 7 for 
each group), secreted by Leydig cells, were determined with 
an ELISA kit (Sinoukbio, Beijing, China) according to the 
manufacturers’ instructions. In addition, testis tissue 
(approximately 100 mg; n = 5 for each group) was lysed with 
PBS and homogenised to extract total proteins in a 
homogenisation device (Leica) under precooled conditions. 
After that, the levels of GDNF and SCF in the testis were 
measured with the ELISA kits (Elabscience, Wuhan, China) 
according to the manufacturers’ instructions.

Detection of Sperm Quality
The cauda epididymides of each mouse were dissected out 
carefully, gently cut, collected in a 12-well plate containing 
1 mL of sperm culture solution (Millipore, MA, United States) 
and then incubated at 37°C for 30 min. The sperm suspension 
was collected and filtered through a nylon mesh with a 38-μm 
pore diameter to remove tissue fragments and then used to 
record and calculate sperm count and abnormality according 
to the methods in a previous study (Guo et  al., 2019). The 
types of abnormal sperm morphology observed in this study 
mainly included the folded-tail, hookless, amorphous, double-
head and double-tail phenotypes according to a previous study 
(Chen et  al., 2019). In addition, a FITC annexin V apoptosis 
detection kit Ι (BD Pharmingen, CA, United  States) was 
applied to quantify the survival rate and apoptosis rate of 
sperm. Briefly, sperm samples prepared as described above 
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were supplemented with 1 mL of 1× annexin V binding buffer. 
Subsequently, the samples were washed and incubated in 
annexin V-FITC and propidium iodide (PI) at 37°C for 5 min 
in the dark and then analysed by flow cytometry (FCM; 
XL-MCL, Beckman Coulter, CA, United  States) following the 
manufacturer’s instructions. Four or five sperm samples were 
used for each group, and 15,000 sperm were analysed for 
each sample.

Statistical Analysis
All measurement data are expressed as the mean and standard 
deviation (mean ± SD) and were analysed with SPSS 20.0 
statistical software (SPSS Inc., Chicago, IL, United  States). 
For statistical analysis, two-way ANOVA with repeated 
measures was used to analyse the body weights of mice, 
one-way ANOVA followed by Tukey’s multiple comparisons 
test was used to compare three groups and a two-tailed 
student’s t-test was used to compare two groups for parametric 
data (data that met the normality and equal variance 
assumptions). All subjective analyses were performed by 
individuals blinded to the exposure group. All graphs were 
generated using GraphPad Prism 8.0 software (San Diego, 
CA, United States), and the results were considered statistically 
significant at p < 0.05.

RESULTS

The Abscopal Effects of C-Irradiation 
Damage Testicular Histology
Figure  1A shows the time schedule of C-irradiation used for 
the mice. Day 3 to day 0 was the irradiation time. During 
the whole experiment, the body weights of the mice in the 
shielded group decreased only on day 4 (Figure  1B, p < 0.01) 
and then immediately returned to the levels of the mice in 
the sham group, and mice in the sham and shielded groups 
were in good general body conditions. However, from the end 
of the first day of C-irradiation, mice in the C-irradiation 
group exhibited evident appetite loss, activity reduction and 
body weight loss, compared with the mice in the sham and 
shielded groups (Figure  1B, p  < 0.01), and three mice died 
due to worsening health status during the first week after 
C-irradiation. Until 4 weeks after C-irradiation, the body weight 
of mice in the C-irradiation group still lagged significantly 
(p < 0.01).

In terms of the reproductive system of male mice, the 
testicular volume and testis index were significantly lower in 
the C-irradiation group than in the sham and shielded groups 
(Figures 1C,D; p < 0.001), but there was no significant difference 
between the latter two groups (p > 0.05). HE  staining showed 
that the testes in the C-irradiation group had obvious pathological 
changes, such as vacuolation of seminiferous tubules, degeneration 
and necrosis of spermatogenic cells (Figure  1E). In addition, 
the diameter of the seminiferous tubules and height of the 
seminiferous epithelium were significantly lower, and the 
percentage of abnormal seminiferous tubules was higher in 

the C-irradiation group than in the sham and shielded groups 
(Figures  1F,H; p < 0.001).

Interestingly, there were no significant differences in the 
organ index for other peripheral organs (heart, liver, spleen, 
lungs, kidneys and thymus) among the three groups (Figure S1; 
p > 0.05). HE  staining also showed that compared with the 
sham group, the histological structures of the other important 
peripheral organs had no change in the shielded group and 
no or only slight pathological changes in the C-irradiation 
group (Figures S2–7). All the above results indicated that 
the protection of the lead shield was extremely effective, 
and C-irradiation did not cause obvious scattering to the 
peripheral organs. Compared with other peripheral organs, 
testicular tissue was the most sensitive to the abscopal effects 
of C-irradiation, which could severely damage testicular  
histology.

The Abscopal Effects of C-Irradiation 
Damage the Testicular Ultrastructure
For the sham and shielded groups, the overall ultrastructure 
of seminiferous tubules was normal and intact (Figure  2A), 
and the spermatogenic cells in various growth cycles were 
closely arranged with clear cell structures, large round or 
oval nuclei, smooth and clear cell membranes and compact 
chromatin. The number of organelles in the cytoplasm was 
normal, and there were abundant mitochondria 
(Figures  2D–F). The intercellular bridge between the 
spermatogenic cells and the Sertoli cell junction complex, 
also called the blood-testis barrier (BTB), was complete 
(Figure  2B). For the C-irradiation group (Figures  2A–F), 
the overall ultrastructure of seminiferous tubules was severely 
damaged, the spermatogenic cell membrane was unclear at 
all levels, the perinuclear space was expanded, the nuclear 
membrane was dissolved, the mitochondria showed obvious 
swelling, cavitation was observed and the endoplasmic 
reticulum was dilated. Apoptosis and autophagy were suspected 
to be  underway in testicular cells. In addition, the integrity 
of the BTB was disrupted. All these results suggested that 
the lead shield had excellent protective effects on the tissues 
outside the cranial region and that the abscopal effects of 
C-irradiation severely damaged the testicular ultrastructure.

The Abscopal Effects of C-Irradiation 
Increase Testicular Cell Apoptosis
Western blotting detection of apoptosis-related proteins 
(Figure  3A) showed that compared with the sham group, 
the C-irradiation group exhibited significantly lower relative 
protein level of Bcl-2 (Figure  3B; p  < 0.01), significantly 
higher relative protein level of Bax (Figure  3C; p  < 0.01), 
significantly lower Bcl-2/Bax ratio (Figure  3D; p  < 0.05) 
and significantly higher relative protein level of Cleaved 
caspase 3 (Figure 3E; p < 0.05). Immunofluorescence staining 
of Cleaved caspase 3 showed that the number of Cleaved 
caspase 3-positive cells increased and that these cells 
distributed in the outermost seminiferous tubules at 4 weeks 
after C-irradiation (Figures  3F–G; p  < 0.001). In addition, 
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TUNEL staining of testis sections revealed that apoptosis 
of testicular cells increased obviously in the C-irradiation 
group compared with sham group (Figures 3H–I; p < 0.001), 
and the apoptotic testicular cells also located in the outermost 
seminiferous tubules. These results are consistent with the 
above results of Western blotting, suggesting that the abscopal 
effects of C-irradiation increase testicular cell apoptosis and 
more in spermatogonial stem cells (SSCs).

The Abscopal Effects of C-Irradiation Alter 
the Secretory Functions of the Testes
The ELISA results showed that the serum T concentration 
secreted by Leydig cells did not differ between the sham 
group and the C-irradiation group at 4 weeks after C-irradiation 
(Figure  4A; p  > 0.05). Besides, 3βHSD, a Leydig cell specific 
marker, plays an important role in the synthesis of steroid 
hormones (Yang et  al., 2017). To explore the abscopal effects 

A

B C D

E

F G H

FIGURE 1 | The abscopal effects of C-irradiation damage testicular histology. (A) Time schedule of irradiation for mice. (B) Body weight of mice during 
experiments. (C) Testis volume, n = 4 for each group. (D) Testis index, n = 10 for the sham group. n = 4 for the shielded group and n = 8 for the C-irradiation group. 
(E) HE staining of testes, n = 4 for the sham and C-irradiation groups, n = 2 for the shielded group, bar = 100 μm. Vacuolation of seminiferous tubules (  ) and 
degeneration and necrosis of various spermatogenic cells (  ). (F–G) Diameter of seminiferous tubules and height of seminiferous epithelium calculated randomly 
from 50 round or nearly round cross-sections of the seminiferous tubules (long axis: short axis < 1.2:1) for each group. (H) Percentage of abnormal seminiferous 
tubules calculated from 10 random fields for each group. The values are expressed as the mean ± SD and analysed by two-way ANOVA for body weight and one-
way ANOVA with Tukey’s test for three-group comparisons. **p < 0.01; ***p < 0.001 vs. sham group. ##p < 0.01; ###p < 0.001 vs. shielded group.
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of C-irradiation on steroidogenic capacity of Leydig cells, 
the 3βHSD immunoreactivity in Leydig cells was detected 
by the immunofluorescence staining in testicular paraffin 
sections (Figure  4B). The results showed that the level of 
3βHSD in testis did not differ between the sham group and 
the C-irradiation group at 4 weeks after C-irradiation 
(Figure  4C; p  > 0.05), which suggested that the abscopal 
effects of C-irradiation do not affect the steroidogenic capacity 
of Leydig cells. However, the concentrations of GDNF and 
SCF secreted by Sertoli cells were significantly higher in the 
C-irradiation group at 4 weeks after C-irradiation than in 
the sham group (Figures  4D,E; p  < 0.01). In addition, the 

results of Western blotting (Figure 4F) showed that compared 
with the sham group, the relative protein level of GDNF in 
the C-irradiation group showed an upward trend but not 
statistically significant (Figure 4G; p > 0.05), while the relative 
protein level of SCF was higher at 4 weeks after C-irradiation 
than of the sham group (Figure  4H; p  < 0.01), which was 
consistent with the results of ELISA. All the results suggest 
that the abscopal effects of C-irradiation enhance the secretory 
functions of Sertoli cells at 4 weeks after C-irradiation but 
do not affect the secretory functions of Leydig cells, which 
may be  related to negative feedback of damage repair during 
this period.

A

B

C

D

E

F

FIGURE 2 | The abscopal effects of C-irradiation damage the testicular ultrastructure. (A) Overall ultrastructure of seminiferous tubules. Bar = 10 μm. (B–F) 
Ultrastructure of Sertoli cells, Leydig cells, spermatogonia, spermatocytes and spermatids. Bar = 2 μm, n = 2 for each group. N, nucleus; Mi, mitochondrion; RER, 
rough endoplasmic reticulum; BTB, blood-testis barrier; and Ac, acrosome. Lipid droplets , mitochondrial swelling , secondary lysosomes , RER dilatation , 
loss of intracytoplasmic solutes , widened perinuclear gap  and suspected apoptosis .
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The Abscopal Effects of C-Irradiation 
Decrease Sperm Quality
The above results suggest that the testes are the most sensitive 
target organs to the abscopal effects of C-irradiation. To further 
clarify the abscopal effects of C-irradiation on testicular function 
in mice, we  detected changes in sperm quality of the cauda 
epididymis at 4 weeks after C-irradiation, including sperm count, 
abnormality, survival rate and early and late apoptosis rate. 

Compared with the sham group and shielded group, the 
C-irradiation group exhibited marked decreases in sperm count 
(Figures  5A,B; p  < 0.01 or 0.001). Typical types of abnormal 
sperm morphology observed in this study are shown in 
Figure  5C, and sperm abnormalities increased obviously in 
the C-irradiation group (Figure 5D; p < 0.01 or 0.001). Typical 
FCM pictures are shown in Figure  5E, where the quadrants 
represent dead sperm (PI+/FITC−, upper-left quadrant), late 
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FIGURE 3 | The abscopal effects of C-irradiation increase testicular cell apoptosis. (A) Typical immunoblots of apoptosis-related proteins. The first three bands 
were from the same membrane and the last two bands were from another membrane. (B–E) Relative protein level of Bcl-2, Bax, Bcl-2/Bax and Cleaved caspase 3 
detected by Western blotting, n = 4 for each group. (F–G) Immunofluorescence of Cleaved caspase 3 and average fluorescence intensity from 10 random fields for 
each group. Bar = 100 μm. (H–I) TUNEL staining and average fluorescence intensity from 10 random fields for each group. Bar = 100 μm. The values are expressed 
as the mean ± SD and analysed by two-tailed unpaired student’s t-tests. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. the sham group.
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apoptosis sperm (PI+/FITC+, upper-right quadrant), surviving 
sperm (PI−/FITC−, lower-left quadrant) and early apoptosis 
sperm (PI−/FITC+, lower-right quadrant). The survival rate of 
sperm decreased (Figure  5F; p  < 0.05 or 0.01), and the early 
apoptosis rate and late apoptosis rate of sperm increased 
significantly at 4 weeks after C-irradiation (Figures  5G,H; 
p  < 0.05 or 0.01 or 0.001). There were no significant changes 
in any of the above indexes relating to sperm quality in the 
shielded group, which again indicated that the lead shield had 
an excellent protective effect and that damage to the testes 
indeed arose from the abscopal effects of C-irradiation. The 
above results suggest that the abscopal effects of C-irradiation 
can damage testicular function and ultimately decrease sperm 
quality in mice.

DISCUSSION

With the progress of treatment technology, the survival rates 
of cancer patients treated with cranial irradiation significantly 
increased (Xu et al., 2018). Impaired fertility has been recognised 
as an important quality of life concern for cancer survivors 
of childbearing age (Muñoz et  al., 2016). Thus, protection of 
the reproductive potential of these patients against C-irradiation 
damage is important. To our knowledge, this study demonstrates, 
for the first time, that C-irradiation induces abscopal effects 
to cause distal testicular damage with regard to both structure 
and function.

Currently, a hypofractionated dose is being carried out as a 
new radiotherapy strategy. Thus, 5 Gy × 4 d C-irradiation was 
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FIGURE 4 | The abscopal effects of C-irradiation affect the secretory functions of the testis. (A) Serum T concentrations secreted by Leydig cells, n = 7 for each 
group. (B–C) Immunofluorescence of 3βHSD in testis and average fluorescence intensity from 10 random fields for each group. Bar = 100 μm. (D–E) GDNF and SCF 
concentrations secreted by Sertoli cells and detected by ELISA, n = 5 for each group. (F) Typical immunoblots relating to the secretory functions of Sertoli cells. The 
first two bands were from the same membrane and the last two bands were from another membrane. (G–H) Relative protein level of GDNF and SCF detected by 
Western blotting, n = 4 for each group. The values are expressed as the mean ± SD and analysed by two-tailed unpaired student’s t-tests. **p < 0.01 vs. sham group.
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used to explore the damage effect of testicular tissue under 
shielding in the study. It is possible that X-rays are reflected 
while passing through tissue, resulting in a small ‘scatter’ dose 

in the protected tissue. However, a previous study demonstrated 
that abscopal effects are not the result of insufficient shielding 
or radiation scattering (Koturbash et  al., 2008). Likewise, 
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FIGURE 5 | The abscopal effects of C-irradiation decrease the sperm quality of the cauda epididymis. (A) Representative pictures of sperm count. Bar = 200 μm for 
the upper-left corner and bar = 50 μm for the magnification with red border. (B) Analysis of sperm count. n = 8 for the sham and C-irradiation groups and n = 4 for the 
shielded group. (C) Typical types of abnormal sperm morphology, including the folded-tail, hookless, amorphous, double-head and double-tail phenotypes. 
Bar = 25 μm. (D) Sperm abnormality. n = 8 for the sham and C-irradiation groups and n = 4 for the shielded group. (E) Representative pictures of sperm apoptosis 
detected by FCM. (F–H) Survival rate, early apoptosis rate and late apoptosis rate of sperm for analysis as noted in (E). n = 5 for the sham and C-irradiation groups 
and n = 4 for the shielded group. The values are expressed as the mean ± SD and analysed by one-way ANOVA with Tukey’s test. **p < 0.01; ***p < 0.001 vs. sham 
group. #p < 0.05; ##p < 0.01 vs. shielded group.
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we  administered whole-body shielded irradiation to mice and 
found that there were no obvious changes in the histological 
structures of many peripheral organs (Figure S2–7). These results 
suggested that the protection of the lead shield was extremely 
effective and that the C-irradiation did not cause obvious scattering 
to the peripheral organs. We  also observed the organ index 
values and histological structures of important peripheral organs 
and found that only the testis index decreased and the histological 
structures of the testis were significantly damaged in the 
C-irradiation group. All of the above results suggest that the 
testes are the most sensitive target organs to RIAEs and that 
the testicular damage in the C-irradiated mice resulted from 
RIAEs rather than the effects of scattered C-irradiation.

Innumerable studies have proven that the testis is highly 
sensitive to ionising and nonionizing radiation, which could 
directly induce testicular cell apoptosis in animals (Said et al., 
2019; Rakici et  al., 2020). Furthermore, SSCs are highly 
radiosensitive in spermatogenic populations (Marjault and 
Allemand, 2016; Qi et  al., 2019). However, the sensitivity of 
spermatogenic populations to RIAEs is unclear. Previous 
studies have demonstrated that RIAEs can initiate apoptosis 
in distant tissues (Koturbash et  al., 2008; He et  al., 2020). 
In addition, Zhang et al. reported that fractionated irradiation 
(X-ray, 8 Gy × 3 d) of the right thorax damaged the ultrastructure 
of the BTB and increased apoptotic spermatogonia cells, 
which located at the outermost layer of the seminiferous 
epithelium of the testis (Zhang et  al., 2019). The results are 
consistent with our findings, indicating SSCs are highly 
sensitive to RIAE.

The mechanism of testicular cell apoptosis directly induced 
by ionising radiation is mostly mediated by a p53-dependent 
Bax-caspase-3-mediated pathway (Shahin et al., 2018; He et al., 
2020). Since the testes of mice in the C-irradiation group are 
not directly exposed to ionising radiation, we  speculate that 
the mechanism of testicular cell apoptosis induced by 
C-irradiation is different from that induced by direct radiation. 
Recently, it was reported that abnormal levels of hormones 
secreted by the hypothalamus-pituitary gland could induce the 
apoptosis of testicular spermatogenic cells (Chimento et  al., 
2014). In our ongoing study, we  found that the levels of 
gonadotropin-releasing hormone (GnRH) secreted by 
hypothalamus, luteinizing hormone (LH) and follicle stimulating 
hormone (FSH) secreted by pituitary increased significantly at 
4 weeks after C-irradiation compared with sham group (data 
not shown). Probably, the testicular cell apoptosis induced by 
C-irradiation was caused by the abnormal secretory function 
of the hypothalamus and pituitary gland, and we  are trying 
to get more evident to verify this speculation. Besides, it was 
reported that the PI3K/Akt pathway, a key regulator of apoptosis, 
played an important role in testicular damage (Huang et  al., 
2019; Kucukler et  al., 2020; Wang et  al., 2021). In addition, 
SCF and its receptor C-kit are upstream regulators of the 
PI3K/Akt pathway (Guan et al., 2020). Considering the protein 
level of SCF in testis increased obviously after C-irradiation 
compared with sham group, we speculate that another mechanism 
of testicular apoptosis in this study may be  related to the 
regulation of the SCF/C-kit–PI3K/Akt pathway.

Although testicular histopathology is often considered the 
gold standard for the nonclinical assessment of testicular damage, 
male fertility also requires intact testicular function (Kenney 
et  al., 2012; Dere et  al., 2013), which depends mostly on the 
secretory functions of testicular somatic cells (Sertoli cells and 
Leydig cells; Xiong et  al., 2020). T regulated by 3βHSD (Li 
et al., 2018), synthesised and released by Leydig cells is necessary 
for both spermatogenesis and the function of Sertoli cells, 
which secrete proteins necessary for the proliferation and self-
renewal of SSCs (Zhang et  al., 2006, 2015). In a previous 
study, 6 Gy of C-irradiation with 4 MV of nominal photon 
energy and a dose rate of 2.3 Gy/min induced late-onset T 
deficiency at 20 weeks in juvenile female rats (Xu et  al., 2020). 
However, the levels of serum T and testicular 3βHSD were 
not altered at 4 weeks after 20 Gy of C-irradiation in this study. 
Considering the increase of upstream hormones (GnRH, FSH 
and LH), we  speculated that it is related to negative feedback 
of damage repair during this period.

Spermatogenic cells are supported by surrounding Sertoli 
cells, which produce the factors and microenvironment required 
for each stage of spermatogenic cell development (Walker, 2021; 
You et  al., 2021). The factors include GDNF, which promotes 
the proliferation and self-renewal of SSCs, and SCF, which 
encourages the differentiation of SSCs (Guo et  al., 2019). The 
concentrations of GDNF and SCF increased at 4 weeks after 
20 Gy of C-irradiation. We  hypothesise that these changes are 
related to negative feedback regulation of testicular damage repair 
at 4 weeks after C-irradiation, which requires further research.

Spermatogenesis, the primary testicular function, is a complex 
morphological change of germ cell differentiation that involves 
self-renewal and differentiation of spermatogonia, meiosis of 
spermatocytes and spermiogenesis (Huang et al., 2021). Alteration 
of any stage of spermiogenesis will damage sperm quality and 
ultimately impact male fertility. The count, survival rate and 
morphology of sperm are key elements affecting fertility and 
function as sensitive indexes for evaluating the effects of physical 
and chemical factors on sperm quality. A previous study 
(Tamminga et  al., 2008) showed that the mature sperm quality 
of rats decreased on day 7 after X-ray C-irradiation (10 Gy × 2 
d, 3 Gy/min). Our results demonstrated that the abscopal effects 
of hypofractionated C-irradiation decreased the sperm quality 
of mice, consistent with the findings of Zhang et  al.’s (2006) 
study. That study reported that sperm quality decreased on 
the 35th day after administration of 2 Gy of 12C6+ ion or 60Co 
γ-ray C-irradiation to mice. Notably, the sperm count in the 
C-irradiation group decreased drastically. However, in all groups, 
survival rates were above 93%, and total apoptosis rates were 
below 5%, indicating that the abscopal effects of C-irradiation 
mainly impaired spermatogenesis (rather than directly affecting 
mature sperm) and further reduced sperm quality. Such effects 
may explain the clinical conditions of temporary infertility 
and permanent sterility after C-irradiation treatment (Muñoz 
et  al., 2016; Huang et  al., 2020; Verbruggen et  al., 2021).

The abscopal effects of C-irradiation are dynamic processes 
mediated by multiple factors, multiple pathways and multiple 
mechanisms, and they are not mutually exclusive. A clinical 
study reported that C-irradiation at doses of >22 Gy led to 
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gonadotropin deficiency (Haavisto et  al., 2016). The 
hypothalamus-pituitary-gonad axis regulates spermatogenesis 
in mammals, and the hypothalamus and pituitary are inevitably 
exposed to radiation during C-irradiation therapy, which may 
be  related to testicular damage resulting from the abscopal 
effects of C-irradiation. Notably, new technologies, such as 
gene expression profiling and proteomics, may contribute to 
elucidation of the mechanism and identification of the molecules 
involved in testicular damage induced by C-irradiation, which 
are the focuses of our ongoing research.

CONCLUSION

Taken together, the findings of this study indicate that the 
abscopal effects of C-irradiation can induce testicular damage 
with regard to both structure and function and ultimately decrease 
sperm quality in mice. These findings may have important 
implications for the development of strategies to improve safety 
and prevent radiotherapy-related reproductive damage.
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