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Abstract

Recent advances in modeling oxygen supply to cortical brain tissue have begun to elucidate

the functional mechanisms of neurovascular coupling. While the principal mechanisms of

blood flow regulation after neuronal firing are generally known, mechanistic hemodynamic

simulations cannot yet pinpoint the exact spatial and temporal coordination between the net-

work of arteries, arterioles, capillaries and veins for the entire brain. Because of the potential

significance of blood flow and oxygen supply simulations for illuminating spatiotemporal reg-

ulation inside the cortical microanatomy, there is a need to create mathematical models of

the entire cerebral circulation with realistic anatomical detail. Our hypothesis is that an

anatomically accurate reconstruction of the cerebrocirculatory architecture will inform about

possible regulatory mechanisms of the neurovascular interface. In this article, we introduce

large-scale networks of the murine cerebral circulation spanning the Circle of Willis, main

cerebral arteries connected to the pial network down to the microcirculation in the capillary

bed. Several multiscale models were generated from state-of-the-art neuroimaging data.

Using a vascular network construction algorithm, the entire circulation of the middle cerebral

artery was synthesized. Blood flow simulations indicate a consistent trend of higher hemato-

crit in deeper cortical layers, while surface layers with shorter vascular path lengths seem to

carry comparatively lower red blood cell (RBC) concentrations. Moreover, the variability of

RBC flux decreases with cortical depth. These results support the notion that plasma skim-

ming serves a self-regulating function for maintaining uniform oxygen perfusion to neurons

irrespective of their location in the blood supply hierarchy. Our computations also demon-

strate the practicality of simulating blood flow for large portions of the mouse brain with exist-

ing computer resources. The efficient simulation of blood flow throughout the entire middle

cerebral artery (MCA) territory is a promising milestone towards the final aim of predicting

blood flow patterns for the entire brain.
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Author summary

The brain’s astonishing cognitive capacity depends on the coordination between neurons

and the cerebral circulation, a system known as the neurovascular unit. The spatial and

temporal coupling between these two networks is the object of intense research. However,

the concise anatomical description of the cerebral circulation has so far been intractable.

This paper introduces a methodology for the in silico creation of realistic models for the

entire cerebral circulation. This innovation incorporates topological data from several

neuroimaging modalities covering three lengths scales as input into a computer algorithm,

which assembles anatomically accurate circulatory networks. When simulating blood flow

as red blood cells suspended in plasma for experimental and synthetic cortical network

models, we discovered that red blood cells tend to be more concentrated in deeper layers

of the cortex compared to the surface. RBC fluxes are more homogenous in deeper layers.

The phenomenon of depth dependent red blood cell supply supports the notion that the

intricate architecture of the cortical microcirculation serves a self-regulating function to

maintain uniform oxygen perfusion to neurons. We also demonstrate the practicality of

predicting blood flow patterns for the entire brain with existing computer power.

Introduction

Metabolic activity of the brain is controlled by a complex system of neuroreceptors, small

molecular regulators such as nitric oxide, hormones and proteins. The supply, clearance, and

balance of metabolites, oxygen, glucose and waste are controlled by the cerebral circulation

which is coupled with the cerebrospinal and interstitial fluid (CSF/ISF) subnetworks [1,2]. The

coordination between oxygen extraction and increased cerebral blood flow after neuronal fir-

ing has garnered intense research interest in blood oxygen-level dependent (BOLD) signal,

which is the basis of functional magnetic resonance imaging (fMRI). Recent work [3] has

begun to quantify the microvascular origin of the BOLD fMRI signal in a microsection of a

mouse brain. The study integrated state-of-the-art neuroimaging of anatomical spaces, tissue

oxygen tension measurements and a mechanistic model of blood-bound oxygen supply to

convert changes in cerebral blood flow and oxygen extraction into synthetic BOLD signals

using Monte Carlo simulations. The main achievement was a successful first principles cor-

relation between measured oxygen and cerebral blood flow (CBF) levels generating fMRI

signals.

A recent paper from our group [4] aimed at widening the spatial coverage of coupled blood

flow and oxygen simulations. Our model also offered detailed saturation and dissociation

kinetics of plasma and red blood cell-bound oxygen, endothelial mass transfer and tissue oxy-

gen extraction. Our study quantified vascular network effects by coupling biphasic (= suspen-

sion of red blood cells in plasma) hemodynamics and nonlinear blood rheology with oxygen

kinetics. In addition, the number, distribution and position of neuronal and glial cell nuclei

were acquired in a sizable section (~1x1x1 mm3) of vibrissa primary sensory cortex. We also

predicted oxygen saturation in arterioles, capillaries and veins within experimental error

bounds. By adopting a probabilistic approach to account for mitochondria respiration associ-

ated with specific neuronal and glial somata, the model was used to compute subcellular oxy-

gen gradients between the extracellular matrix, the cytoplasm and individual neuronal/glial

mitochondria. The remaining open question concerns the spatiotemporal coordination inside

the neurovascular unit.

Microcirculatory blood flow simulations predict depth dependent hematocrit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006549 November 19, 2018 2 / 25

Competing interests: The authors have declared

that no competing interest exist.

https://doi.org/10.1371/journal.pcbi.1006549


Regulation

There is agreement that the neurovascular unit locally controls the cerebral blood flow

response. Yet, oxygen supply exceeds the metabolic demand of neuronal activation for reasons

that still remain uncertain [5]. Because of the massive size of the mammalian brain with its

immense number of neurons and capillaries, the precise temporal and spatial coordination

among cellular components still eludes exact physiological description. For example, studies

suggest that functional hyperemia causes local neuronal metabolism increase of 5%, which in

turn augments local blood flow by 30% up to almost 130% of base line perfusion [6]. However,

the exact timing, regulation, and extent of dilation in individual spatially distributed vascular

compartments during functional hyperemia are still being investigated [3,7–9].

The cerebral circulation also exercises a second blood flow control mechanism known as

cerebral autoregulation [10–17]. Clinical observation [11] suggests that the total cerebral blood

flow (CBF) remains constant over a wide range in perfusion pressure (±50 mmHg, ±6666 Pa).

Many excellent contributions [18–20] correctly attribute the constancy of cerebral blood sup-

ply to global resistance adjustments. Yet, the involvement of specific vascular compartments,

speed and spatial coverage of local vasodilatory/vasoconstrictive districts remains elusive

[11,18–20]. Moreover, quantification of network effects and control principles among vascular

compartments requires an anatomically accurate mathematical model of the cerebral

circulation.

Propelled by the advances in neuroimaging, several groups have begun to integrate medical

image data with large-scale computer models [3,4,9,21–23]. Generally, these efforts fall into

two types. One type adopts a reductionist approach using simplified networks to highlight

global blood flow distribution patterns [7,24–28]. The second type follows a bottom-up strat-

egy which aims at replicating relevant microcirculatory components down to the level of the

cellular ensemble. Noteworthy examples include quantifying the neurovascular coupling in

functional hyperemia [3], analysis of pressure drop dependence on cortical depth [22], predic-

tions of blood flow control by intra-cortical arterioles [9], and cortical oxygen distribution

[29,30]. The ultimate goal of bottom-up models is a hemodynamic simulation of the entire
brain, yet virtual circulation models of the whole brain have been perceived as intractable due

to size and nonlinearity of the mathematical coupling between blood flow and oxygen kinetics

[24].

This manuscript will introduce a computational procedure that integrates multimodal neu-

roimage data covering different length scales into a unified virtual representation of the

murine cortical circulation. Two-photon imaging provides data for the reconstruction of capil-

lary networks. High resolution micro computed tomography (μCT) imaging is used to capture

the connectivity between main arterial branches and pial blood vessels. The morphometrics of

the micro, meso- and macro-scale vascular models have been statistically analyzed in order to

synthesize virtual blood flow networks with anatomically equivalent statistics, but without

being confined to the limited field-of-view or resolution of imaging modalities.

The aim of this paper was to quantify network effects of uneven red blood cell distribution

in the cerebral circulation. Although uneven red blood cell distribution also known as plasma

skimming can be observed in single bifurcations, neuroimaging of the entire cerebral circula-

tion has so far not been accomplished. To overcome this shortcoming, we integrated physio-

logical data from several neuroimaging modalities covering three different lengths scales.

Massive computer simulations of large microcirculatory networks of the murine primary cor-

tex revealed a trend of depth-dependent hematocrit, which is a significant finding indicating

that the intricate architecture of the cortical microcirculation serves a self-regulating function

to maintain uniform oxygen perfusion.

Microcirculatory blood flow simulations predict depth dependent hematocrit
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Results

Morphometrics

We first assessed morphometrics of experimental data obtained from murine primary somato-

sensory cortex samples (N = 4, E1.1-E4.1). The indexing and naming scheme for the data sets is

listed in Table 1. The total microvascular segment count was 24,669±9,594 splines. An impor-

tant property is that all four original two-photon laser scanning microscopy (2PLSM) data sets

contained blood vessels that divide into more than two daughter branches (multifurcations).

Specifically, the four data sets contained 654, 725, 1686, 1440 multifurcations, respectively.

Statistics on cumulative metrics including vascular surface area, path length and luminal

volume are compiled in Table 1. Although the data originate from the same cortical region,

there are subject-specific variations between different specimens. There was higher variability

in the low end of the vascular diameter spectra, because unavoidable uncertainty affects the

thinnest vessels close to image resolution threshold as observed previously [31]. We also esti-

mated the surface area to tissue volume ratio of the blood-brain-barrier (BBB) of the microvas-

cular network as 8.8±1.1 mm2 vasculature/mm3 tissue. This number was obtained by

summing the (endothelial) surface area of the capillary bed; this estimate compares to experi-

mental values of the BBB surface of about 10-17 mm2/mm3 in humans [32–34].

Synthetic data sets

Amodified constructive growth algorithm (mCCO [30]) was used to create 60 synthetic data sets

(S1.1-S4.15) of the murine primary sensory cortex. For each of the four experimental data sets,

15 clones with statistics matching closely their experimental original were created, so that the

S1.1–15 series matched the original E1.1, and S4.1–15 matched data set E4.1. Artificial networks

smoothly connect arterial vessels through the capillary bed to the veins without gaps or the need

to insert artificial segments as observed with other methods [27]. In addition, since blood vessels

are not exactly straight, realistic tortuosity values were imposed by a Bezier spline-based tech-

nique described previously [30]. Moreover, at the boundaries of the synthetic data sets neither

pial surface vessels, nor deeper laying arterioles, capillaries, or venules were severed or had to be

pruned thanks to the precise geometric control of the vasogenic growth algorithm. Artificial

network growth took less than five minutes for each dataset on a personal computer.

Branching patterns

We also compared morphometrics of experimental (N = 4) against synthetic vibrissa primary

somatosensory cortex data sets (N = 60, S1.1-S4.15). No discernible feature differences can be

Table 1. Topological feature comparison between experimental 2PLSM and synthetic data sets.

Experimental 2PLSM (N = 4) Synthetic data sets (N = 60)

Data name (labels) E1.1, E2.1, E3.1, E4.1 S{1,2,3,4}.1–15

Number of splined segments (Nsgm) 24,669 ± 9594 24,679 ± 8389

Segments per pial surface (Nsgm/mm2) 16,704 ± 2816 16,710 ± 2464

Bifurcations 14,842 ± 5652 16,451 ± 5592

Multifurcations 1172 ± 584 <250

Length (m) 1.38 ± 0.47 1.33 ± 0.47

Intravascular volume (nL) 24.3 ± 12.0 27.0 ± 6.1

Blood-brain barrier surface area (mm2) 16.3 ± 6.3 17.7 ± 5.4

Coverage of pial surface area (mm2) 1.6 ± 0.3 1.77 ± 0.5

Tissue volume (mm3) 2.2 ± 0.8 2.2 ± 0.7

https://doi.org/10.1371/journal.pcbi.1006549.t001
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inferred from visual inspection as shown for three experimental (E2.1, E3.1, E4.1) and six syn-

thetic data sets (S2.5, S3.3, S4.5, S2.3, S3.4, S4.8) in Fig 1A. Total count amounted to 24,679 ±
8389 spline segments and 16,451 bifurcations. Spline segments were defined as tubular

Fig 1. Morphometric comparison between experimental and synthetic microcirculatory networks from the murine vibrissa primary sensory cortex. (A)

Three 2PLSM experimental [35] data sets (E2.1, E3.1, E4.1, three shown out of four) are compared to synthetic (S2.5, S3.3, S4.5, S2.3, S3.4, S4.8)

microcirculatory networks (six shown, out of sixty total). (B) Cumulative microcirculatory morphometrics for experimental (N = 4) and synthetic (N = 60)

networks (segment number-Nsgm, intravascular length, vascular surface area-VSA, and vascular volume-VV are statistically similar, p>0.05 in all cases using

one-way ANOVA). (C) Probability density functions show that the synthetic data sets are not identical, but match the topology of experimental data sets.

Taken together, the morphometric analysis shows that experimental and synthetic networks are statistically equivalent.

https://doi.org/10.1371/journal.pcbi.1006549.g001

Microcirculatory blood flow simulations predict depth dependent hematocrit
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connections (splines) between branching points (bifurcations or multifurcations). This count-

ing method ensured that the final tally is independent of image grid resolution or number of

segment sub-partitions. The comparison of cumulative properties and probability density

functions shows excellent agreement between the experimental and synthetic networks as seen

in the plots Fig 1B and 1C. The synthetic networks are different realizations, but statistically

equivalent replica (clones) of the original image samples.

Network effects in large-scale models

The nonlinear biphasic blood flow, pressure and hematocrit equations for all four experimen-

tal networks and all sixty synthetic networks converged within five minutes [29]. Results were

visualized with 3D rendering software Walk-In Brain developed at our institution [36,37].

Path analysis was conducted based on flow trajectories traversing the network along stream-

lines. Biphasic blood flow and network effects determining blood pressure and hematocrit dis-

tribution through large experimental (N = 4) and synthetic (N = 60) networks perfusing a

large portion of the cortex were studied.

Typical pressure distributions along the microcirculatory network hierarchy are shown in

Fig 2. Pressure drop trajectories through the microcirculation showed patterns consistent with

experimental data [38–40]. Results of the path analysis in Fig 2 also depict the wide variations

of hemodynamic states when blood traverses the dense microcirculatory network from the

pial surface vessels through penetrating arterioles into the capillary bed and finally back to the

collecting veins. The trajectories of individual paths (green, blue, magenta and yellow) display

wide variability of hemodynamic states along the flow direction. Flow analysis reflected that a

perfusion pressure drop in the microcirculatory networks from 120 to 5 mmHg (15,999-667

Pa) resulted in a mean tissue perfusion of 68.9 ml/100g/min (11 � 10−6 m3/kg/s) which is within

experimentally observed ranges [41,42].

Path analysis of hematocrit and layer dependence

We further inspected the RBC flux distribution as a function of network hierarchy (= vascular)

and position inside the cortical hierarchy (= neuronal). The results were acquired for both

empirical and synthetic data sets. Two representative specimens are highlighted in Fig 3A and

3B; eight more examples are displayed in Fig 3C. Typical paths belonging to different cortical

layers are color coded in Fig 3. Flow paths were generated by tracing the flow from arterial

inlet nodes downstream through the capillary bed until reaching a venous outlet. Paths were

sorted according to their tissue supply function as follows: a path depth label equal to the corti-

cal depth of the deepest segment was assigned to each flow path. Thus, all paths were uniquely

ordered within a spectrum of shallow to deep reaching paths according to the neuronal layer

(I-VI) hierarchy in agreement with previously reported values [35,43,44]. Fig 3 depicts hemat-

ocrit values along representative paths in shallow (layer I-green) and deeply penetrating paths

(layer V/VI-yellow). Along each path and between different paths there is high variability

along the flow direction. For example, discharge hematocrit in data set S1.1 reaches values as

high as hmax~0.7, and as low as hmin~0.18. However, there is an overall trend of higher hemato-

crit being carried to lower cortical levels (layer-V/VI paths). The trend of relatively higher

hematocrit, h, conveyed to deeper tissue layers (p-value<0.01, using one-way ANOVA test in

MatLab) was observed consistently in all experimental and synthetic data sets. The bulk flow,

Q, showed the opposite trend; it was reduced in segments of deeper layers which are connected

by longer paths as is summarized in Fig 4. In contrast to bulk flow and hematocrit, the RBC

flux (= volumetric flow rate of the RBC phase) exhibited weak layer dependency, it was almost

constant irrespective of the cortical depth. We also observed that the variance of capillary RBC

Microcirculatory blood flow simulations predict depth dependent hematocrit
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fluxes decreased with cortical depth, thus RBC fluxes in deeper layers show lower variability

than paths on the surface. Taken together, biphasic blood rheology and network effects seem

to induce depth dependent hematocrit supply to the cerebral cortex which leads to more

homogenized RBC fluxes in deeper layers (= lower variance in RBC fluxes). Further analysis of

diameter dependence on hematocrit confirmed the high degree of hematocrit variability across

the diameter spectra as previously observed [4] (S1 Supplement).

Fig 2. Predictions of hemodynamic states in primary cortex simulations show large variations due to network architecture. (A) Path analysis (N = 2,300–

22,052 paths per dataset) of blood pressure as a function of diameter. (It should be noted that some paths in the experimental data sets e.g. E1.1 exhibit

zigzagging which is probably due to uncertainty in the diameter information). (B) Blood pressure as a function of path length in four microcirculatory data sets.

Representative path trajectories have been plotted in green, blue, magenta and yellow (A-arteries, PA-penetrating arteries, C-capillaries, AV-ascending venules,

V-veins).

https://doi.org/10.1371/journal.pcbi.1006549.g002
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The agreement between the simulation results obtained for experimental and synthetic data

confirms that the synthetic networks are hemodynamically equivalent to the experimental net-

works. The satisfactory match in morphometrics and hemodynamics between experimental

and synthetic data justifies the extension of network synthesis to large anatomical regions as

described next.

Fig 3. Depth dependent path analysis of hematocrit trajectories through the cortex. The visualization of the hematocrit field in three dimensions

shows a higher (red) level of discharge hematocrit in the deeper segments than in segments closer to the pial surface. This trend is observed in

experimental (A, E4.1) and synthetic (B, S4.2) networks. Plots for all paths (N = 2,300-22,052 paths per dataset) trace the grayed region, depicted here for

experimental data set E4.1 and synthetic data set S4.2. For better visibility, representative paths descending to different depths are shown with color coding

by layer (I-VI). Deeper reaching paths (layer V/VI-yellow) tend to carry higher hematocrit levels than shallower paths (layer I-green). (C) Additional data

sets show consistently depth dependent hematocrit in synthetic (N = 5, S1.1, S2.1, S3.2, S2.3, S4.1) and experimental (N = 3, E1.1, E2.1, E3.1) networks

(eight examples depicted).

https://doi.org/10.1371/journal.pcbi.1006549.g003

Fig 4. Statistics of hematocrit distribution and RBC fluxes in cortical layers of cerebral microcirculatory networks. (A) Statistics over an ensemble of

experimental (N = 4) and synthetic (N = 12) data sets show higher discharge hematocrit in deeper segments (N = 1,234,412 with p<0.01 using one-way

ANOVA). The median (red line), 25-75th percentile (blue box) and limits (black lines, excluding outliers) of hematocrit in all blood vessels for each layer

obtained for all data sets. (B) Statistics in three individual data sets (S1.1, E2.1, S4.1, N = 59830, 94842, and 108833 respectively, p<0.01 in all cases). In all case,

layer V has higher hematocrit levels than the layers closer to the cortical surface. In general, shorter surface paths (layer I) tend to have higher flow rate,Q, but

lower hematocrit levels, h. The total red blood cell flux (RBC) is rather uniform for all cortical layers, because the flow effect (Q, lower in deep layers) and

hematocrit (h, higher in deep layers) balance each other out. The variance of the RBC fluxes, VarRBCFlux, decreases with depth; accordingly there is more

homogenous RBC flux distribution in deeper layers.

https://doi.org/10.1371/journal.pcbi.1006549.g004
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Extension to brain-wide hemodynamic simulations

Vascular networks covering the circulation of the entire MCA territory were generated with

the help of our modified CCO (mCCO) algorithm as described in Gould et. al [30]. The

mCCO algorithm was launched with the MCA M1 as the first segment. The location of the

MCA territory within the context of the mouse cortex is shown in Fig 5 top-row. Sequentially,

more segments were added at the cortical surface depicted in Fig 5 top-row, while minimizing

the vascular tree volume subject to blood flow constraints. Thus, gradually the algorithm gen-

erated all arterial branches of the pial network on the cortical surface. Then, it was directed to

proceed with penetrating arterioles and microcirculatory growth to a depth of approximately 1

mm below the pial surface, until a preset vessel density was reached. At each step of the seg-

ment generation, connectivity and bifurcation position were optimized to obtain minimum

tree volume. The diameters of the network branches were recursively recomputed in accor-

dance with hemodynamically-inspired principles [45]. The total number of splined segments

in the artificial MCA territory was 993,185. This was roughly 60 times the number of segments

in the cortical samples.

The topology of the synthetic MCA territory resembled maps available in mouse atlases

[46,47]. Branching density and pattern of the pial arteries as well as the number of penetrating

arterioles was within ranges of the reconstructed sets of μCT images as listed in Table 2.

Detailed views in Fig 5 show pial, microcirculatory and individual capillary scales illustrating

different aspects of the massive network model covering three length scales ranging from the

MCA M1 segment with a diameter [48] of 142 µm down to the capillary bed [35], d<6 µm.

Morphometrics of the synthetic MCA networks are summarized in Table 2. Fig 5A–5C depicts

the pressure, flow and hematocrit field from the outflow of the Circle of Willis (MCA M1),

down to the smallest capillaries in the microcirculation. The anatomical detail and branching

pattern is depicted for the highly irregular, tortuous microcirculatory network.

Complete circulation of the MCA territory including arterial and venous

side

The simulation of the entire MCA territory included the compartments of pial arteries, pene-

trating arterioles, pre-capillaries, capillaries, post-capillaries, ascending venules and pial veins.

To complete the MCA circulation, the venous tree including venules was synthesized in

reverse and connected to the capillary bed as described previously [30]. Fig 6 depicts the distri-

bution of pressure, flow and hematocrit throughout the MCA territory. Fig 6A shows compre-

hensive three-dimensional maps of the anatomical hierarchy, pressure distribution, blood flow

in the MCA territory, and uneven biphasic hematocrit. Fig 6B–6E highlights the anatomical

grouping, pressure, flow, and hematocrit distribution throughout individual compartments.

In these views, explosion diagrams separating the anatomical groups (pial arteries, penetrating

arterioles, pre-capillaries, capillaries, post-capillary venules, venules and pial veins) were used

to better delineate the hemodynamic states in each group. Visual inspection of the microcircu-

latory compartments (pre-capillaries, capillaries, and post-capillaries) depicted in Fig 6E reveal

higher hematocrit levels in deeper cortical layers than on the surface.

Blood flow

Simulations conducted for the entire circulation on the MCA territory required boundary con-

ditions at only two points; MCA M1 arterial blood pressure (p = 120 mmHg, 15,999 Pa),

hematocrit level (h = 0.35), and venous outlet pressure (p = 5 mmHg, 667 Pa). The solution

encompassed blood pressure, flow and hematocrit for 5452 pial vessels, 27,374 segments

Microcirculatory blood flow simulations predict depth dependent hematocrit
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Fig 5. Schematic of multiscale biphasic blood flow simulations in the arterial side of the MCA territory. The large-scale cerebrocirculatory

model connects the Circle of Willis to the territory of the middle cerebral artery with its complete pial arterial network and microvasculature.

Simulation results show snapshots of pressure distribution, flow rates, and hematocrit at three length scales (1mm, 100μm, 10μm). The three

Microcirculatory blood flow simulations predict depth dependent hematocrit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006549 November 19, 2018 11 / 25

https://doi.org/10.1371/journal.pcbi.1006549


perpendicular to the pial surface, and 960,359 capillaries of the entire center MCA territory,

for a total of 993,185. In total, the proposed iterative method succeeded in bringing to conver-

gence a total of 2,648,853 equations for biphasic blood flow.

The predicted perfusion rate for the MCA territory was 50 ml/100g/min (= 8.3 � 10−6 m3/

kg/s) which is in agreement to literature ranges [41,42] of 40–163 ml/100g/min (= 6.7–27.2 �

10−6 m3/kg/s). The trend of higher hematocrit levels in deeper cortical layers seen in the

smaller cortical samples was also confirmed in the massive simulations for the MCA territory

as shown in Fig 7.

It should be noted that the simulations showed virtually no boundary effects in the center

of the MCA territory where the primary sensory cortical samples were located. The suppres-

sion of boundary effects that can be achieved by large-scale simulation is extremely important

for simulating hemodynamic blood flow control such as it occurs in functional hyperemia or

views roughly correspond to the resolution of several imaging modalities: top layer, A, depicts the major arteries and anatomical features at the

millimeter scale as seen in μCT imaging; the middle layer, B, shows arterioles at the micron range; the bottom layer, C, reaches cellular resolution

as seen in 2PLSM or with confocal imaging.

https://doi.org/10.1371/journal.pcbi.1006549.g005

Table 2. Pial network parameters used in this work in comparison to prior research.

Parameter Value Units Citation

Penetrating arterioles surface coverage 13 ± 3 Nsgm/mm2 Nishimura [49]

13 Nsgm/mm2 This work (entire MCA territory)

Average penetrating arterioles diameter 11 µm Blinder [35]

11 µm This work (entire MCA territory)

Larger artery diameter 143 ± 8 µm Kidoguchi [48]

142 µm This work (entire MCA territory)

Mouse brain volume 453 ± 19 mm3 Ma [50]

509 ± 23 mm3 Badea [51]

415 ± 24 mm3 Kovačevič [52]

Sagittal Length 13 mm Kovačevič [52]

13.7 mm Diem [53]

13 mm Clavaguera [54]

14 mm Natt [55]

13.7 mm This work (entire MCA territory)

Coronal Height 10 mm Kovačevič [52]

8 mm Diem [53]

9 mm Natt [55]

8.0 mm This work (entire MCA territory)

Coronal Width 5 mm Kovačevič [52]

5.5 mm Diem [53]

5.5 mm Clavaguera [54]

6 mm Natt [55]

5.7 mm This work (entire MCA territory)

Cortical surface area 380 ± 20 mm2 Ma [50] (young mice)

348 ± 3 mm2 Badea [51]

Number of splined segments 993,185 Nsgm This work (entire MCA territory)

Segments per pial surface 25,144 Nsgm/mm2 This work (entire MCA territory)

Nsgm–number of splined segments

https://doi.org/10.1371/journal.pcbi.1006549.t002
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Fig 6. Blood flow of the complete arterial and venous circulation for the MCA territory in mouse. This large-scale model contains the MCA M1 segment branching

from the Circle of Willis as inflow and covers the entire territory of the middle cerebral artery with a complete pial network and microvasculature encompassing PIA-

pial arteries, PEA-penetrating arterioles, PEC-pre-capillaries, C-capillaries, POC-post-capillaries, AV-ascending venules, PV-pial veins. (A) Three dimensional

snapshots of the spatial distribution of anatomical grouping, blood pressure, blood flow (perfusion), and hematocrit. Explosion diagram of anatomical compartments of

the angioarchitecture in the MCA territory; color-coding depicts (B) anatomical groups, (C) blood pressure, (D) flow (perfusion) and (E) hematocrit distribution. This

large-scale model contains 5,452 spline segments of the pial network, 27,374 splines encompassing penetrating arterioles and ascending venules, and 960,359 capillaries.

The volume of the pial arteries is 143 nL (16.5%), penetrating arterioles is 75.1 nL (8.7%), precapillary arterioles is 101.9 nL (11.8%), capillaries is 96.8 nL (11.2%), post-

capillary venules is 100.7 nL (11.6%), ascending venules is 75.8 (8.7%) and pial veins including portions of the superior sagittal sinus is 273.8 nL (31.5%).

https://doi.org/10.1371/journal.pcbi.1006549.g006
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under autoregulatory control. A full simulation of the entire MCA territory (arterial and

venous side) required 65 iterations and ~2 hours on multicore workstations.

Discussion

Morphometrics

We performed multiscale morphometric analysis of the cerebral circulation in mouse over

three length scales. On both the macro and the mesoscale, statistical data for the Circle of Willis,

the middle cerebral artery and its pial arterial network were extracted from high quality micro-

CT (µCT) data [56]. Microcirculatory morphometrics were acquired by two-photon imaging

(2PLSM) delineating the micro-angioarchitecture down to the level of individual capillaries for

sizable sections (~1x1x1 mm3) of the vibrissa primary sensory cortex. There were statistical dif-

ferences between the 2PLSM microcirculatory data sets especially in the diameter information

as can be expected from a high resolution analysis of cortical microcirculatory networks. How-

ever, these variations did not significantly alter hemodynamic flow patterns. The morpho-

metrics (arterial, capillary and venous segment number, connectivity and branching patterns,

probability density functions for length, diameter and surface area spectra) informed a synthetic

vascular growth algorithm. Because the statistics (e.g. segment numbers) could directly be input

into the mCCO algorithm, we were able to create 15 synthetic replica for each of the four data

sets. In total, we synthesized artificial vascular networks (N = 60) with morphometrics and

blood perfusion patterns that are statistically equivalent to the experimental data. The wealth of

experimental and synthetic data used in this study provided a testbed for hemodynamic analysis

of biphasic blood flow through the cortical microcirculation.

Blood flow

Hemodynamic simulations were performed using computer algorithms described and tested

extensively [29]. We performed biphasic blood flow simulations on both experimental (N = 4)

Fig 7. Depth dependence of hematocrit on total blood flow in the center MCA territory. Biphasic blood flow simulations for the entire MCA territory

were analyzed statistically to illustrate depth dependence of hemodynamic states. In a large subsection cut out of the center MCA cortical vasculature

(with volume = 4.1 mm3 and surface area = 4.2 mm2 which equals 11% of the MCA territory), 188,865 microvascular segments in layers I-V were

assessed. (A) Blood flow slightly decreases in deeper paths (p< 0.01 using one-way ANOVA test). (B) Hematocrit increase along deeper cortical layers

(p< 0.01, one-way ANOVA test). (C) The product of bulk blood flow and hematocrit gives the RBC flux, which is almost constant with a mild decrease

with depth (p< 0.01 using one-way ANOVA test). (D) The variance of RBC flux (VarRBCFlux) decreases with depth, so RBC flux distribution is more

homogenous in deeper layers than close to the surface.

https://doi.org/10.1371/journal.pcbi.1006549.g007
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and synthetic microcirculatory networks (N = 60). Simulation results predicted patterns of

blood flow, pressure and hematocrit within ranges currently known from experiments. Even

though our blood flow computations are deterministic [4,29], computed hemodynamics states

varied widely within the labyrinth of paths traversing the microcirculation. We pinpointed

randomness of the angioarchitecture as the origin of the wide range of predicted hemody-

namic states. The finding of variability in hemodynamic states due to network architecture is

significant, because it suggests that there are no characteristic properties (e.g. average hemato-

crit, mean capillary pressure) that would justifiably represent a typical physicochemical state of

a microvascular compartment (arterioles, capillary bed, venules). It also explains why idealized

trees such as binary ordered hierarchical graphs [26] are unsuitable surrogates for microcircu-

latory flow networks, because their regular and symmetric branching patterns lack the ran-

domness in network topology seen in the murine anatomy. Specifically, ordered trees have

equal states in all branches of a given hierarchy, which leads to even hematocrit splits due to

symmetry in daughter branching diameters.

Variability in hemodynamic states reported previously [4] has implications for neuroimag-

ing research. Specifically, even exact measurements at an individual point within the limited

neuroimaging field of view (e.g. ~1 mm2 surface in two-photon images) would be prone to

exhibit wide variations. The patchiness (variability) obtained by image acquisition at a single

point cannot be overcome by more accurate imaging. Instead, an effective response to counter-

act variability due to network randomness is to adopt imaging protocols that emphasize spa-

tially distributed samples over point measurements. In other words, measurements intended

to infer global trends necessitate spatially distributed samples. Specifically, point observations

acquired for single blood vessels can be expected to exhibit wide variations due to network

effects, even if measurements are precise.

Hematocrit

Our large-scale computer simulations suggest a depth dependent hematocrit gradient in the

cortical blood supply as summarized conceptually in Fig 8. Detailed analysis of the spectrum

of individual microcirculatory blood flow paths illuminated a clear trend; namely that deeply

penetrating microvessels convey more red blood cells than paths running closer to the pial sur-

face. The observation of higher hematocrit in deeper paths was observed in all simulation

experiments for the primary sensory sets (experimental data sets, N = 4; synthetic microcircu-

latory networks, N = 60 as seen in Fig 4) as well as for the large-scale blood flow simulations

covering the entire MCA territory shown in Fig 7. The predicted homogenization effect results

in more uniform RBC fluxes, because shorter superficial paths tend to have higher bulk flow,

Q, but carry less hematocrit, h. On the other hand, longer deeper penetrating paths have to

overcome higher resistance leading to lower flows, but enjoy increased hematocrit as summa-

rized in Fig 4 and Fig 7. As a consequence, this phenomenon also suggests that shorter surface

paths which tap into fresh arterial oxygen supply have fewer RBCs, while deeper paths have

higher concentrations of RBCs which on average carry lower O2 saturation. Another effect of

hematocrit gradient is that net oxygen fluxes conveyed to different cortical layers are more

evenly balanced than would be the case if RBCs distributed uniformly (no plasma skimming).

We also noticed that the variance of RBC fluxes decreased with cortical depth. Accordingly,

the distribution of RBC fluxes in deeper layers is more homogeneous than in surface layers.

Random network architecture together with non-uniform hematocrit distribution due to the

complex biphasic blood rheology seems to be two synergetic factors for ensuring homogenous

oxygen supply irrespective of the cortical tissue depth. Since this homogenization effect needs

no external feedback, it is plausible to infer that layer dependency of hematocrit and reduction
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of RBC flux variance serves a self-regulatory mechanism to balance oxygen supply to all corti-

cal layers.

The plasma skimming effect describes a phenomenon seen in microvascular bifurcations

(d<300 µm) [57,58] in which thinner side branches syphon disproportionately large amounts

of plasma from the parent segment than thicker daughter branches. Our mechanistic simula-

tions illustrate how plasma skimming phenomena apply over thousands of bifurcations and

multifurcations in a tortuous vessel network, effectively overcoming the geometrical unavoid-

ability of path length differences as shown in Fig 8.

Our recently developed kinetic plasma splitting model (KPSM) was our choice for comput-

ing large-scale network effects in this study. The main critical reasons include: (i) the KPSM

split rule is able to handle multifurcations that occur in the murine microcirculatory anatomy

(7.1%, 5.9%, 8.9%, 6.7% of all segments had multifurcations in experimental data sets), (ii) its

predictions fall within physiologically meaningful property ranges. Specifically, it does not lead

to predictions of zero or excessive hematocrit, and (iii) its linear and differentiable mathemati-

cal properties guarantee convergence of massive network computations. A full account docu-

menting the KPSM model can be found in S3 Supplement.

Synthesis

The previously introduced network synthesis used a modified constrained constructive opti-

mization (mCCO) [30] algorithm. The mCCO algorithm originally conceived by Schreiner

[45] deploys two very simple principles: (i) minimization of vascular volume, and (ii) hemody-

namic flow principle constraints which enforce that the total blood flow entering the network

discharges in exactly equal amounts through the terminal outflow segments. Remarkably, this

approach builds network structures whose topology resembles vascular network anatomy

observed in vivo. One major task consisted of testing whether realistic network representations

Fig 8. Schematic of the depth dependent hematocrit network effect. At the microcirculatory level, blood is a suspension of red blood cells in

plasma with a thin boundary layer close to the vascular wall which contains little or no red blood cells. When red blood cells suspended in plasma

flow through a bifurcation of a penetrating artery, they tend to concentrate in the thicker daughter branch, while the thinner side branch syphons a

comparatively higher fraction of plasma from the cell free layer near the wall of the parent branch. This effect is known as plasma skimming. When

plasma skimming repeats over many bifurcations of the cortical microcirculation, deeper reaching paths through the capillary bed tend to have

higher hematocrit than surface paths. Longer path length incurs higher flow resistance leading to less bulk flow. In effect, total RBC flux, which is the

product of hematocrit times flow, is more balanced than if RBC splits were even. The network effect also reduces variability in RBC fluxes, so that

deeper layers are more evenly perfused. Our simulations implicated network effects due to biphasic blood rheology for the predicted hematocrit

gradients and increased RBC flux homogenization.

https://doi.org/10.1371/journal.pcbi.1006549.g008
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with arterial-capillary-venous closures could be synthesized with morphometric and hemody-

namic properties matching networks acquired with neuroimaging modalities. The results

showed that synthetic data (N = 60) created with a modified mCCO algorithm were statisti-

cally and hemodynamically equivalent to experimental cortical data sets (N = 4).

MCA

The hemodynamically inspired vascular growth procedure enabled the construction of realis-

tic representations of the cortical blood supply of the entire MCA territory spanning multiple

length scales from the large arteries (mm range) to the smallest capillaries (µm range), and

draining through the pial veins (mm range) or three orders of magnitude in length scales. It

allowed us to seamlessly integrate state-of-the-art topological data acquired from two entirely

different imaging modalities (µCT and 2PLSM) into a single, coherent multiscale representa-

tion of the entire MCA territory with unprecedented anatomical detail that includes both the

arterial and the venous side of the cerebrocirculation. Because simple, blood flow inspired con-

struction principles are applied at all length scales, the resulting MCA circulation has no dis-

continuities or gaps between the main cerebral arteries, the pial arterial network, or the

microcirculation. Morphometrics, anatomical details such as the shape of the cortical surface

and hemodynamic principles, are incorporated at each stage of the growth algorithm. Thus,

our proposed methodology may serve as an alternative to the practice of merely stitching

together data from different locations or length scales.

The application of biphasic blood flow simulations for the entire MCA territory shows that

large-scale blood flow and hematocrit simulations are feasible with existing computer

resources. The large-scale simulations confirmed the trend of hematocrit layer dependence

predicted for the smaller cortical samples. The massive simulations also elucidate the spatio-

temporal coordination between different vascular compartments at different length scales

(arteries vs arterioles vs capillary bed). The anatomical detail achieved with the MCA model

may serve as a starting point for dynamic simulations that elucidate the involvement of differ-

ent vascular components in regulating functional hyperemia, autoregulation or collateral

blood supply in stroke. Because the network extended over a sizable portion of the mouse cor-

tex, predictions for the center of the primary sensory cortex were free of boundary effects.

Boundary conditions

The synthetic MCA circulatory network also has the critical advantage that boundary condi-

tions, which have been reported to hamper simulations on thin data sets [9], are applied very

far away from the area of investigation. For example, Fig 5 displays typical subsections compa-

rable in size to the 2PLSM data sets which are located far away from the MCA boundaries

(MCA M1 segment and veins of the superior sagittal sinus). Thus, in samples situated at the

center of the MCA territory, boundary conditions have negligible impact on hemodynamic

predictions. The blood flow simulation for the entire MCA territory required only the arterial

inlet pressure at the M1 segment and the blood pressure at the venous side.

We point out three additional reasons why the ability to synthesize morphologically and

hemodynamically equivalent data sets is significant. (i) Artificial networks continuously con-

nect the arterial side and the venous side without gaps. In 3D neuroimages assembled from

two-dimensional image stacks, it is easy to miss segment connections or segments running

between two slices. (ii) No segments are severed nor is there a need to prune dangling seg-

ments at domain bounds (this cleanup is unavoidable in image reconstructions [3,23]). In

particular, fragmentation to pial arteries and many microcirculatory segments running per-

pendicular to the pial surface lead to boundary effects that can substantially affect predictions

Microcirculatory blood flow simulations predict depth dependent hematocrit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006549 November 19, 2018 17 / 25

https://doi.org/10.1371/journal.pcbi.1006549


[9]. (iii) The most important benefit is the ability to expand the scope of data acquired by neu-

roimages without being confined to the bounded field-of-view or limited resolution of the

imaging modality.

The ability to conduct brain-wide simulations would free the modeler from the burden of

making uncertain assumptions at the boundaries of the artificial domain (edge of the image or

simulation domain boundary). Because our algorithm succeeded in converging blood flow

computations with hematocrit split for the entire MCA circulation in about two hours of CPU

time, our group is confident that the proposed computational approach will enable blood flow

simulations and oxygen transport on a brain-wide level in the near future.

Limitations

Despite the evidence for trends such as depth dependent hematocrit, it should be emphasized

that individual flow paths may experience substantially weaker or even reverted trends, as can

be expected from the inherent randomness of the microcirculatory network architecture.

The 2PLSM technique provided a very detailed inventory of the cortical microcirculation.

The four data sets did not include information about the subcortical blood supply to the white

matter. White matter subcortical circulation is physiologically separated from the cortical

blood supply. Accordingly, we assumed that the white matter supply is hydraulically separated

from the cortical blood supply. However, certainty about this point would require a model of

both the cortical and the subcortical networks (white matter blood supply). This task is intrigu-

ing, but is currently beyond the reach of 2PLSM, which is limited to ~1 mm depth. This is

clearly a point for future research, but is currently outside the scope of this paper.

The main finding of depth dependency of hematocrit supply to the cortical layers is the

result of a model prediction whose basis rests on experimental observations about plasma

skimming and uneven hematocrit splits observed in capillaries outside the brain [59–61].

Therefore, the next logical step is to experimentally verify layer dependent hematocrit with

deep imaging such as adaptive optics (AO) two-photon imaging [62]. If experiments confirm

depth dependence and homogenization of RBC flux distribution, it would constitute a remark-

able mathematical modeling contribution, which actually predicted, instead of merely

explained, cortical blood supply. In the adverse case, the model would have prompted the need

to revise our understanding of biphasic blood flow rheology as it relates to the cortical micro-

circulation (= diameter and hematocrit dependent viscosity laws, and hematocrit split rules),

since so far it has been assumed that plasma skimming is active in capillaries throughout the

entire circulatory system including the brain.

The conclusions about oxygen supply also need to be verified experimentally and computa-

tionally. The methods presented previously might be a first step in this direction [4]. However,

oxygen predictions require discretization of the extracellular space which can be done in prin-

ciple using the methods presented in Gould et. al [29], but is beyond the scope of this paper.

Conclusions

We predicted uneven depth dependent hematocrit distribution due to the complex biphasic

blood rheology. Because our simulation did not include external factors such as gravity, we

conclude that the result of depth dependent hematocrit arises from the combination of struc-

tural and hemodynamic properties of the network. Our findings suggest that network effects

due to biphasic blood rheology and randomness of the network architecture are a controlling

factor for ensuring adequate oxygen supply irrespective of the cortical depth. Since the

observed homogenization of RBC variability requires no feedback, depth dependent
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hematocrit gradient may serve an important self-regulatory mechanism to balance oxygen

supply to all cortical layers.

Uneven distribution of hemodynamic states in the microcirculation as well as the notion of

layer-dependent hematocrit also have implications on the interpretation of the fMRI BOLD

signal where it is usually assumed that hemodynamic states and hematocrit are homogeneous

and evenly distributed throughout the microcirculation. The predictions in this work suggest

that focal analysis of the fMRI BOLD signal would be more relevant than assuming global con-

stants for the entire cortex.

We demonstrated that the modified constrained constructive optimization algorithm

(mCCO) is successful in synthesizing artificial microcirculatory networks with topological and

hemodynamic properties that are statistically equivalent to experimental data sets from differ-

ent imaging modalities and length scales.

Simulations of the entire MCA circulation, which until recently would have to be consid-

ered intractable, are now becoming accessible to rigorous numerical analysis due to stable, effi-

cient and physiologically consistent plasma skimming algorithms implemented on existing

computer hardware. The synthesis of anatomically faithful cerebrocirculatory networks with

desired topology closes the gap between large-scale blood flow simulations performed on

image-derived data sets on one hand, and simulations on purely synthetic data sets on the

other.

The successful synthesis of the entire MCA territory with biphasic blood flow simulation

constitutes a step towards the ultimate goal of first principle simulations of cerebrocirculatory

blood and oxygen distribution patterns for the entire brain.

Materials and methods

An overview of the data structures used in this study is presented in Fig 9.

Pial surface data acquisition

Nine female C57BL/6 mice were imaged for pial vascular network structures following intra-

vascular injection of a lead pigment contrast agent as described elsewhere [56,63–65]. The

mice were perfusion fixed prior to micro computed tomography (µCT) imaging with 7–20 µm

isotropic resolution of the cerebral angioarchitecture. The resulting 3D images were filtered

and the vascular lumen reconstructed as previously described [66–68]. Fig 9A shows raw µCT

samples of the mouse vasculature from a 20 µm resolution image. The pial network statistics

such as penetrating arteriole density and vessel diameter were compiled with results summa-

rized in Table 2.

Microcirculatory data acquisition

Four volumes (N = 4) that encompassed the murine vibrissa primary sensory cortex [35] were

imaged using two-photon laser scanning microscopy (2PLSM) and are shown in Fig 9C.

2PLSM was employed to extract the spatial arrangement, length and orientation of blood ves-

sels in the vibrissa primary sensory cortex [31,35,69]. Blood vessels in four data sets (~1x1x1

mm3) were labeled as pial arteries, penetrating arterioles, capillaries, ascending venules, or pial

veins. Categorization was based on size and branching level according to Strahler order rather

than physiological markers. No effort was made to differentiate pre-capillary arterioles from

post-arteriole capillaries because it requires differential labeling of smooth muscle and peri-

cytes. Capillaries were differentiated from ascending venules by a diameter cutoff of 6 µm and

penetrating venules were differentiated from pial veins for vessels within a depth of 100 µm

below the pia and a diameter less than 12 µm. Diameter information was also derived from
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images. The network information was stored using sparse connectivity matrices. Length,

diameter, and tortuosity spectra are depicted in Fig 1. More details on image acquisition

Fig 9. Multi-modal imaging data used to construct realistic models of cerebral circulation for entire mouse brain. (A,

B)Main blood vessels and pial arterial network. (A) High resolution µCT image of the vascular tree in mouse. (B) Synthetic

pial arterial tree generated by modified constrained constructive optimization and morphological data from the µCT

images. Note that the synthetic circulatory network does not perfectly reproduce the layout of the pial vessels in the µCT,

but merely possesses similar morphometrics. (C,D) Cortical microcirculation (C1-C4) Experimental microcirculatory

networks acquired with two-photon laser imaging [35]. (D1-D4) Synthetic microcirculatory data sets. The synthesized data

sets are statistically equivalent to the reconstructed networks from 2PLSM. Arterial (red) and venous side (blue) are color

coded for better visibility.

https://doi.org/10.1371/journal.pcbi.1006549.g009
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[31,35,69], image reconstruction [70], as well as the formulation of the network equations [29]

can be found elsewhere.

Synthesis of large circulatory networks

Artificial microvascular networks (N = 60) for large sections of the cortex (~1x1x1 mm3) were

synthesized using a previously described vascular growth algorithm [30]. Four examples are

displayed in Fig 9D. The algorithm preserved dimensions of the experimentally acquired corti-

cal samples, pattern and dimension of pial arteries, number, orientation and connectivity of

penetrating arterioles, and morphometrics of the capillary bed, draining venules and pial

veins, as listed in Table 1. Statistics and morphometric comparisons of experimental and syn-

thetic data sets are displayed in Fig 1.

The arterial network of the entire MCA territory spanning three orders of magnitude in

length from large arteries (~1 mm range) down to the entire capillary bed (~1 µm) was synthe-

sized based on morphometric statistics of source data from multimodal images (µCT and

2PLSM).

Blood flow

Microcirculatory blood flow was modeled as a biphasic suspension comprised of red blood cells

and plasma. Bulk blood flow was described by Poiseuille law relating volumetric flow to pres-

sure drop as a function of resistance which in turn depends on diameter, d, and hematocrit-

dependent viscosity [71]. In addition, a kinetic plasma skimming model (KPSM) presented pre-

viously [29] accounted for the uneven RBC distribution, known as plasma skimming.

This model has only one adjustable parameter, the skimming coefficient, m. It was set to

value of m = 8 in all microcirculatory models, although this parameter could be refined as

shown recently [72–74]. The nonlinear systems of conservation balances in system (1) were

solved iteratively to calculate blood pressures, p, flow, Q, and hematocrit, h. Here, R is the

resistance matrix, C1 and C2 are fundamental connectivity matrices [75] and C3 is the advec-

tion flux matrix. Boundary conditions are summarized in Table 3. More details on the mathe-

matical background are given in S2 Supplement; implementation details are discussed

elsewhere [29].

GðQ; p; hÞ ¼ 0

(
Rðh; dÞQ � C1p ¼ 0

C2Q ¼ 0

C3ðQ; dÞh ¼ 0

ð1Þ

Supporting information

S1 Supplement. Hematocrit dependence on diameter.

(DOCX)

Table 3. Summary of boundary conditions.

Arterial Inlet p = 120 mmHg (15,999 Pa)

Venous Outlet p = 5 mmHg (667 Pa)

Inlet Hematocrit h = 0.35

Outlet Hematocrit Fully developed,rh = 0

lower boundaries (GM/WM interface) confined domain (zero flux,rQ = 0)

sides boundaries (vertical tissue boundary) cyclic boundary conditions or confined domain (zero flux,rQ = 0)

https://doi.org/10.1371/journal.pcbi.1006549.t003
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