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Abstract: The aim of the study is the development of two-layer materials based on ultra-high-
molecular-weight polyethylene (UHMWPE) and isoprene rubber (IR) depending on the vulcanization
accelerators (2-mercaptobenzothiazole (MBT), diphenylguanidine (DPG), and tetramethylthiuram
disulfide (TMTD)). The article presents the study of the influence of these accelerators on the prop-
erties and structure of UHMWPE. It is shown that the use of accelerators to modify UHMWPE
leads to an increase in tensile strength of 28–53%, a relative elongation at fracture of 7–23%, and
wear resistance of three times compared to the original UHMWPE. It has been determined that the
introduction of selected vulcanization accelerators into UHMWPE leads to an increase in adhesion
between the polymer and rubber. The study of the interfacial boundary of a two-layer material
with scanning electron microscopy (SEM) and infrared spectroscopy (FTIR) showed that the struc-
ture is characterized by the presence of UHMWPE fibrils localized in the rubber material due to
mechanical adhesion.

Keywords: isoprene rubber; phase boundary; rubber; two-layer material; ultra-high-molecular-
weight polyethylene

1. Introduction

Currently, elastomeric materials are widely used as sealing devices, damping elements,
lining materials, rubber bearings, medical implants, in particular, bearing components on
the total hip prosthesis, etc. [1–3]. Elastomers containing rubber and fillers are characterized
by high resistance to fatigue and wear, absorbing vibration, and having excellent chemical
stability and oil resistance, which allows them to be used for manufacturing rubber moving
parts for various mechanisms [4]. However, the development of industry challenges us
to search for new materials with improved performance. To improve the performance of
elastomers, the following approaches are used: Volume modification, coating, creation of
hybrid materials based on a combination of two different materials, etc. [5–8]. The advan-
tages of surface modification of elastomers include the preservation of useful volumetric
properties of rubber along with improvement of the surface characteristics (antifriction
properties, resistance to aggressive media, and ultraviolet radiation) [9–11]. Coatings on
the rubber surface are produced in various ways: Plasmochemical treatment of elastomer
surface [12,13], ion-plasma application of a metal layer [14], application of durable and
wear-resistant polymers [15,16], and production of hybrid materials [17,18].
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The listed methods for applying antifriction coatings on elastomers make it possible
to maintain volumetric properties with no interference with the vulcanization process.
However, there is a problem due to the low adhesion strength between the coating and the
elastomer material, low wear resistance and elasticity of the applied layer, as well as the
difficulty of controlling the thickness of the applied material on the elastomer. Two ther-
modynamically incompatible polymers that do not form an equilibrium thermodynamic
system are considered unable to form a strong connection with each other. Previously, we
showed that it is possible to form a strong adhesive interaction between a thermoplastic
and an elastomer due to the formation of chemical bonds at the interphase in the presence
of certain vulcanization accelerators. In this regard, the determination of the regularities
of the vulcanization accelerators’ influence on the interaction between thermoplastics and
elastomers will expand the technological possibilities of creating various combinations of
materials based on polymers of different chemical nature. Further development of surface
modification techniques of rubber resulted in our use of UHMWPE for these purposes.
UHMWPE polymer as a structural material has high toughness, high wear/abrasion re-
sistance, impact resistance, chemical inertness to corrosive media and low coefficient of
friction (0.08–0.12) [19,20]. UHMWPE-based materials are in great demand in mechanical
engineering, where they are used as sliding bearings and protective coatings. They are also
used in medicine and many other knowledge-intensive industries [21,22].

The performance and reliability of two-layer materials during operation depend
significantly on the interphase interaction between the elastomer and the applied layer
of the polymer. In most cases, polymers and rubber are incompatible and are regarded
as a dispersed system where one component is distributed within another one [23]. In
this regard, when creating a material based on UHMWPE and elastomer, it is necessary to
take into account their physico-chemical properties, which affect their ability for adhesive
interaction. Elastomer is a multi-component mixture of rubber-based ingredients and
various fillers. The UHMWPE polymer has low surface energy and is nonpolar and
chemically inert. Therefore, the formation of a strong adhesive interaction between it and
other polymers is a rare occurrence. Therefore, UHMWPE and elastomers can be considered
incompatible materials so that when they interact, the thermodynamic system does not
reach equilibrium with minimal energy. There are well-known studies on the combination
of rubber and UHMWPE. In their research paper, Kondo et al. [17] examined the influence
of modified UHMWPE fibers on the properties of butadiene-styrene rubber. In order to
increase the adhesion of the UHMWPE fibers to the rubber, the polymer was modified
by electron-beam irradiation with subsequent polymerization of the compound with the
polar group. In another research [18], a modification was carried out by preliminary ozone
treatment followed by ultraviolet grafting of glycidyl methacrylate onto UHMWPE fibers.
Thus, stronger adhesion can be achieved by mechanical bond, physico-chemical effects,
and their combinations.

The examples given, however, refer to the volumetric modification of elastomer, and
the influence of UHMWPE on surface properties is negligible. One approach to enhancing
adhesion between these materials involves addition of reactive compounds that influence
their chemical bond and thus their inter-molecular interaction. We have previously shown
the influence of vulcanization accelerators on the compatibility of UHMWPE and elas-
tomer [24]. It has been determined that the introduction of up to 0.3 phr diphenylguanidine
into an isoprene-rubber mixture leads to an increase in adhesion strength in a two-layer
material. The results show that introduction of suitable vulcanization accelerators is a rea-
sonable and effective approach to enhancing the interfacial interaction between UHMWPE
and rubber.

This paper analyzes combining an elastomer and a modified UHMWPE to obtain two-
layer materials. The purpose of this research is to study the effect of 2-mercaptobenzothiazole,
diphenylguanidine, and tetramethylthiuram disulfide on the properties of UHMWPE, as
well as their effect on the interfacial interaction of the latter with an elastomer.
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2. Materials and Methods
2.1. Loading and Testing System

Tensile strength and elongation at break were tested with the universal testing machine
Autograph ASG-J (Shimadzu, Tokyo, Japan) at room temperature in accordance with
the ISO 37-2020. Mechanical properties of UHMWPE-based composites were measured
according to ASTM D3039/D3039M-14. Adhesion strength between the UHMWPE and the
elastomer was measured with the testing machine at room temperature and the speed of
grippers’ movement of 50 mm/min according to ISO 36-2021.

The linear thermal expansion coefficient of the samples was measured on the TMA-60
thermomechanical analyzer (Shimadzu, Kyoto, Japan) according to ISO 11359-2:2021. The
analysis was carried out during punch penetration into a sample of 10 × 10 × 2 mm at a
temperature rise of 10 ◦C/min in a helium medium, using liquid nitrogen as a refrigerant.
The diameter of the punch was 2.5 mm, the weight on the punch was 0.50 N, the tests were
conducted within a temperature range of −80 to +100 ◦C.

The study of the microstructure of the low-temperature chip samples was carried
out on the JSM-7800F raster electron microscope (JEOL, Akishima, Japan) in the mode of
secondary electrons.

The tribological properties of composites based on UHMWPE were analyzed with
the help of tribometer UMT-3 (CETR, Mountain View, CA, USA) on the friction scheme
«finger-disk». The mass of the samples was measured on the analytical weights Discovery
DV215CD (OHAUS, Greifensee, Switzerland) with an accuracy of 0.00001 g.

The infrared absorption spectra were obtained on an IR infrared spectrometer with
the Fourier transformation Varian 7000 FT-IR (Varian 7000, Palo Alto, CA, USA) in the
range 500–3000 cm−1. Thin films of composites and two-layer materials were used in the
research. The tests were carried out at a resolution of 2 cm−1, and the number of scans per
spectrum—16 scans.

The scheme and structure of the study is shown in Figure 1.
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Figure 1. Scheme of the experiment.

2.2. Experimental Materials and Parameters

SKI-3 isoprene rubber (SIBUR, SNHZ, Nizhnekamskneftekhim, Nizhnekamsk, Russia;
specification: TU 2294-037-48158319-201). SKI-3 (IR) is a synthetic isoprene rubber, which is
produced by the solution polymerization of isoprene and contains at least 96% cis-1.4-links
and is filled with a darkening antioxidant. The ingredients used were common for rubber
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mix and polymer, such as stearic acid (GOST 6484-96), 2-mercaptobenzimidazole (MBT)
(GOST 739-74), zinc oxide (GOST 10262-73), sulfur (GOST 127.4-93), diphenylguanidine
(DPG) (GOST 40-80), carbon black trademark K-354 (GOST 7885-86), and tetramethylthiu-
ram disulfide (TMTD) (GOST 25127-82). UHMWPE GUR 4022 (Celanese, Nanjing, China)
with a molecular mass of 5 million g/mol, with an average particle size of 145 µm and a
melting point of ~130–135 ◦C was used.

Technology of Combining Two Materials

Rubber and other ingredients (stearic acid, sulfur, ZnO, DPG, MBT, and carbon black),
according to the formulation given in Table 1, were mixed in a PL-2200 plasticorder (Braben-
der GmbH&Co., KG, Duisburg, Germany) for 20 min at initial mixing temperature of 40 ◦C
and 30 rpm. The resulting composition is a standard rubber mixture based on SKI-3 iso-
prene rubber. The distinctive feature of the rubber compound is an additional introduction
of the secondary accelerator DPG.

Table 1. Isoprene Rubber Standard Blend Formulation (Formulation: Bulk Parts per 100 Rubber Parts).

No. Compounds
phr Time of

Introduction, min1 2

1 IR 100.0 100.0 0
2 Stearic acid 2.0 2.0 0
3 2-mercaptobenzotiazole 1.5 1.5 10
4 Zinc oxide 5.0 5.0 5
5 Sulfur 2.0 2.0 15
6 Diphenylguanidine 0.3 0.3 10
7 TMTD - 0.5 10
8 Carbon K-354 50.0 50.0 2

The polymer-based composite mixture was produced via dry blending of UHMWPE
with a filler (MBT, DPG, and TMTD) in a blade mixer at a rotor rotation rate of 1200 rpm.
The polymer composite material (PCM) contents are shown in Table 2.

Table 2. The content of fillers in polymer composite materials based on UHMWPE.

Composite
Number

Composition, wt.%

UHMWPE DPG MBT TMTD

1 99.5 0.5 - -
2 99.5 - 0.5 -
3 99.5 - - 0.5

The production of two-layer materials, where one layer is a UHMWPE, and the other
layer is an elastomer, was carried out in four stages:

1. Molding of the UHMWPE layer was carried out for 5 min in the mold under a pressure
of 10 MPa at room temperature, the thickness of the layer for examination was ~4 mm.

2. A rubber mixture with ~6 mm thickness that was required for the study was laid over
the molded layer of the UHMWPE.

3. The sample mold was placed in the PCMV-100 hydraulic vulcanization press (Impulse,
Ivanovo, Russia), heated to +155 ◦C, for 20 min at 10 MPa pressure.

4. Cooling was carried out in a mold under pressure in a hydraulic press at a temperature
up to +80 ◦C.

A special feature of the two-layer materials produced in this way is that it is possible
to adjust the thickness of the UHMWPE layer depending on the mass of the powder, which
makes it possible to adjust the thickness of the elastomer from the mold used. Figure 2
shows a photograph of the UHMWPE/elastomer double-layer material.
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3. Results and Discussion
3.1. Characteristics of UHMWPE-Based Composites

Figure 3 shows the results of the mechanical and tribological properties of UHMWPE
and composites based on it. Modified UHMWPE with vulcanization accelerators was used
to make a two-layer material. Therefore, we first studied the effect of these fillers on the
mechanical and tribological properties of UHMWPE at a concentration of 0.5, 1, and 2 wt.%.

As shown in Figure 3, the introduction of fillers (MBT, DPG, TMTD) into UHMWPE
results in an increase in tensile strength of 28–53% and elongation at break of 7–23%, if
compared to the initial polymer. It is shown that composites containing vulcanization
accelerators are characterized by high values of Young’s modulus compared to the original
UHMWPE. Thus, with the introduction of vulcanization accelerators, an increase in the
values of Young’s modulus by an average of 46–75% was recorded. The deformation and
strength characteristics between composites do not change depending on the composition
and content of the filler. This change in properties is because injected fillers facilitate
relaxation processes during the application of tensile forces [19]. Thus, the organic filler
acts as a plasticizer for the load-bearing structure. The increase in the strength and Young’s
modulus of PCM can be explained by the increase in the stiffness of the material due to
the interaction of the vulcanizers with the polymer matrix within the amorphous phase, as
was shown by the IR method (Figure 4).

Based on the results of the tribological properties of the PCM, it is established that the
introduction of 1 wt.% of DPG, MBT, TMTD fillers in UHMWPE reduces the mass wear
rate by threefold compared to the original polymer. Some wear resistance is observed in
composites with DPG and TMTD at 0.5 wt.% and UHMWPE/2 wt.% TMTD. The coefficient
of friction of the PCM is independent of the type of filler and its content and remains at the
level of the initial UHMWPE.

IR spectroscopy analysis was carried out to establish the interaction between fillers
and UHMWPE (Figure 4). In the infrared spectra of composites, peaks in the region of 2790
and 1465 cm−1 correspond to the valence, and deformation vibration of CH2 groups, as
well as peak at 716 cm−1 correspond to the vibration of CH2 polyethylene (-CH2-CH2-)n.
The absorption bands at 2340, 2020, 1895, 1368, and 1305 cm−1 refer to the amorphous
and crystalline regions of the UHMWPE associated with vibration (-CH2) groups of the
polymer chain [25].

The IR spectrum of thin PCM film containing MBT and DPG, revealed the absorption
bands of oxygen-containing groups in the area 1500–1645 cm−1, related to vibrations
-C=O of bonds. IR peaks in the area 1180–1400 cm−1 associated with vibrations -C-O-
C- bond. Absorption bands of oxygen-containing groups are known [26] to occur as a
result of oxidation processes of the filler itself and the polymer matrix, i.e., when the
UHMWPE is obtained by hot pressing, injectable fillers can initiate oxidative reactions in
the composite mixture. IR spectra exhibit characteristic peaks related to TMTD and MBT.
For example, when TMTD is introduced into the UHMWPE, it exhibits peaks corresponding
to the vibration of nitrogen-containing groups (C-N binding oscillations): Primary amine at
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1090–1020 cm−1, secondary amine at 1190–1130 cm−1, and tertiary amine at 1210–1150 cm−1.
In the case of PCM filled with MBT, the IR spectrum is distinguished by the presence of
peaks in the area 1340–1250 cm−1, corresponding to C-N coupling vibrations in aromatic
compounds. There are also peaks in the 670–1225 cm−1 range, which correspond to the
oscillations of C-H and C=C of the benzene ring bonds. At the same time, DPG-filled PCM
does not have characteristic peaks of DPG functional groups, but there is an increase in the
absorption bands of the carboxylic group.
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Thus, the introduction of MBT, DPG, and TMTD into UHMWPE not only improves
the mechanical properties but also oxidizes the polymer matrix, which can increase the
interaction of the polymer with other materials.
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Figure 4. FTIR spectra of PCM based on UHMWPE.

3.2. Characteristics of the Elastomeric Material

The mechanical properties of the isoprene rubber elastomer are shown in Table 3. The
stress-strain curve is shown in Figure 5.

As can be seen from Table 3 and Figure 5, the tensile strength of elastomeric sample
1 (sample No. 1 in Table 1) is 22 MPa, the elongation at break is 879%, the tensile stress
at 100% elongation (modulus) is 1.8 MPa. With the additional introduction of TMTD
into the elastomeric material (sample No. 2 in the Table 1), there is a decrease in relative
elongation by 38% and tensile strength by 23%. The high modulus properties of elastomers
increased by 61% with the addition of TMTD. The simultaneous use of several vulcanization
accelerators (DPG, MBT, TMTD) in the rubber compound leads to an increase in the number
of sulfur bonds between rubber macromolecules [27]. As a result, there is a decrease in the
mobility of the polymer chain and the elasticity of the elastomeric matrix.
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Table 3. Mechanical properties of the elastomeric materials.

Samples Elongation at Break
εp, %

Tensile Strength
fp, MPa

Tensile Stress at 100% Elongation
f100, MPa

1 879 ± 50 22 ± 1 1.8
2 539 ± 30 17 ± 1 2.9

3.3. Characteristics and Structure of the Two-Layer Materials

Analysis of the adhesive strength between the layers of a two-layer material showed that
the destruction of the original UHMWPE with rubber occurs according to the cohesive mecha-
nism of delamination between the materials. In the case of two-layer materials with modified
UHMWPE, cohesive breakdown occurs during delamination. Such material breakdown of
elastomer/UHMWPE-DPG, elastomer/UHMWPE-MBT, and elastomer/UHMWPE-TMTD
indicates cohesive destruction, while adhesion exceeds the cohesive strength of the rubber
(Figure 6).

Materials 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Stress-strain curve of the tensile tests. 

As can be seen from Table 3 and Figure 5, the tensile strength of elastomeric sample 
1 (sample No. 1 in Table 1) is 22 MPa, the elongation at break is 879%, the tensile stress at 
100% elongation (modulus) is 1.8 MPa. With the additional introduction of TMTD into the 
elastomeric material (sample No. 2 in the Table 1), there is a decrease in relative elongation 
by 38% and tensile strength by 23%. The high modulus properties of elastomers increased 
by 61% with the addition of TMTD. The simultaneous use of several vulcanization accel-
erators (DPG, MBT, TMTD) in the rubber compound leads to an increase in the number 
of sulfur bonds between rubber macromolecules [27]. As a result, there is a decrease in the 
mobility of the polymer chain and the elasticity of the elastomeric matrix. 

3.3. Characteristics and Structure of the Two-Layer Materials 
Analysis of the adhesive strength between the layers of a two-layer material showed 

that the destruction of the original UHMWPE with rubber occurs according to the cohe-
sive mechanism of delamination between the materials. In the case of two-layer materials 
with modified UHMWPE, cohesive breakdown occurs during delamination. Such mate-
rial breakdown of elastomer/UHMWPE-DPG, elastomer/UHMWPE-MBT, and elasto-
mer/UHMWPE-TMTD indicates cohesive destruction, while adhesion exceeds the cohe-
sive strength of the rubber (Figure 6). 

 
Figure 6. Cohesive nature of delamination of two-layer materials (e.g.,: elastomer/UHMWPE-
TMTD). 

Figure 7 presents the results of analyzing the strength of the bond between elastomer 
and UHMWPE filled with MBT, DPG, and TMTD during delamination. 

Figure 6. Cohesive nature of delamination of two-layer materials (e.g.,: elastomer/UHMWPE-TMTD).

Figure 7 presents the results of analyzing the strength of the bond between elastomer
and UHMWPE filled with MBT, DPG, and TMTD during delamination.
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As Figure 7 shows, the original two-layer material has an elastomer/UHMWPE
bond strength of 9.6 N/mm in the case of polymer delamination. With the introduction
of 0.5 wt.% DPG, MBT, and TMTD into UHMWPE, an increase in adhesive strength is
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observed when tested for delamination relative to the original material. The introduction
of MBT into UHMWPE leads to an increase in the adhesive strength between the elastomer
and polymer layers by 35% relative to the original two-layer material. In the case of the
elastomer/UHMWPE-DPG sample, there is a slight increase in the bond strength upon
delamination, which is 11.64 N/mm. The maximum bond strength between the layers is
found in the two-layer elastomer/UHMWPE-TMTD material, which is two times higher
than elastomer/UHMWPE-DPG and elastomer/UHMWPE-MBT.

As noted above, when two-layer materials are laminated, the fracture occurs along
the rubber, but the strength of the bond between the layers in case of delamination varies
considerably. The different bond strength of cohesive breaking patterns of two-layer
materials can be explained by the fact that the modifiers used in UHMWPE are accelerators
of rubber vulcanization. Hence, vulcanization accelerators injected into UHMWPE during
sintering interact not only with the polymer but also with rubber along the partition
and contribute to increased rubber stitching density. This results in an increase in the
rubber tensile module, as shown in Table 3. Therefore, the strength of the rubber and,
correspondingly, the bond strength between the elastomer and the UHMWPE, filled with
MBT, DPG, and TMTD during delamination, are increased.

The modification of UHMWPE through the introduction of MBT, DPG, and TMTD
is the key to enhancing the adhesive interaction between rubber and UHMWPE. Figure 8
presents a schematic representation of the possible process of interaction between the
rubber and UHMWPE, filled with vulcanization accelerators. The presence of vulcanization
accelerators in the rubber mixture and in the UHMWPE stimulates a more active formation
of sulfide bonds along the border between the UHMWPE and rubber, thus increasing the
strength of the compound.
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The structure of the phase boundary of the two-layer materials based on IR and
UHMWPE is shown in Figure 9 (images obtained by scanning electron microscopy).

Figure 9 shows the IR rubber phase boundary with the initial UHMWPE, where the
difference between polymer and rubber is clearly observed. With a large increase in the
above-molecular structure of the two-layer material, penetration of individual fibrillary
macromolecules into the rubber is observed, which may indicate a strong interphase
interaction, resulting in increased adhesion between the materials. At the phase boundary,
the UHMWPE has a fibrillary structure, which may also indicate chemical interaction
and the formation of a strong adhesive compound. There is documented evidence [24] of
the effect that DPG, when present in a rubber mixture, produces on the supramolecular
structure of UHMWPE in the area of the interfacial boundary, due to which the adhesion
between materials increases.
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The introduction of vulcanization accelerators (containing 0.5 wt.% DPG, MBT, and
TMTD) into the UHMWPE layer changes the structure of the UHMWPE at the interphase.
It is clear that the structural formations of the fibril are visually reduced and look denser.
Higher magnification shows that UHMWPE fibrillary macromolecules also penetrate
the elastomer at the interfacial boundary of the two-layer materials. It is possible that
the refinement of fibrillary structures at the interphase boundary results in an increased
number of macromolecule-rubber bonds, indicating the formation of a strong adhesive
compound and the toughening of the rubber itself due to integration of filler particles.
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To assess the formation of new bonds and influence of injected fillers, IR spectra were
obtained, which are shown in Figure 10.
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Similarly to the IR spectra of UHMWPE-based composites, absorption bands cor-
responding to the deformation and valence oscillations of CH2 bonds, amorphous and
crystalline areas of polyethylene, pendulum oscillations of the polymer chain: 720, 1368,
1465 and 1310 cm−1 were found. The IR sample exhibited bands of sulfide-containing
compounds: sulfide bonds (S-S) at 570 cm−1, valence oscillations of R-SO-OR and RO-
SO-OR groups at 1129 and 1240 cm−1. The broadening of these peaks may indicate the
active interaction of sulfur with the macromolecules of rubber and UHMWPE through
the sulfide groups, which influence the strength of the adhesive interaction between elas-
tomer and polymer. The peak at 1240 cm−1 may also belong to the C=S and C-S coupling
oscillations, which are related to TMTD. Another characteristic of IR is the vibration of
nitrogen-containing groups, such as peak at 1140 cm−1, caused by C-N bond vibration, ab-
sorption area at 1650–1540 cm−1, corresponding to amine group (NH linkage fluctuations).
The peak at 1661 cm−1 corresponds to the stretching vibrations of C=N-O groups (oximes).
In addition, the specimens are characterized by vibrations of oxygen-containing groups, so
the peak at 1498 cm−1 refers to the fluctuations of the carboxylic groups (C=O), and the
absorption bands are about 1250–1100 cm−1 and 980–870 cm−1, caused by fluctuations in
the C-O and O-O groups. Moreover, the absorption band in the region of 800–1000 cm−1 can
correspond to vibrations of unsaturated C=C bonds, the so-called trans-vinylene groups,
formed due to cross-linking of carbon bonds. In addition, the IR spectra revealed the
presence of ether and oxo compounds, which are represented by absorption bands in the
region of 890–820 cm−1 of the peroxide group and vibrations of the C-O-O bond. The
peak at 1088 cm−1 is caused by stretching vibrations of the aliphatic ether-oxygen bond
C-O-C [28–30].

The analysis of IR spectra (Figure 10) revealed that in a two-layer material containing
TMTD, there is an increase in the intensity of peaks related to IR and UHMWPE. At the
same time, there is broadening of the absorption bands of sulfide and ether bridge bonds,
which implies the formation of cross-linked structures between the two materials.

The use of two-layer elastomer and UHMWPE-based material can cause large tem-
perature fluctuations. Therefore, a mismatch of linear extensions may lead to tension
in the interfacial region. Consequently, a possibly significant change in the initial linear
dimensions of the product may cause the two-layer material to break down. Thus, a clear
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understanding of the changes in linear dimensions at different temperatures is key to
the study of the thermal stability of a two-layer material. Figure 11 shows the results of
analyzing the thermomechanical curves of the original UHMWPE, reinforced UHMWPE,
and elastomer.
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Figure 11 shows that during thermal expansion in the temperature range from −80 ◦C to
+100 ◦C, the change in linear dimensions for the original UHMWPE is 5%, UHMWPE + 0.5 wt.%
MBT is 3.3%, UHMWPE + 0.5 wt.% DPG is 3.2%, UHMWPE + 0.5 wt.% TMTD is 2.9%,
and for rubber, based on IR, the change in linear dimensions is 0.7%. The difference in the
temperature dependence on deformation of the rubber IR between the original UHMWPE
and the enhanced one is from 2.2% to 4.3%, which with frequent and strong ambient tem-
perature variations, can lead to the destruction of two-layer products due to the irregular
pattern of change in linear dimensions. The smallest difference of 2.2% in terms of linear
dimensions’ change was observed between the TMTD-filled UHMWPE and elastomer.

4. Conclusions

Based on the conducted research, the following conclusions can be drawn:

1. The introduction of TMTD, DPG, and MBT into the UHMWPE layer leads to an
increase in adhesion between UHMWPE and rubber. The greatest increase in adhesion
between rubber and UHMWPE occurs with the introduction of TMTD, which is up to
two times higher compared to the materials of the compositions elastomer/UHMWPE-
DPG and elastomer/UHMWPE-MBT.

2. It has been established that the increase in adhesion between UHMWPE and elastomer
is due to the chemical nature of functional additives containing reaction centers that
provide chemical cross-linking between the components of the two-layer material. In
addition, the oxidative processes that occur during the processing of polymers also
contribute to the appearance of oxygen-containing groups involved in intermolecu-
lar interaction.

3. The SEM method shows the formation of a dense connection between polymers at
the interface of a two-layer material and a change in the supramolecular structure of
UHMWPE during the introduction of DPG, MBT, TMTD to a denser fibrillar structure.

4. The study of linear thermal expansion showed that the introduction of MBT, DPG,
TMTD into UHMWPE reduces the linear expansion in the temperature range from mi-
nus 80 ◦C to plus 100 ◦C. Temperature changes in the linear dimensions of UHMWPE
and composites with 0.5 wt.% MBT, DPG, TMTD from 2.9% to 5%, the change in
rubber based on the IR is 0.7%.
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5. The developed materials are designed to produce products that have, on the one hand,
high strength and antifriction properties (UHMWPE) and on the other hand, damping
properties, elasticity, and resistance to fatigue (rubber).

In further research, the authors plan to supplement the studies on the determination
of the cross-link density between UHMWPE and IR, using data from measurements of
rheological properties. We also plan to evaluate the degree of cross-linking of a two-layer
material using nuclear magnetic resonance spectroscopy on the 13C nucleus, in which the
mechanism for the formation of branched macromolecules with different architectures is
established, and the degree of branching is determined.
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