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A B S T R A C T

Nowadays, virtualization and real-time systems are increasingly relevant. Real-time virtual machines are adequate
for closely-coupled computer systems, execute tasks from associated language only and re-target tasks to the new
platform at runtime. Complex systems in space, avionics, and military applications usually operate with Loosely-
Coupled Computer Systems in a real-time environment for years. In this paper, a new approach is introduced to
support task transfer between loosely-coupled computers in a real-time environment to add more features without
software upgrading. The approach is based on automatic source code transformation into a platform-independent
“Structured Byte-Code” (SBC) and a real-time virtual machine (SBC-RVM). Unlike Ordinary virtual machines
which virtualize a specific processor for a specific code only, SBC-RVM transforms source code from any language
with a known grammar into SBC without re-targeting the new platform. SBC-RVM executes local or placed tasks
and preserving real-time constraints and adequate for Loosely-coupled computer systems.
1. Introduction

Complex real-time systems; such as satellites, nuclear power plants,
military, and aerospace control systems, are designed for long-term op-
erations and strict timing requirements. These complicated and costly
systems shall be in service for years without a significant upgrade. For
instance, a significant software update may cause a catastrophic problem
like in the case of “X-ray Astronomy Satellite “Hitomi” (ASTRO-H)”
anomaly. The communication was lost with Hitomi when an in-orbit
software update was being uploaded [1]. This kind of systems are char-
acterized by reliability, predictability, and heritage of operation, whereas
they do not rely on the fast progress at integrated circuits speed, novel
processors architectures and the number of cores. The software for such
systems is designed for a specific platform to achieve the desired pa-
rameters such as frequency, priority, worst-case execution time, bounded
jitter, energy, and cost.

1.1. Problem statement

The particular constraints are real-time systems which operate
continuously in a harsh environment for years. This research focuses on
loosely coupled computer systems. The considerable system is space-
dfy).
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systems such as satellites. In-system programming is a critical opera-
tion, whereas operation for long life without updates is inferior. The
requirement to add new features without software upgrading is highly
needed. Subsystems from different vendors with various platforms and
RTOSs should be able to communicate not for exchanging data but also
exchanging tasks. Exchanging tasks between subsystems for load
balancing and fault tolerant can improve system reliability and hence a
commonly spoken language, execution platform, and support framework
are required.

1.2. Proposed approach

The dilemma among long-term operations and upgrading cost for that
kind of systems can be resolved by using a platform-independent real-
time virtual machine, which accepts the old and new developed code,
supports task placement between nodes on the network and remote
command-execution while preserving real-time constraints.

A real-time virtual machine called structured byte code (SBC- RTVM)
is introduced. SBC- RTVM is based on three principles that are: source-
code/SBC-code automatic generation, SBC platform independence, and
real-time task properties conservation. SBC-RTVM can exchange and
execute source code written in a different language for different
9 June 2019
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platforms while preserving origin real time constraints. SBC generation,
SBC-RTVM architecture, and inter-process communications among het-
erogeneous loosely-coupled computers are introduced. The proposed
solution is best appropriate in satellite OBC with other subsystems.

ANSI C, Cþþ, Python, and Java are the most common programming
languages used in such real-time systems. This research will focus on
ANSI C language which considered as one of the most used languages in
such complex systems.

The paper is structured as follows. Section 2 discusses the related
approaches in task transfer techniques, centralized control systems
overview and the state-of-the-art related to the real-time virtual machine.
Section 3 presents the” Structured-Bytecode SBC and the generator en-
gine. Section 4 introduces the proposed “Structured Bytecode real-time
virtual machine SBC-RVM” design and implementation with a frame-
work for task placement in a loosely-coupled computer system. Section 5
discusses the proposed algorithm and its implementation on real hard-
ware with satisfactory results. Section 6 is the concluding remarks.

2. Related work

The proposed approach based on task transferee between nodes on
loosely coupled computers especially in centralized control systems using
an execution environment, which is a virtual machine. In this section, a
state of art for those topics is discussed.
2.1. Task transfer techniques

Task transfer techniques were introduced to produce more processing
power and resources’ sharing among processors on the network. The two
types of task transfer are task placement and task migration. Task
placement is defined as the transfer of a task which did not start yet,
whereas task migration is the preemptive transfer of a task that had been
started out but in a waiting state. The upshot of task transfer can be
concluded, but not limited to Dynamic Load Balancing by migrating tasks
from the overloaded node to a relaxed one [2]. Availability, which is
moving off a task from the failed node to a healthy one. System
Administration, which is the ability to migrate a task from the source
node to another one for maintenance purpose. Fault Recovery, which is
the procedure of stopping a task on the isolated faulty node, migrating to
a healthy one and resume execution [3, 4]. When it is required to migrate
a task from one node to another one, then both nodes should have a
shared memory (i.e., shared address space) or common execution lan-
guage. For Homogenous computer system, Common execution language
such as machine code and assembly language can be sent to another node
for remote execution. However, this technique is limited to that archi-
tecture and is not convenient in a loosely-coupled computer system
where different computer systems are connected to a data bus as a
network. In this case, an interpreted scripting language; like java
byte-code or system emulator can execute the machine code [5] Many
researches introduced various task transfer techniques for a different
systems architecture, that are categorized as: Shared Memory Multipro-
cessors, where main memory is shared among all processors and
Distributed Multi-Processors, where processors are on separate nodes
[6]. Although task transfer is carried out between processors over a
network, most of the implemented techniques were introduced for
computer systems with a shared memory only, such as Grid computing
[2], Cloud Computing [7], Heterogeneous/homogeneous multiprocessor
system-on-chip (MP-SoC) [6, 8]. Unfortunately, there are no imple-
mented techniques were introduced to support task transfer in the loosely
coupled computer architecture.

The decision of migrating or placement of a task to a new host has two
costs which are delay cost and migration cost. This optimization problem
is proved to be NP-hard which can be converted to a weighted bipartite
matching problem [9]. In a real-time application, the delay is acceptable
if all tasks will meet the desired deadline.
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2.2. Centralized control system

Centralized control systems such as satellite control system, avionics,
cruise missiles, and similar systems usually have a loosely coupled
computer architecture [10]. The Central control unit controls all appli-
cation tasks, manages data transfer over the network. These capabilities
require high demand requirements for the onboard computer (OBC) and
OBC-software (OBCSW) complexity. Spacecraft may travel in the deep
space in a critical mission for years. Satellite control computer system; as
shown in Fig. 1, consists of loosely-coupled computers connected via a
common data bus such as SpaceWire, Military standard 1553, ARINC422,
CAN buses.

Each computer came from various vendors with different architec-
ture, processors, memory, and RTOS. It is required to have a common
language to communicate with each other rather than exchanging data
only. As long as the mission in space, a more off-nominal situation occurs
and new features are required to be added. It is necessary to perform the
desired concurrent control to the OBC and subsystems by accepting new
remote tasks to be executed. Furthermore, if a piece of code could be sent
to a subsystem over the network many of remarkable features will be
added. The most interesting are: overcoming an off-nominal situation,
solving off-design contingency remotely and adding new features.
Therefore, overall system reliability is enhanced. This is the main moti-
vation to introduce a new task placement technique in such systems
where it is difficult to perform ordinary system maintenance or signifi-
cant upgrading remotely.

2.3. Process real-time virtual machine

In the beginning, the software was written for a specific instruction
set architecture (ISA) and a specific operating system (OS). Applications
layer communicate via the application binary interface (ABI) and appli-
cation programming interface (API), where applications are bounded by
the OS-ISA pair as shown in Fig. 2 a.

Process virtual machine (PVM) manages the run-time environment
and overcome the OS-ISA pair limitation; as shown in Fig. 2 b by
providing a higher abstraction level to execute code from different pro-
gramming languages [11] on a different host machine. PVM provides a
platform-independent environment for programming languages that in-
terprets the code for an implicitly such as JVM [12]. The last model is the
system virtual machine; as shown in Fig. 2 c, which is a lower virtuali-
zation level that the system platform or hardware is represented at a
specific abstraction level. System-VM may host an operating system and
applications together.

Most of the compilers that target embedded systems are platform
specific. Limitations that are imposed when porting applications to a new
platform appears. Thus, when a code is written for a specific machine, it
becomes more challenging to be ported to another processor architecture
and/or OS [13]. Some approaches tried to solve this problem such as
cross-compilers capability to create a code which can run on another
platform. The idea of the cross compilers is to reconfigure source code,
which was developed for a specific platform into suitable code for the
new host [14]. Compiled programs are bounded by the Application Bi-
nary Interface (ABI) to be operated for a specific OS and instruction set
architecture pair, whereas PVM overcomes this limitation [15].

Virtualization in embedded systems shall satisfy real time re-
quirements like timing constraints, performance and cost. Real-time
virtual machines RVM is a research field that has many challenges such
as worst-case execution time (WCET) analysis, porting on multiprocessor
environment, time-predictable dynamic compilation [12, 16]. Another
important challenge is VM in networked systems. Monolithic virtual
machines are suitable for closely-coupled systems only, and far away to
be applied to the modern networked system.



Fig. 1. Typical OBC network -ESA OBCDH architecture.

Fig. 2. Different Virtual machines models.
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2.4. Java virtual machine

Virtual machines differ in virtualization methodology and what to
virtualize. Java Virtual Machine (JVM) abstracts the hardware and the
machine to the developer [17]. This allows developers, not to concern on
platform architecture. The code was written in Java should safely run on
various platforms with JVM. The process is starting by translation of Java
code into Java-bytecode as an intermediate machine-independent lan-
guage as shown in Fig. 3. Java bytecode can be transfer over the network.
On the target, JVM shall translate the bytecode into local machine native
code to be executed. Hence Java's slogan, “Write once, run anywhere”.
The just-in-time (JIT) compiles Java bytecode into a platform-specific
executable code that is executed [18].

The overload of translating bytecode to the target machine native
code limits the real-time capability for tasks immediately placement over
the network. For that, and for java source language translation limitation,
we were motivated to present a non-monolithic virtual machine for real
time systems which run a unified code on any machine without
Fig. 3. Java virtual machine task excha
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retranslating and concerning about satisfying migrated tasks real-time
requirements. This RTVM shall be used in long life centralized control
systems such as satellite, nuclear plants, and similar systems, where
subsystems are heterogeneous and running various RTOS. The proposed
RTVM shall accept tasks written from different languages like C, Java,
Python, etc., convert source code to a unified code which is able to run on
a different machine without a need for re-compiling while preserving the
required real-time constraints.

3. Design

3.1. Structured byte-code generator

Structured-ByteCode (SBC) generator converts specific source code or
script with associated language grammar to another grammar called
structured-bytecode. Similar to compilers, SBC generator performs the
following functions: ‘Lexical Analysis,' which converts source code into
tokens sequence, Syntax analysis to recover the syntax structure from the
nge on a loosely-coupled network.
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tokenizer and finally generates the “Intermediate Representations” (IR).
SBC-generator converts source code into SBC in two steps, which are
source code parsing and SBC generation.

3.1.1. Source-code parser
Any programming language is composed of a set of grammar rules

called productions, that are the syntax associated with this language.
Production comprises terminal symbols and non-terminal symbols. Ter-
minals are symbols in the source code such as reserved words, symbols,
and identifiers. Each terminal is used to build up the Deterministic Finite
Automata (DFA) to be used by the tokenizer. Nonterminal is the
description of the terminal category in the grammar of the language such
as statement, expression [19, 20]. Parser cut off the source code into
grammatical records by a predefined grammar for that source code lan-
guage and thus generate a special representation, which will be used in
our generator. The parsing process is performed in three steps builder,
Compiled grammar table, and the parser. Corresponding to the builder,
target grammar is analyzed and creates a compiled grammar table file for
the source code language. Parser engine reads both source files, compiled
grammar tables and produces the parsed data as shown in Fig. 4.

3.1.2. Structured byte-code generation
SBC is constructed of three main components, which are Function

Descriptor, Byte-Code-Structure, and Byte-Buffer as shown in Fig. 5 a.
Function Descriptor (FD) is the representation of the smallest part of the
code that can be placed/migrated to another computer on the network.
FD presents the following information to a virtual machine on the host
computer, which are a function name, number of arguments, Header size,
count of records, size of Byte-buffer. The function name shall be unique
across all computers on the entire network, and hence it has a unique ID
by a combination of the system ID, source processor ID, and the function
name as well. The second component is Byte-Code-Structure (BCS). BCS
is a set of records representing one or more of the source code lines into
SBC's representation. SBC-record represents one or more lexeme from the
source code. BCS records are the instruction set of the proposed virtual
machine (VM). The last component is Byte-Buffer (BB), which is the heap
of the VM. At generation time, BB contains only the initialized variables.
The format of the function is represented as a stream of bytes as shown in
Fig. 5 b, where each byte is addressed by one or more BCS records.

3.1.2.1. Scope. The scope of a variable, method or function is the parts of
the code in which it is accessible. Scope concept varies from program-
ming language to another but commonly has the concept of local and
global scopes. A local scope is defined as accessible variables or functions
at the current code block. Furthermore, the scope is defined as global
variables or functions. Most programming languages support static scope
only that specified by the code text, not at the runtime. Detection of
incorrect variable dereferencing or function calling is the compiler rule.
Fig. 4. Parsing ANSI C source code by a com
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Nevertheless, at the code generation phase, SBC seeks only for the start
and end of the scope. Furthermore, the next block of statements will be
accessible or not. Scanning the code is done by a decision-making a tree.
The token may be a function, variable declaration, statement, etc. A
function, for example, will be processed as follows: find the scope (start
and end), return type and function arguments. If the function has an
argument, the next token may be another argument or another token
type. The recursive search of the entire scope gives the possibility to go
from the tree root-leaves-root for every token and results in a full scope
transformation into SBC.

3.1.2.2. SBC presentation. The parsed source code is formed of tokens,
which can be a terminal or statements. The statement is a set of terminals
and non-terminals tokens as shown in Fig. 6. Non-terminals are syntactic
structures that are defined by the used language grammar.

Terminals are any defined object like reserved words, defined vari-
ables, operators, sign, numeric, string, etc. Each terminal is represented
as SBC record. Each record has four fields which are lexeme, size, offset
and name. A lexeme is a terminal name; Size is the number of bytes used
by that terminal in the BB, offset from the start of the buffer; Variable-
name is the ID of that variable (in the case of a variable). The state-
ment may comprise a set of terminals. SBC-generator has three types of
statements that are data representation, flow control statement, opera-
tion statement. Combinations of terminals in one statement are unlimited
and may have an unlimited number of operators and operands. For that
reason, the first instruction in a statement is constructed after later in-
structions were defined. The following sections are a demonstration of
some SBC instructions for ANSI C language.

3.1.2.3. Data representation. Data is represented by the compiler ac-
cording to the target processor architecture and OS. Data representation
may vary according to the target platform in byte order little or big
endianness, memory alignment, floating point representation, etc. In SBC
generator, Name of data (variable, constant, etc.) is a unique ID by
combining task and variable names as a numerical value. SBC VM ac-
cording to the lexeme of the variable knows what each byte in BB should
represent. As shown in Fig. 7 an example of ANSI C data types is repre-
sented as SBC records.

3.1.2.4. Flow control statement. Flow control instructions vary from one
programming language to another in presentation and structure, whereas
the concept remains the same. Conditional statements such as If and
Switch statements, Loop statements like” for” and “while” loops are rep-
resented in a simple structure on SBC as shown in Fig. 8.

3.1.2.5. Operation statement. The statement is the smallest brick of pro-
gramming language structure, which expresses an action(s) to be carried
out. Operations like add, subtract, increment, decrement, jump, etc.
piled grammar file for “Power function.”.



Fig. 5. Structured Byte-code for a function.

Fig. 6. Parsing code into terminals and non-terminals.
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Operation statement comprises one or more statements. For example,”
xþ¼aþb” can be divided into” aþb”,” xþ(aþb)” and an assignment
statement “x¼sum of all.” These varieties may add complexity to the
generation of SBC code when it is parsed from left to right. Decision tree
makes it easy to accumulate all instruction on the root statement which is
an assignment statement “x ¼ ”. Thus the Operation statement is repre-
sented by a set of SBC's records. Operation statement can be a function
call; this function will be transformed into a sequence of SBCs in the
primary function for portability purpose.
Fig. 9. SBC-RVM architecture.
3.2. The structured byte-code real-time virtual machine

3.2.1. Definition and architecture
The SBC Real-time Virtual Machine (SBC-RVM) is the execution

platform of SBC tasks, which operate on the local machine or have been
migrated from an original node to be placed on the host machine. SBC-
RVM architecture, as shown in Fig. 9 is composed of three layers. The
lower layer performs low-level functions such as task port, message
service, and system-call service. Task port inspect and accept new tasks
from the network. Message service exchange message between SBC-VMs
on different nodes. System call service handles system call with the host
Fig. 7. SBC Data repres

Fig. 8. Example of flow control repres
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OS. The intermediate layer is for scheduling of tasks from “Task Port” to
be placed in the corresponding queues and the “heap management” for
different tasks at the execution time. The upper layer is formed of Task-
queues with different priorities and frequencies and the Executor of the
tasks instants into the Heap. SBC-RVM is represented in two forms, which
are standalone form, the second as an application at the application layer
which is hosted by an RTOS as shown in Fig. 10. The efficiency of the OS-
VM pair can be improved by adding the property of communication and
cooperating; this property called Para-virtualization [4, 21].

SBC-RVM and JVM as shown in Figs. 3 and 10; differs in the
following: SBC-RVM translates code from any language to SBC form
automatically using provided language grammar, whereas java translates
entation examples.

entation of ANSI C in SBC format.
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only Java code. The second one, SBC does not need to the in-time
translation of SBC to the running machine native code. SBC-RVM exe-
cutes tasks on SBC form. This difference gives SBCmore credit on the run-
time environment and portability issues.

3.2.2. Runtime mechanism
The basic function of SBC-RVM is scheduling, executing local or

migrated tasks and exchange messages such as results and acknowledg-
ment with other SBC-RVMs on the network. Furthermore, provide
handshaking with other real time VMs over the system bus. The migrated
task τn is accepted at the host machine by “Task port” service, which
inspects incoming task for data integrity and hospitality. The task is
accepted when its real-time constraints match scheduler requirements
and target processor utilization. The used scheduler is a multilevel-queue
with different frequencies and priorities. Scheduler picks up the right
task to the “Executor” from the associated queue to be loaded into the
heap for execution. Executer loads SBC instructions sequentially into the
heap. The return, if any, sent back to the origin node via the “Message
service.”

3.2.3. System call service
The guest OS and the RT-VM can communicate to support the VM

with related RTOS activities. SBC-RVM operates at the hosted RTOS with
user-level permissions (unprivileged) and all SBC-RVM system calls are
mapped to the host RTOS system ones.” System calls services” include
interrupt-handler, I/O peripherals read/write, timers set/reset, etc. It is
the only platform dependent part on SBC-RVM. By maintaining an inte-
grated set of interfaces, SBC-RVM can interact with the OS and can be
easily modified to support alternatives platforms [13]. In standalone
form, hardware abstraction layer (HAL) should be modified to support
different target platforms.

3.2.4. Message service
Exchangemessages between different nodes that are running SBC-VM

in a loosely-coupled environment are mandatory. Thus three different
types of messages are implemented that are Task exchange messages,
Information messages, and Service messages. The message header con-
tains the preserved real-time constraints from its origin node. Each
message type can be in “Broadcast” or “Direct” message formats. A
broadcast message where source node can send a message to all nodes on
the network, whereas direct message is between the source and the
destination node. “Task exchange” type is used for SBC-task transfer
between nodes on the network. “Information messages” such as a result
of the migrated task to origin node, acceptance, acknowledgment, etc.
Fig. 10. SBC-RVM on a loo
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“Service Messages” are these messages that contain commands from one
VM to another like delete, pause a periodic task execution.

3.2.5. Task port
SBC-RVM conform to the environment to support SBC task placement

while preserving real-time constraints. The migrated task is accepted by
the host VM with a grantee to fulfill its real-time properties. Tasks' re-
quirements are attached to the “Task exchange” message header. The
requirements are worst-case execution time (WCET), execution rate and
deadline properties. To guarantee the required temporal behavior at the
host node, a static mechanism is implemented for enforcing the required
behavior whenever it is possible. This approach can be accomplished by
knowing the WCET a priori noting that it strongly depends on the used
programming language, origin processor architecture and the platform-
compiler optimizations [22]. The SBC-RVM scheduler computes the
execution time of the running tasks continuously while saving the last
execution time and the WCET i.e. the maximum execution time ever. At
the host node port, migrated task's real-time requirements is inspected by
the “Task port”, where tasks with a predictable behavior that can be fit at
the host are only accepted [23, 24]. The migrated task τn (Cn, Dn, Rn) is
then characterized by its run-time properties, where Cn, is execution
time, Dn deadline and Rn is the arrival rate of the nth task. The inspected
task is accepted and then assigned to the appropriate queue Qx in “Task
Queues” if Qx can preserve its runtime properties.

3.2.6. Scheduler
SBC-RVM scheduler is a multilevel queue scheduler which was pre-

sented in [25] and named “SMAMLQS”. SMAMLQS has four queues of
different priorities and frequencies. The queues' internal scheduler is
Early Deadline First (EDF) scheduler. Each queue is for a specific type of
tasks, which are hard real-time queues Exchange tasks “ET” queue and
Periodic tasks “PT” queue, Soft Real-time tasks “ST” queue and Background
tasks “BT” queue. The scheduler executes each queue according to pre-
defined frequencies and priorities. SBC-RVM has a period and deadline
(PSBC, DSBC) which are assigned by the host RTOS or is configured in the
standalone form. SBC-RVM's scheduler calculates the utilization of
real-time queues UET, UPT, UST according to Eq. (1) where Ci is the
execution time ofQi over the period Pi. Total utilizationUSBC is calculated
according to Eq. (2).

Ui ¼Ci

Pi
� UiCr (1)
sely-coupled network.
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USBC:m ¼CET þ CPT þ CST

PSBC
� UCr:m (2)
SBC-RVM is tending to maintain a safe utilization level called Critical
Utilization-Level UCr,n at node n. The scheduler has the sufficient condition
for successful scheduling whenever USBC,n � UCr,n and 0< UCr � 1. When
USBC exceeds the critical level UCr,m, the scheduler requests to place a
selected task(s) to one of the neighbor nodes on the network to maintain
the load balancing for example. This can be done by configuring SBC-
RVM to pick task(s) from one of lower priority queues. For administra-
tion purpose, a command to place a task from a node to another can be
issued. For a task τn at origin node n, the Selection of the destination node
can be done in two ways: “Appeal” broadcasted message to all nodes on
the network includes tasks header as τn (Cn, Dn, Rn). The first responder is
the node which can fit τn real-time requirements. Origin node then sends
SBC representation of τn. The second way is a “Direct” message to a
destination node on the network chosen from a look-up table, where
preferred destination nodes are sorted. The acceptance criteria at “task
port” of a migrated task τn,m (sporadic, batch, or periodic) are given by
Eq. (3), where Pi is the period of task i.

UQ;m þCn

Pi
� UQiCr:m 8τn 2 Qi:n; Qi 2 fQET;QPT ;QSTgm (3)

3.2.7. Heap management
Protection of operating memory is one of the leading issues in safety-

critical systems which operates RTOS and RT-VM [26]. SBC-RVM is
characterized by a predefined and concrete memory manipulation
mechanism. This mechanism may add overload on SBC generation but
ensure the predicted results without any dynamic memory allocation and
deallocations. The chosen task's Byte-Buffer BB is uploaded to the heap at
execution time, which contains the initialized variables and constants
only, whereas local variables are allocated on the heap during execution.
This approach has a disadvantage in the amount of memory used by each
task. At the end of task execution, it is uploaded from the heap. This effect
is minimized due to the sequential execution of SBC tasks instant.

3.2.8. Task Queues
SBC-RVM has four main queues, which are Exchange tasks “ET” queue

and Periodic tasks “PT” queue, Soft Real-time tasks “ST” queue and Back-
ground tasks “BT” queue. Each queue has sub-queues with different fre-
quencies. Local tasks are assigned to each queue according to its type.
New migrated tasks are classified and assigned to one of the four queues.
Tasks’ priority is sorted in each queue by the Earliest Deadline First (EDF)
scheduling policy. After flushing each queue, its utilization is then
calculated and will be considered as acceptance criteria for the new
sporadic or periodic task at “task port.”

3.2.9. Executor
Executing a task starts by analyzing function header, load non-

initialized variables to the heap. The first SBC record represents a flow
control or operation statement as described in 3.2.2. The function argu-
ment (values if any) are loaded to the corresponding SBC record. The
Executor has the same content as instruction pointer IP register where the
index of the currently executed SBC record is stored. Execution continues
till the last SBC record or “STOP” command is hit which is similar to
“return” command. A Task successful-execution message with the return
value is then passed to the “Task Port” module to be sent to the origin
node.

4. Results and discussion

To validate the proposed approach, two experiments were performed.
The first one is to prove the concept of SBC versus original code in terms
of performance and results' correctness [27]. The second one is to realize
the concept of task placement support on the loosely-coupled network
7

using SBC-RVM to measure its applicable potential on such complex
systems.

4.1. SBC performance evaluation

To evaluate the SBC-RVM performance, it will be compared in
execution against native code [27]. The performance was measured by
benchmarking using two functions were implemented in ANSI C as a
source-code language to prove the concept of SBC language. Thus, the
SBC performance benchmark is evaluated at run-time. The functions are
to compute the factorial and the power of any given number. “SBC
generator” transforms the two functions into SBC format. SBC generator
runs on the μVision IDE – Keil for ARM cortex M4 target platform. The
test runs on the evaluation board STM32F407VGTx, Core ARM
Cortex-M4, FPUMPU 168 MHz, Memory 192 kB RAM, 1 MB ROM, Clock
& Power 1.80 V,3.60 V. The experiment starts by running each function
(SBC/ANSI C) with a rising base number. The results as shown in Figs. 11
and 12. Each function is executed under different workloads by the tested
SBC-RVM to evaluate the relative performance between native code
(ANSI C) and SBC-representation for the same code under the same
environment. During the test, the argument of each function is incre-
mented to represent the performance of the two approaches.

The performance evaluation of Java versus Cþþ shows that java is
slower [28]. states that Java is 2 times slower using a modeling bench-
mark. The experiment shows that SBC performance is sufficient com-
parison to the native code. The execution time as shown in Eq. (4).

Ci ðSBCÞ ffi 1:4�Ci ðANSI CÞ (4)

4.2. SBC server-client test

The second experiment had been run for the same platform condi-
tions. The setup of three machines connected in a star topology using
serial data bus RS232 to simulate the loosely-coupled environment. The
first machine runningWindows 10, Intel i7/2 cores/2.4 GHz each, with 8
GB of RAM; SBC-RVM should be run with the highest priority level. The
second and third machines are ARM Cortex-M4 core with FPU, 1 Mbyte
Flash, 168 MHz CPU. The second Machine operates 168 MHz with the
RTOS's scheduler presented in [25], which the used scheduler is a
multilevel-Queue scheduler configured with four different queue prior-
ities. SBC-RVM is represented as a hard real time task that operates with a
period of 200 ms and it has the highest priority with a 400 ms deadline.
The third machine operates at 100 MHz and runs SBC-RVM with a
hardware abstraction layer on a typical machine with the second one.
The three different machines are connected by a data bus as a loosely
coupled computer system. This experiment tests for Server-client
framework to support task placement in loosely-coupled computer sys-
tems using the proposed SBC-RVM as shown in Fig. 13. Consider a given
set of tasks T:{τi: i 2 [1: N]} with different priorities and frequencies and
distributed over the four queues. A task τm,n,q at machine M1 should be
replaced on another machine m as τm,n,q,t on the network and the
execution results should be sent back to the server to meet τn,q deadline.
In order to minimize the peak resource usage while preserving real time
constraints, every migrated tasks deadline must be achieved. Commu-
nication cost, WCE of the migrated tasks is known in advance on the
origin machine. The decision of task replacement to another machine on
the network should be known in advance. Otherwise, tasks real time
constrains could not be met. All the tasks can meet deadlines and the
peak resource usage is minimum among all the feasible solutions [29].

The communication cost is neglected for simplification where:

� m… machine number, m ¼ {1,2,3}, n…task number, n ¼ {1,2,
3,..,10},q… Queue of task τn ¼ {Q1: highest priority Queue ET (f:10
ms, d ¼ 100 ms), Q2-AT (f:100 ms, d ¼ 200 ms), Q3 ¼ ST (f:1s, d ¼ 2
s), Q4 ¼ BT (sporadic, d ¼ non) }. o t…the trial number of the task. o
Task pool is five tasks of each queue level.



Fig. 11. Performance Evaluation for SBC versus ANSI C factorial.

Fig. 12. Performance Evaluation for SBC versus ANSI C Power function.

Fig. 13. SBC server-clients in a star network experiment.
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In this experiment, only one machine M1 generates SBC for any task
τm,n,q,t and request to place τn,q based on specific migration criteria over
the network. At the start, Machine #1 generates an SBC for τn,q (written
in ANSI C) and request to place τm,n,q,t as follows:

� M1 continuously generate task τm,n,q,t, and request to place on M2
periodically according to each task arrival rate.

� In case of adverse reply fromM2,M1 starts to route tasks toM3 for the
rest of tasks belongs to the same queue level.

� The experiment stops when a negative reply message fromM2,M3 for
each queue levels 2,3.

The request and replied result times for each task is monitored and
recorded. The results are shown in Fig. 14 for Q2 tasks and Fig. 15 for Q3
tasks. The two figures show satisfactory results for placing those real time
tasks over a loosely-coupled network using the proposed SBC-RVMwhile
8

preserving real-time constraints of the placed tasks. The server M1
simulate an overloaded node and start requesting to place tasks from Q2,
Q3 on M2. The experiment continues to tell UM2 ¼ UM2, Cr. At this
moment, SBC-RVM cannot preserve real-time properties of any new tasks
and M1 starts to send appropriate tasks to M3 until UM3 ¼ UM3, Cr.

The experiment was held using a Server-client framework where all
tasks met their deadline with the right logic. Fig. 16 shows the arrival rate
of tasks from both Q2, Q3 from M1 to M2 and M3 respectively. It is clear
that as the number of nodes on the network operates SBC-RVM, the more
reliability, load sharing, and new features can be added to that system.

5. Conclusion

Structured-byte code real-time virtual machine (SBC-RVM) is pro-
posed to support task placement in loosely-coupled computer systems
such as satellites, military systems, and similar control systems. Those



Fig. 14. Server-Client (M1: M2, M2) task placement for “Application task AT-Q2” for load-balance on M1.

Fig. 15. Server-Client (M1: M2, M3) task placement for “Soft Real-time tasks ST-Q2” for load-balance on M1.

Fig. 16. Server-client task placement rate for Q1,2 on M1,2.

M.O. Elsedfy et al. Heliyon 5 (2019) e01998
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systems are characterized by long life, hard environment, and remote
control operation. SBC-RVM is introduced to add more features, control,
and administrations without a need for software upgrading. SBC-RVM
runs a platform independent code called SBC, which is generated auto-
matically from source code using its native language grammar. Unlike
Java virtual Machine, SBC accepts tasks which were written in any lan-
guage with a known grammar to be executed on any platform-OS pairs
without a need for interpreting again to the new machine code. The
proposed SBC-RVM can exchange tasks andmessages over the network to
support task placement for different goals such as load balancing,
sharing, fault recovery, administration, software-voting, and remote
commands execution. SBC-RVM includes a multilevel queue scheduler
for classifying local and new placed tasks according to priorities and
frequencies to the appropriate queue, whereas the inner queues’ sched-
uler is Earliest Deadline First (EDF). The concept and performance of SBC
are proven and evaluated versus the original code and shows a satisfac-
tory result. SBC-RVM simplifies the communication between nodes, meet
tasks real-time constraints, help to relax overloaded nodes, adding new
tasks to the service, issuing remote commands to remote systems without
a need for a significant upgrade. The proposed techniques showed
promising results to support task placement over loosely-coupled real-
time computer systems while preserving the real-time properties of the
placed tasks. The SBC-RVM shows a possible potential for a real-time
virtual environment and can be applied successfully to that kind of
real-time systems. In case of future research, it should be appropriate to
test more languages and scripts for more evaluation of SBC-RVM and its
adaptability to different platforms.
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