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Abstract

The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly

adopted approach for strain recognition and examination of phenotypic defects. Gait is also

a visible behavioral expression of worms under external stimuli. This study developed an

adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the

biological cues behind intricate motion. The method was used to classify the strains of

worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the

locomotory pattern was created from the worm of interest. The body curvature of the worm

was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correla-

tions between the predefined database and measured worm was then obtained by dividing

each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance

score was estimated after k-means clustering. Simulated data that use sinusoidal waves

were generated to assess the feasibility of the algorithm. Results suggested that temporal

frequency is the major factor in the process. In practice, five worm strains, including wild-

type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were

investigated. The overall classification accuracy of the gaitprint analyses of all the strains

reached nearly 89%. The method can also be extended to classify some motor neuron-

related locomotory defects of C. elegans in the same fashion.

Introduction

Caenorhabditis elegans is a popular multicellular model animal used to explore neural circuits,

behavior, and genes at system level [1]. C. elegans was introduced to the community by Sydney

Brenner in 1978 [2]. Since then, tremendous worm-based research focusing on neuroscience,

genetic engineering, and environmental toxicology has been conducted [3–5]. In 1986, a map

of all the 302 neurons in the C. elegans nervous system and the 7,000 connections or synapses

among these neurons was first published [6]. The complete genome sequence was established

and revealed to have more than 60% genetic similarity with humans [7]. Subsequently, many

researchers have been dedicated to bridge the gaps among specific genes, neural circuits, and
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behavioral phenotypes. Genes that are mediating the worm locomotion are frequently investi-

gated [8]. In addition, investigating how perturbation in the neural network triggers the

changes in locomotion is of interest to researchers [9]. Understanding the mechanism of gait

switching of C. elegans has important implications to motor-neurological diseases in humans

[10]. However, C. elegans performs diverse behavioral patterns even with limited neurons.

Thus, studying locomotion in relation to genes and neural activities remains a big challenge

until today [11].

Despite these difficulties, numerous researchers remain committed to the deciphering of

the codes behind the locomotory gaits exerted by C. elegans. In contrast to genes and neurons,

gaits are visible to human eyes. Previous studies have thoroughly observed and then character-

ized the C. elegans [12]. However, their results were dependent on observation, and thus, were

likely to have human errors and biases. Quantitative analysis of locomotory gaits enables a

systematic approach to classify the differences between worms. Distinguishing the motion

changes that are linked to genetic or neural defects of a worm relies on cautious motion analy-

sis. Biomechanical parameters, such as curvature, velocity, and frequency, are calculated from

videos of worms in motion [13], from which corresponding analytical models of motion can

be generated [14]. Yemini et al. reported an online behavioral database for 305 worm strains

[15]. Other biomechanical parameters, such as propulsive forces and power, require a micro

particle image velocimetry system [16], a microfluidic chip-based system [17, 18], or an

image-based system [19]. Some studies developed algorithms to automatically detect prede-

fined behaviors, such as omega bends and reversals [20].

Unsupervised learning for locomotion classification is another approach that uses the

inherent structure of a dataset for the classification of informative patterns. Stephens et al.

showed that the space of shapes adopted by C. elegans can be formulated with only four dimen-

sions [21]. Another study used four eigenworms to describe the locomotion of the worm and

built a dictionary of repetitive behavior motifs to divide worms with different genes into func-

tional classes [22]. Recently, a study has proposed a method that has no definition of animal-

specific features [23]. Histograms of commonly observed scale-invariant feature transform

(SIFT) features representing nematode motility were constructed using SIFT as an elementary

image feature [24].

In this study, a novel gait analysis method is presented to classify worms from strain types.

The present method used the body curvature of C. elegans to classify the locomotory gaits of a

worm through 2D empirical mode decomposition (2D EMD) [25] and a correlation algorithm.

Unsupervised method k-means clustering was then used to classify worms according to their

gait features. Resemblance scores were also calculated from the k-means clustering results to

provide similarity estimation between an unknown worm and predefined database.

Methods and materials

Concept of gaitprint analysis

Unlike humans, C. elegans is a simple life form that possesses only few discernible signatures.

However, neuron-mediated locomotion is a visible trait linked to their identities and response

to environmental stimuli. Thus, this study aimed to develop an image-based algorithm named

gaitprint to translate the gait patterns of a worm into a human understandable language. A

recording time period of 2.5 s, which was sufficient to include at least three swimming cycles

of all strains, was required in a video clip. Five steps were proposed for gaitprint analysis (Fig

1). In step 1, a worm’s body is skeletonized and then divided into 10 segments. A kymogram,

containing the information of the body curvature of a worm over time, is generated. Parame-

ters including curvature amplitude, body bend, and wavenumber are included in this 2D
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graph. In step 2, the kymogram is decomposed into four intrinsic mode functions (IMFs)

through the 2D EMD method. These parameters are then extracted into the IMFs. In step 3,

each IMF is divided into three parts, namely, head, mid-body, and tail. Consequently, 12 fea-

tures are analyzed. A radar chart can be plotted by comparing the correlations between an

unknown worm and predefined database in each feature. The radar chart is dubbed as a gait-

print, because each worm strain has its unique pattern. Thus far, a particular worm pattern

can be recognized. However, two more steps are required if a specific number showing the

comprehensive similarity between the unknown worm and predefined database is preferred.

In step 4, k-means clustering is performed to quantitatively distinguish the similarities among

the subjects over the 12 features. In the final step, the clustering results are calculated to yield a

comprehensive resemblance score to indicate the relationship between the unknown and pre-

defined worms. The score provides a probability instead of a specific answer. A high score

(>50%) typically represents a high probability that an unknown worm and the predefined

worm may belong to the same strain. Considering a wide variety of strains, the resemblance

score is appropriate to describe the possible strain type of an unknown worm in this study.

Fig 1. Executive flow chart of the gaitprint analysis method.

https://doi.org/10.1371/journal.pone.0181469.g001
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However, this analytical method works only for worms that express their genetic defects in

locomotory phenotypes.

Preparation of microchip

Each worm was confined in a chamber filled with the nematode growth medium (NGM)

buffer on a polydimethylsiloxane (PDMS; Sylgard 184, Dow Corning) microchip. The micro-

chip was composed of a 3 ×3 chamber array, each measuring 91 μm in height and 2 mm in

diameter. A negative photoresist, SU8-2025 (Microchem), was spin-coated on a 4” silicon

wafer and patterned with conventional photolithography to form the mold structure. The

PDMS prepolymer was prepared by mixing the monomer Sylgard 184 with the cure agent at a

volumetric ratio of 10:1. The resulting mixture was then poured onto the silicon wafer inside

the glass dish for molding. The prepolymer was baked in an oven at 80˚C for 1 h, and then the

chamber array was obtained by peeling it off the mold. Subsequently, each chamber that is

occupied by a single worm was filled with 1.5 μL of NGM buffer. A microchip for worm image

recording was completed after a cover glass was placed on the PDMS.

Worm image recording

A high-speed camera (Memrecam GX-3, NAC Image Technology) was used to capture a single

worm locomotion video. The camera was installed under an inverted microscope (CKX41,

Olympus) coupled with a 4× magnification objective (Fig 2). A phase contrast slider (Ph2,

IX2-SL) was mounted onto the microscope to enhance the visibility of the worm images. At

least three swimming cycles were performed in an appropriate kymogram to avoid bias. Each

worm was confined accordingly in a chamber of the microchip at room temperature of 24˚C

and then recorded for 2.5 s. This fixed recording time was determined because it was suffi-

ciently long to meet the minimum requirement of all the strains used in this study. A short

duration of 30–60 s was typically required for worms to resume their locomotion after they

were transferred from the incubator to a microchip. Measurement was conducted after the

worms showed constant and stable swimming. Although the TJ356 and CL2070 worms carry-

ing the right-roller allele of rol-6 moved their bodies differently from their wild-type counter-

part, cyclic motion was still observed under a dissecting microscope. Therefore, repeated

patterns were shown on their kymograms. The acquired image size was 640 × 480 pixels, and

the recording frame rate was 100 Hz. Two strains, such as N2 and CL2070, were measured to

establish their gaitprint databases. Twenty young adult worms were measured and analyzed

for each strain.

Worm culture

Wild-type C. elegans, such as N2 and four transgenic strains, were used in this research to

assess the proposed gaitprint analytical method (Fig 3). These worms represented three com-

mon types of locomotion, such as sinusoidal wave, roller, and uncoordinated body movement

(see S1 File and S1 Movie). Transgenic strains were obtained from Caenorhabditis Genetics

Center at the University of Minnesota. All the worms were maintained on NGM agar plates

seeded with E. coli as food sources and cultured by following the protocol described by Sydney

Brenner [2].

The four transgenic strains used in this study were of different phenotypic behaviors. TJ356

(zIs356) [daf-16p::daf-16a/b::GFP + rol-6 (su1006)] and CL2070 (dvIs70) [hsp-16.2p::GFP + rol-
6 (su1006)] are both rollers carrying the dominant rol-6 allele. Rol-6 primarily mediates the

organismal morphology and produces a roller phenotype, which twists the body of the worm

into a right-handed helix [26, 27]. CB0061 [dpy-5] has a dumpy phenotype, which is shorter
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Fig 2. Schematic of the measurement system. Experimental setup comprising a microscope for imaging, a high speed camera, and a computer. The

inset represents the actual PDMS microchip with a 3-by-3 well array. A MATLAB program was developed to automate the gaitprint analysis.

https://doi.org/10.1371/journal.pone.0181469.g002

Fig 3. Trajectories of five worm strains used in this study. The overlapped colorful lines represent the swimming trajectories of each worm at different

time points. Three types of locomotion are classified and shown in correspondence to their strains.

https://doi.org/10.1371/journal.pone.0181469.g003
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and stouter than its wild type counterpart at the same developmental stage [28]. CL2120

(dvIs14) [(pCL12) unc-54::beta 1–42 + (pCL26) mtl-2::GFP] is an Alzheimer model animal car-

rying human Aβ 1–42 peptides in its muscles [29]. This strain expresses progressive and age-

dependent paralysis after onset by temperature. Aβ toxicity is released when the worms are

cultured at a temperature higher than 15˚C. Therefore, all worms, except the CL2120 strain,

were cultured in an incubator at 20˚C. CL2120 strain was separately cultured at 15˚C.

The worm locomotion in this study was measured on adult day 1 (AD1) at room tempera-

ture of 24˚C. Bleaching was performed to obtain a synchronous population of L1 stage worms

[30]. After 48 h from bleaching, L4 stage worms were transferred to a new agar plate with a

platinum wire and then cultured for 24 h before measurement.

Kymogram and two-dimensional empirical mode decomposition

For simplicity, each worm was represented by its body centerline. The body curvature of a worm

was then derived from the centerline. Finally, a kymogram showing the relationships between

the body curvature change of the worm and elapsed time was plotted. Kymogram is a 2D spatio-

temporal graph containing unique information on the locomotory gait of a worm. The gait pat-

tern may change corresponding to the worm strain and motor neuron defects. A powerful algo-

rithm named EMD was used to extract the information from the worm locomotion. EMD was

first developed by N.E. Huang in 1998 [31] and has been widely applied in signal processing

fields until today. The hidden characteristics can be revealed by decomposing the original signal

into a combination of IMFs through a sifting process [32]. 2D EMD was performed to classify

worm strains on the basis that the body centerline of a worm was treated as a finite waveform.

Kymogram was used as the original signal source in the present study to obtain 2D IMFs based

on the 2D EMD (Fig 4A). The present preliminary investigation showed that the intensity of

IMFs dropped below 1% after four decompositions. Therefore, only the first four IMFs were

selected for subsequent analysis in this study. In principle, the later IMFs (e.g., the fourth IMF)

indicated lower body bends in locomotion than the former ones (e.g., the third IMF).

Correlation coefficients

Correlation coefficients were used to determine (1) the outliers of measured worms in a prede-

fined database and (2) body part similarities of the kymograms and IMFs (Fig 4B). 2D fast

Fourier transform was used to calculate the image-based auto-correlation and cross-correla-

tion coefficients. The correlation peak in the 2D correlation matrix was then used to stand for

the correlation degree of two images. The normalized number, which is the ratio of the cross-

correlation to the auto-correlation, was then derived for subsequent gaitprint analysis.

For the first part, a large number of worms were collected in the predefined database. The

eligibility of each worm was then examined by correlating its kymogram with those of the

other worms of the same type to determine the outliers among the measured worms. When

more than half of the correlation peak values of a worm were out of one standard deviation of

the overall correlation coefficients, the worm was discarded; otherwise, the worm was kept.

After the outliers were removed, worms of the same type were categorized into a predefined

database. In the study, 20 worms were initially measured for each database. After the screen-

ing, four and six outliers were removed from the N2 and CL2070 databases, respectively. For

the classification of an unknown worm, the 2D IMF of a worm was compared with that of a

predefined database. Given that each worm generated four IMFs and each 2D IMF of a worm

was divided into three parts, namely, head (H), mid-body (M), and tail (T), a total of 12 fea-

tures can be used for comparison. After calculating the correlation coefficients of the 12 fea-

tures by comparing with all the worms in the database, a radar chart showing the similarities
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of the 12 features between the unknown worm and predefined database can be plotted (Fig

4C). Every worm strain evidently has a unique radar chart associated with its locomotory gait.

Therefore, the radar chart was considered as a gaitprint of the worm. The identity of an

unknown worm can be determined eventually by comparing the gaitprint of an unknown

worm and that of a predefined database.

K-means clustering and resemblance scoring

Gaitprint analysis relies on an unsupervised learning method (k-means clustering) without

predefining the features of worms in the database. K-means clustering is a type of classification

that partitions n observations into k clusters such that each observation is included in the clus-

ter with the nearest mean. The distance between the observation and cluster center is deter-

mined by the Euclidean distance. Worms were clustered depending on the 12 features through

k-means clustering.

The consistency within data clusters can be validated through the Silhouette method [33].

A Silhouette value s(i) that is close to 1 indicates that the sample is away from the neighboring

clusters. Conversely, s(i) = 0 indicates that the sample is close to the boundary between two

neighboring clusters. A negative Silhouette value indicates that the sample might be assigned

to the wrong cluster. The Silhouette plot of the entire clustering data shows a relative quality of

the clustering and a map of the data network. In the present study, the Silhouette method was

performed to determine a resemblance score of an unknown worm against a predefined data-

base. A predefined strain was assigned to be the representative database. When a measured

Fig 4. Schematic of the gaitprint analysis. (A) IMFs derived from a kymogram using the 2D EMD method. (B) Comparison of kymograms at each body

part using auto-correlation and cross-correlation algorithm. (C) K-means clustering was used to classy the worms into k clusters. Resemblance scores for

each worm are calculated according to the cluster it belongs.

https://doi.org/10.1371/journal.pone.0181469.g004
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worm was in the same cluster with the strain, its resemblance score was 50þ
sðiÞ� ð� 1Þ

2

� �
� 50.

Otherwise, the resemblance score was
� sðiÞ� ð� 1Þ

2
� 50. Therefore, if the measured worm was in

the representative cluster and apart from the neighboring clusters (i.e., >75%), the worm was

considered more likely to be a predefined strain. On the contrary, if the worm was not in the

representative cluster and apart from the neighboring clusters (i.e.,<25%), the worm was con-

sidered less likely to be of the same type of the predefined strain. The identity of the worm

could be eventually recognized by repeating the procedure to calculate the resemblance scores

of an unknown worm against predefined databases.

Results and discussion

Simulated models

C. elegans has muscles organized as longitudinal strips in each of the four body quadrants [34].

Wild-type C. elegans moves by alternately coordinated contraction and relaxation of the

opposing dorsal and ventral muscle strips attached to the cuticle along the body length, pro-

ducing sinusoidal waveforms that propel the animal forward [35]. Therefore, the locomotory

gait of C. elegans was modeled using a sinusoidal traveling wave to assess the feasibility of gait-

print analysis in this study.

The locomotion of C. elegans was modeled by Asin(kx − ωt)e−x/l, where A is the curvature

amplitude, k is the wavenumber (k = 2π/λ, λ is the nematode wavelength), ω is the angular

body bend of the nematode (ω = 2πf, where f is the frequency in Hz), x represents a vector of

spatial coordinates (200 pixels long), and l is the length of the nematode from head to tail [36].

Six simulated models (Table 1) were created by following the study of Koren et al. [23] to

assess the gaitprint analysis method in the present study. Three model types (I, II, and III)

were created by setting variables in curvature amplitude, frequency, and wavenumber to inves-

tigate the significance of the parameters in the EMD. Two special models (IV and V) were cre-

ated by tuning the three parameters to simulate the swimming gaits of N2 and CB0061. The

parameters of the two strains were referred to the experimental data. The last model (VI) was

an actual wide-type example obtained from prior literature [36]. The example provided a com-

parison for validation of the method.

The clustering result is shown in Fig 5B. The changes in the three parameters are reflected

in the sinusoidal waveforms. When one parameter in the three models is changed each time,

the parameters affected the analysis in a systematic manner. The parameters of all the simu-

lated models (W1–W9) were changed based on N2. This comparison provided valuable infor-

mation on the effect of the parameters on the distance among the data in the plot. Among the

Table 1. Parameters of the simulated datasets.

Simulated model Curvature amplitude, A [pixel] Body bend, f [Hz] Wavenumber, k [pixel-1]

I 15, 21, 30* 2.1 0.035

II 21 1.64, 2.1, 3.2* 0.035

III 21 2.1 0.0305, 0.04, 0.05*

IV (N2) 25 2.1 0.035

V (CB0061) 21 1.64 0.04

VI [33] 25 2 0.035

* W1, W2, and W3 denote simulated worms in model I that differ in curvature amplitude but the same in body bend and wavenumber. W4, W5, and W6

denote simulated worms in model II that differ in body bend but the same in curvature amplitude and wavenumber. W7, W8, and W9 denote simulated

worms in model III that differ in wavenumber but the same in curvature amplitude and body bend.

https://doi.org/10.1371/journal.pone.0181469.t001
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three parameters, frequency had the most influence on clustering. Therefore, the distances

among W5, W6, and W7 were the largest. On the contrary, the amplitude caused lesser dis-

tance differences among W1, W2, and W3 compared with the other counterparts. The wild-

type worm in model VI was obtained from the literature [36] as the reference of interest, and

the resemblance scores of all the simulated models are shown in Fig 5C. The W2, W3, W8,

and N2 scores were high in this comparison test, indicating their high similarity with the

worm in model VI. However, CB0061, which has a dumpy phenotype, scores low because its

locomotion differs from the reference worm in model VI in all aspects. A comparison of their

kymograms was also consistent with the resemblance scores (Fig 5A). Results confirmed the

feasibility of the gaitprint analysis method. The final resemblance score provided a reasonable

prediction of the identity of the worm. Overall, the method was capable of resolving gaitprints

between two worms when the difference of their curvature amplitudes, frequencies, and wave-

numbers were as small as 4 pixels, 0.5 Hz, and 0.005 pixels−1, respectively.

Fig 5. Results of simulated datasets. (A) Representative kymograms of W3, W6, N2, and CB0061. (B) K-means clustering of the measured worms

according to their 12 features. (C) Resemblance scores of the simulated models against model VI.

https://doi.org/10.1371/journal.pone.0181469.g005
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Strain recognition by the gaitprint analysis

Five worm strains were used to assess the gaitprint analysis in practice. Their kymograms

derived from over 2.5 s-long videos are shown in Fig 6A. The kymograms of all the worms

showed graphical differences in their swimming amplitudes, body bends, and wavenumbers.

However, the hidden characteristics were further decomposed into IMFs and then analyzed

according to the 12 features. Radar charts of the five strains against two selected databases,

namely, N2 and CL2070, were depicted in Fig 6B and 6C, respectively.

Fig 6. Strain recognition tests for actual worms. (A) Kymograms of the five strains, including N2, CB0061, TJ356, CL2070, and CL2120, used in the

study. (B) Gaitprints of the worms against the database N2. (C) Gaitprints of the worms against the CL2070 database. (D) Resemblance scores of all the

worms compared with the N2 and CL2070 databases. Red and blue circles denote comparisons achieved against the N2 and CL2070 databases,

respectively.

https://doi.org/10.1371/journal.pone.0181469.g006
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N2 showed more traits in the second IMF because of its higher swimming frequency com-

pared with those in the other strains. According to the gaitprints of CB0061 and CL2120, both

exhibit sinusoidal swimming with strong amplitudes but low body bends (i.e., compared with

N2) because their major patterns fall in the third and fourth IMFs. TJ356 and CL2070 are

both rollers, and thus, they expressed low amplitudes in their radar charts. Both rollers also

expressed slow head-driven locomotion (i.e., compared with N2) because of the high power

generated from their front body parts. The behavior was consistent with the cues in their radar

charts, because their patterns focused on the third and fourth IMFs. Notably, the radar chart of

CL2070 had an amplitude of>1 because of its weak swimming amplitude (i.e., compared with

N2).

After analyzing with the k-means clustering, the final resemblance scores of the measured

worms against N2 and CL2120 were obtained (Fig 6D). N2 and CL2070 showed high resem-

blance scores (>75%) with respect to their corresponding databases. By contrast, other irrele-

vant worms showed low scores (<45%). In practice, a resemblance score of 100% is nearly

impossible because of biological diversity. However, the resemblance score still provided a

confidence level linked to the similarity between an unknown and predefined strain. For sim-

plicity, 50% was adopted as a threshold in this study. At this threshold, the overall accuracy of

the gaitprint analysis reached 89% with a total of 79 worms evaluated.

In addition to the five selected worm strains, two demonstrations were conducted to show

the capability of the method. In the first case, the relationship of two additional mutant strains,

namely, KG532 and CB767, with the two predefined databases were inspected without prepro-

cessing. KG532 [kin-2(ce179) X] is a hyperactive strain with body bends higher than those of

its wild-type counterpart. CB767 [bli-3(e767) I] carries the mutant bli-3 allele, which causes

blistered cuticle. Blistered cuticle is a morphological abnormality in the appearance of the

worm and hinders its locomotion. The result indicated few similarities between both strains

and N2 or CL2070. In particular, the resemblance score of KG532 against N2 was 42%, which

was higher than those of the other cases. The increased similarity was attributed to the loss of

function in the kin-2 gene. Thus, KG532 has a subtler phenotype than other strains. In the sec-

ond case, wild-type (N2) worms were cultured in two culture media, which respectively con-

tained pure Dulbecco’s Modified Eagle’s Medium (DMEM) and DMEM mixed with Caco-2

cancer cells. Although the mechanism remains unclear, the cancerous medium indeed forms

an attraction to worms according to the prior study [37]. In gaitprint analysis, the behavioral

change differentiated the N2 worms in the DMEM from those in the cancerous medium.

Unlike the comparisons of mutants in the first case, the little change of the behavioral pheno-

types induced by the cancerous medium were unrecognized by human eyes (see S2 Movie.

Note that the movie is not played in real time). By contrast, the method was sensitive to the

minor locomotory changes and indicated a 53% similarity with the N2 database. Therefore,

the finding indicated that the worm can be a natural biosensor to alarm the change in the com-

position of tested medium provided that their body languages can be interpreted. For more

extended research applications, morbid worms carrying defective motor neurons or toxic pro-

teins accumulated in muscles, such as Parkinson’s disease and Huntington’s disease, can be

identified in the same manner.

Conclusion

2D EMD has been applied in numerous signal processing applications and has been proven a

powerful algorithm in data analysis. Given that the locomotory gait of C. elegans is mediated

with a simple but delicate neural network, image-based locomotion can be used as an impor-

tant trait to study genetic engineering, neuroscience, and strain recognition. To the best of our
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knowledge, this is the first study to perform image-based worm recognition through the use of

2D EMD algorithm. A gaitprint analysis method was successfully based on 2D EMD to investi-

gate the locomotion features of C. elegans. The differences shown in the kymograms of the

worms can be decomposed into four major IMFs and analyzed according to the features of the

three worm body parts. Gaitprint was eventually created as a graphical map for each worm by

comparing it with a predefined database. A resemblance score was then provided to facilitate

the interpretation of the identity of a worm. Although a resemblance score of 100% was nearly

impossible in realistic analysis because of biological diversity, a high score always linked to a

high similarity between an unknown strain and a predefined database. Unknown strains can

be identified without the use of the wild-type strain as reference. With an overall accuracy of

more than 85%, gaitprint analysis method can provide a reasonable prediction of the identity

of any unknown C. elegans. However, despite the flexibility of this method, it is only limited to

worms with discernible locomotory traits. The method can be used to interpret more worm

behaviors in a wide spectrum of conditions.
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