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Abstract: Chronic ulcerative and hard-healing wounds are a growing global concern. Skin substitutes,
including acellular dermal matrices (ADMs), have shown beneficial effects in healing processes.
Presently, the vast majority of currently available ADMs are processed from xenobiotic or cadaveric
skin. Here we propose a novel strategy for ADM preparation from human abdominoplasty-derived
skin. Skin was processed using three different methods of decellularization involving the use of ionic
detergent (sodium dodecyl sulfate; SDS, in hADM 1), non-ionic detergent (Triton X-100 in hADM 2),
and a combination of recombinant trypsin and Triton X-100 (in hADM 3). We next evaluated the
immunogenicity and immunomodulatory properties of this novel hADM by using an in vitro model
of peripheral blood mononuclear cell culture, flow cytometry, and cytokine assays. We found that
similarly sourced but differentially processed hADMs possess distinct immunogenicity. hADM 1
showed no immunogenic effects as evidenced by low T cell proliferation and no significant change in
cytokine profile. In contrast, hADMs 2 and 3 showed relatively higher immunogenicity. Moreover, our
novel hADMs exerted no effect on T cell composition after three-day of coincubation. However, we
observed significant changes in the composition of monocytes, indicating their maturation toward a
phenotype possessing anti-inflammatory and pro-angiogenic properties. Taken together, we showed
here that abdominoplasty skin is suitable for hADM manufacturing. More importantly, the use of
SDS-based protocols for the purposes of dermal matrix decellularization allows for the preparation
of non-immunogenic scaffolds with high therapeutic potential. Despite these encouraging results,
further studies are needed to evaluate the beneficial effects of our hADM 1 on deep and hard-healing
wounds.

Keywords: skin substitute; acellular dermal matrix; preparation method; collagen structure; collagen
adhesion; dermal architecture
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1. Introduction

Chronic and hard-healing wounds are a pervasive global health concern. The elevated
mortality [1] and reduced quality of life associated with these types of wounds, combined
with presently limited therapeutic options, highlight the need for novel ameliorative
therapies to improve these healing processes.

Wound healing is composed of four overlapping phases: hemostasis, inflammation,
proliferation and remodeling [2]. In each of these phases, distinct mechanisms take place to
induce effective wound closure and scar formation. During coagulation in the hemostasis
phase, the inflammatory cascade is initiated by the degranulation of mast cells, with the
central role of wound-infiltrating inflammatory cells such as neutrophils and monocytes
clearing the wound of debris and pathogens. Next, the proliferative ability of epidermal
keratinocytes and extracellular matrix (ECM)-depositors, including myofibroblasts, facil-
itates the rapid coverage of the wound area by dermal and epidermal tissue, inducing
scar formation. Following wound closure, the remodeling of crucial ECM components
takes place, resulting in scar maturation. However, in contrast to normal wound healing,
chronic wounds possess a variety of mechanistic dysfunctions, which result in prolonged or
ultimately non-existent wound healing [3,4]. To date, several hallmarks of chronic wounds
have been identified, such as persistent inflammation [3–6], low levels of growth factors
and high oxidative stress [7–10], poor angiogenesis [11–13], high levels of matrix metallo-
proteinases [14–17] and the dysfunction of dermal fibroblasts [10,18]. In fact, proliferative
coverage of the wound area is significantly inhibited in chronic wounds, and the healing
process is blocked in a self-perpetuating cycle of inflammatory reaction. Therefore, it is
well recognized that the ideal dressing for hard-healing wounds should not only cover the
wound but also modulate the wound microenvironment through its immunoregulatory
effects.

Notably, skin substitutes or skin-derived dressings have been used as an effective com-
plementary treatment for deep, extensive, and hard-healing wounds, among others [19–27].
Skin substitutes are biologically or synthetically derived tissues applied to the wound to
induce favorable wound healing effects. In fact, skin substitutes have a long history of
use in treating wounds and ulcers of different etiology. However, their therapeutic effects
depend on the derivative source, structural composition, preparation method, and means
of sterilization/aseptic creation, among others [2,26,28].

Recent studies demonstrated the regenerative potential of ADM application in dia-
betic foot ulcer (DFU) healing and mechanisms associated with beneficial effects [22,29–31].
Moreover, the members of our group have developed a novel approach to hADM manufac-
turing from the resected skin fold of living abdominoplastic surgery patients. Previously,
we were able to generate a novel abdominoplasty skin-derived hADM using a distinct
method of decellularization and sterilization. We previously evaluated the effects of dif-
ferent methods of preparation on the purity and structure of our novel hADM. Moreover,
we showed that human abdominoplasty skin-derived ADMs may serve as dressing for
deep wound treatment [32]. More importantly, this dermal matrix was able to serve as a
skin substitute for hard-healing wounds or as a biological scaffold for BIOOPA dressing to
treat epidermolysis bullosa patients [23,28,33,34]. Here, we examined three differentially
prepared hADMs and aimed to evaluate how these methods of aseptic preparation may
influence their immunomodulatory properties and therapeutic potential.

2. Materials and Methods
2.1. Skin Collection and Processing

Skin folds from bariatric patients were collected during abdominoplastic surgery.
Dermatome skin grafts were harvested from the resected skin fold, sealed in foil bags, and
biobanked at −80 ◦C for further processing.

Dermal fragments were thawed in saline at room temperature, followed by a decel-
lularization step using chemical and/or enzymatic processing (Supplementary Table S1).
Directly after decellularization and washing, acellular dermal matrices were lyophilized us-
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ing automated −80 ◦C lyophilization, sealed in double foil bags, labeled, and biobanked in
−80 ◦C. The efficiency of the decellularization process was controlled using histochemical
staining.

Prior to use, 8 mm fragments were created by biopsy punch. Next, 8 mm acellular
dermal matrix (ADM) fragments were re-hydrated in a 1 mL complete culture medium
RPMI 1640 (Thermo Fisher, Waltham, MA, USA) supplemented with 10% FBS (PAN Biotech,
Aidenbach, Germany) and 75 µg/mL gentamicin (Gibco, Waltham, MA, USA) for 24 h in a
37 ◦C, 5% CO2 incubator. Each independent experiment used an hADM from a distinct
decellularization series.

2.2. Peripheral Blood Mononuclear Cell (PBMC) Isolation

PBMCs were isolated from fresh buffy coats obtained from healthy donors by means
of density gradient centrifugation (Pancol, PAN Biotech), as previously described [28].
Pharm lyse buffer (BD, Franklin Lakes, NJ, USA) was used to remove residual red blood
cells when needed. PBMC numbers were evaluated using a Bürker chamber. Freshly
isolated PBMCs were resuspended in complete culture medium and used immediately for
further research. Buffy coats were collected upon the approval of the Ethics Committee of
the Medical University of Bialystok.

2.3. T Cell Proliferation Assay

Freshly isolated PBMCs were stained with carboxyfluorescein succinimidyl ester
(CFSE, Sigma-Aldrich, St. Louis, MO, USA) in PBS (Corning Inc., Corning, NY, USA) for
5 min at room temperature in the dark. CFSE-labeled cells were washed three times in
PBS (5 min, 400× g). Next, the cells were resuspended in complete culture medium and
gently seeded on re-hydrated 8 mm hADM fragments, 8 mm unprocessed skin fragments,
or left alone (vehicle/unstimulated control) in 24 well culture plates (Eppendorf, Hamburg,
Germany) at the density of 1 × 106 cells/m. Mitogen stimulation (5 µg/mL PHA-P, Gibco)
was included as a positive control of PBMC proliferation. The cells were stimulated for 7 or
14 days with medium changes every four days. Finally, the cells were collected and stained
with mouse anti-human CD3-FITC and CD8-PE conjugated antibodies (BD Biosciences)
for 15 min in the dark. See Supplementary Table S2 for antibody information. Next, the
samples were washed in PBS and fixed using CellFix (BD) and analyzed by FACSCalibur
(BD) flow cytometry. Obtained data were analyzed using FlowJo v10 software (TreeStar
Inc., Ashland, OR, USA). Appropriate staining controls were used for setting the gates. The
used gating strategy is presented in Supplementary Figure S1. The results are presented as
a ratio of proliferation versus the unstimulated control.

2.4. Assessment of Monocyte and T Cell Phenotype

Freshly isolated PBMCs were gently seeded on re-hydrated 8 mm hADM fragments
or left alone (vehicle/unstimulated control) in 24 well culture plates (Eppendorf) at the
density of 1 × 106 cells/mL in complete cell culture media. The cells were cultured
for up to 72 h and collected every 24 h for flow cytometry analysis. For intracellular
cytokine staining, brefeldin A (Thermo Fisher) was added to culture wells 3 h before cell
acquisition. Additionally, cell culture supernatant was collected and biobanked at −80 ◦C
for cytokine assay. Next, the cells were stained immediately with a panel of monoclonal
antibodies (Supplementary Table S2). Briefly, cells were incubated in the presence of
monoclonal antibodies for 30 min at room temperature in the dark. Next, the specimens
were washed twice in PBS and fixed with CellFix (BD) or subjected to intracellular staining.
For the latter, samples were fixed and permeabilized using Perm2 Buffer (BD) according
to manufacturer instructions, followed by washing in PBS and staining with fluorescent-
conjugated antibodies (Supplementary Table S2) for 30 min at 4 ◦C in the dark. Next, the
cells were washed twice and fixed with CellFix (BD). Finally, the specimens were analyzed
on a FACSCalibur flow cytometer (BD). Flow cytometry data analysis was performed using
FlowJo software (Tree Star). Appropriate, fluorescence-minus-one (FMO) controls were
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applied for setting correct gating. Used gating strategies for different T cell and monocyte
subsets are presented in Supplementary Figures S2 and S3. Used gating strategies for
different T cell and monocyte functions are presented in Supplementary Figures S4 and S5.

2.5. Cytokine Assay

Concentrations of factors TNF, IFNγ, IL-1β, IL-6, IL-10, IL-17 and TGF-β were mea-
sured by means of commercially available DuoSet ELISA (all from R&D Systems, Min-
neapolis, MN, USA), as previously described [28,34,35]. The detection ranges for TNF
(15.6–1000 pg/mL) IFNγ (9.39–600 pg/mL), IL-1β (3.91–125 pg/mL), IL-6 (9.4–600 pg/mL),
IL-10 (31.3–2000 pg/mL), IL-17 (15.6–1000 pg/mL) and TGF-β (31.3–2000 pg/mL). Protein
levels were analyzed with an automated microplate reader (LEDETEC96 system). The
results were calculated according to the standard curve, generated by individual standard
dilutions, by MicroWin 2000 Software.

2.6. Immunofluorescence Staining

hADMs were snap-frozen after coincubation with PBMCs mentioned previously.
hADMs were cut using cryomicrotome into 20 µM longitudinal sections and seeded
on glass slides. Next, cryosections were fixed with 4% paraformaldehyde (Santa Cruz
Biotechnology, Dallas, TX, USA) and incubated in a detergent (0.1% Triton X-100 (Sigma))
in 0.02% SDS-PBS (Sigma-Aldrich and Corning, respectively), followed by incubation with
blocking buffer (10% normal donkey serum–Abcam, Cambridge, UK) in 1% BSA in PBS).
Next, the slides were stained with a specific primary antibody for collagen types I, III
and IV or incubated in staining buffer (1% protease-free bovine serum albumin (Sigma)
in PBS) for 60 min in a high humidity chamber in the dark. Next, the slides were washed
three times in washing buffer (Tween20-PBS) and stained with appropriate secondary
antibodies. For detailed characteristics of primary and related secondary antibodies,
please see Supplementary Table S3. Finally, the specimens were mounted in Prolong Gold
mounting medium with DAPI (Thermo Fisher) and covered with cover slides (Avantor,
Gliwice, Poland), followed by overnight incubation at RT in the dark before analysis by
confocal microscopy.

2.7. Confocal Microscopy

Confocal pictures were acquired using an FV1200 Microscope (Olympus, Tokyo,
Japan). Full-sized pictures were acquired in 3 channels using 405, 450 and 650 nm lasers
at 20 µs/pixel and 2048 × 2048 size using FluoView software (https://www.olympus-
lifescience.com; Olympus) accessed on 1 March 2021. Full-sized photos were then examined
using ImageJ software (https://imagej.nih.gov/ij/; Public domain) accessed on 1 May
2021. Channel 1 (DAPI) was made blue, Channel 2 (autofluorescent collagen structure)
was made green, Channel 3 (stained collagen fibers I, III or IV) was made red. Z-stacks of
each channel were created and merged. As many focused sections (500 × 500 pixels) as
possible were extracted from each full-sized photograph inside the hADM for collagens
I and III or on the apical edge for collagen IV, and quantified. Each stained, quantified,
focused section was divided by the mean of combined focused controls; slides stained
without primary collagen-binding antibody but with secondary fluorescent antibodies
specific to each collagen [Quantification = Stained Collagen/Staining Control]. Channels 1
and 2 (DAPI and autofluorescence, respectively) did not contribute to the semi-quantitative
measurement of collagens. In hADMs without co-incubated PBMCs, only one time point
(24 h) was used with quantification measured as mentioned above. However, when PBMC
co-incubated hADMs were compared to those without PBMCs, the following equation
was used [Quantification = (stained PBMC co-incubated focus section/control PBMC
co-incubated focus section)/(stained non-PBMC focus section/control non-PBMC focus
section)].

https://www.olympus-lifescience.com
https://www.olympus-lifescience.com
https://imagej.nih.gov/ij/
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2.8. Quantification of DNA Present within hADMs

hADMs were re-hydrated using 1 mL of PBS in 24 well plates. Next, hADMs were
digested using proteinase K in buffer solution provided in DNeasy blood and tissue
DNA isolation kit (Qiagen, Hilden, Germany). This resulted in the entire dissolution of
hADMs into solution. This kit was used according to manufacturer protocol to isolate
and extract DNA from the fibrous hADMs. Finally, DNA concentration was measured
using a NanoDrop™ 2000/2000c Spectrophotometer (Thermo Fisher) using NanoDrop
2000 software (http://isogen.nl/nanodrop-software; Thermo Fisher) accessed on 3 October
2021. Specifically, the nucleic acid measurement at 260/280 nm was used.

2.9. Statistics

Graphs and statistics were calculated using GraphPad Prism 8 (http://graphpad.com;
GraphPad Software, San Diego, CA, USA) accessed on 1 August 2020. Wilcoxon matched-
pairs signed-rank test was used to compare differences between analyzed conditions.
To determinate the differences in residual DNA, Mann-Whitney U-test was used. The
differences were considered statistically significant at p < 0.05. The results are presented as
a median ± interquartile range.

3. Results
3.1. Different Methods of Human Abdominoplasty Skin Preparation Influence Acellular Dermal
Matrix Immunogenicity

It is implied that an ideal skin substitute or dermal dressing should be low- or non-
immunogenic and support healing processes [2]. However, due to the nature of tissue
sourcing, method of processing, and the sterilization that ADMs undergo, various allogenic
tissue-derived immunogenic mediators may be retained within and later released from
their structure after wound implantation. Therefore, we first aimed to analyze whether
aseptic preparation procedures of our novel abdominoplasty skin-derived ADMs may
affect their immunogenicity.

First, we used a CFSE-based assay to analyze the proliferation of CD3+ T cells and
their two main subsets, namely cytotoxic (CD3+CD8+ T cells) and helper (CD3+CD8−)
T cells (Figure 1A and Supplementary Figure S2). hADM 1 had low immunogenicity
and did not induce T cell proliferation, as no significant differences were observed when
compared to the unstimulated control in both analyzed time points (Figure 1B). In contrast,
hADM 2 and hADM 3 induced greater T cell proliferation comparable to unprocessed
skin. Moreover, hADM 3 showed the highest immunogenicity among all tested groups
(Figure 1B). Moreover, the same differences were observed in both cytotoxic and helper T
cells (Figure 1C).

Taken together, we showed here that different method of novel human abdominoplasty
skin-derived ADM preparation can influence their immunogenicity and induce T cell
proliferation. Further, hADM 1 induced the least immunogenic effect in co-incubated T
cells, indicating putatively beneficial effects.

http://isogen.nl/nanodrop-software
http://graphpad.com
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Figure 1. hADM preparation method induces differential T cell proliferation. Flow cytometric analysis of T cell proliferation.
CFSE-stained PBMCs were co-incubated alone, with hADMs, with full skin, or with mitogenic control (lectin PHA) for
7 or 14 days. (A) Histograms displaying proliferation of whole T cells for 7 and 14 days. (B) Quantification of whole
CD3+ T cell proliferation. (C) Quantification of CD3+/CD8+ and CD3+/CD8− T cell proliferation. Results expressed as
medians + interquartile ranges. Two-tailed Wilcoxon matched-pairs signed-rank test used for (B,C). n = 5 with 2 technical
replicates; * p < 0.05. ** p < 0.01.

3.2. Abdominoplasty Skin-Derived ADM Preparation Methods Do Not Influence T Cell Phenotype

Recent evidence indicates the crucial role of T cells in wound healing and scar forma-
tion, showing that T cell depletion significantly impairs the healing process and increases
scar size [36–38]. Therefore, having found that the differential preparation method of
hADMs affects immunogenic T cell proliferation, we next wished to analyze whether
observed differential T cell responses are associated with changes in their phenotype in the
early stage of coincubation mimicking the inflammatory phase of wound healing.

First, we aimed to investigate changes in the composition of different T cell sub-
sets, namely non-activated T cells (CD4+/CD25−/CD127+), activated T cells (CD4+/
CD25+CD127+), putative regulatory T cells (CD4+/CD25+/CD127low/−), and putative
Th17 cells (CD4+/CD161+/CD196+) (Supplementary Figure S2A). We found no significant
differences in the frequency of non-activated, activated, and putative Th17 cells (Supple-
mentary Figure S2B). However, the frequency of putative Tregs was slightly increased at 24
and 48 h, but not 72 h (Supplementary Figure S2B). Next, we aimed to analyze whether
the manufacturing procedure of abdominoplasty skin-derived hADM may influence the
frequency of pro-inflammatory IFNγ and IL-17 producing T cells incubated in the presence
of our novel hADMs. However, we observed no significant differences in the frequency of
analyzed subsets (Supplementary Figure S4B). Similarly, no differences were observed in
the mean fluorescence intensity of IFNγ and IL-17 in T cells (Supplementary Figure S4C).

Taken together, we showed that the differential abdominoplasty skin-derived hADM
preparation method does not significantly influence T cell phenotype composition.
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3.3. Novel Abdominoplasty-Derived Skin Substitutes Cause Differential Monocyte Activation

Given monocytes/macrophages central role in all phases of wound healing and their
ability to orchestrate adaptive immune responses in the process of antigen presentation
(including T cell proliferation induction) [39–43], we wished to evaluate the activation
of monocytes after coincubation with differentially manufactured abdominoplasty skin-
derived hADMs, hypothesizing that they may influence the previously witnessed differen-
tial T cell proliferation.

First, we aimed to analyze the composition of three major monocyte subsets, namely
the frequency of classical (CD14++CD16−, non-activated), intermediate (CD14++CD16+),
and non-classical (CD14+CD16++) monocytes (Figure 2A). In fact, we found significant
differences in the composition of monocyte subsets after incubation with all analyzed
hADMs compared to the unstimulated control (Figure 2B). The frequency of classical
monocytes was higher in all analyzed conditions at 24 h. Consequently, we found a lower
frequency of activated monocytes (cells with CD16 expression), namely intermediate but
not non-classical monocytes (Figure 2B). Contrastingly, no significant differences in the
frequency of classical monocytes were observed at 48 h; however, we found a significantly
lower frequency of intermediate monocytes after incubation with hADM 2 and hADM 3.
Moreover, a higher frequency of non-classical cells was observed after incubation with
hADM 1 and hADM 2, but not hADM 3 (Figure 2B). At 72 h, we observed a significantly
lower frequency of classical monocytes after incubation with hADM 1 and hADM 3.
No differences were observed in intermediate monocytes, while non-classical monocyte
frequency was higher in all analyzed conditions when compared to the unstimulated
control (Figure 2B).

Having found significant changes in the composition of different monocyte subsets,
we next sought to analyze whether these observed differences were associated with the
frequency of Tie-2- and/or CD163-expressing cells, these markers being associated with pro-
angiogenic and anti-inflammatory properties, respectively [44,45]. In addition, we wished
to analyze the frequency of anti-inflammatory IL-10 and pro-inflammatory TNF-producing
monocytes.

We found no differences in the frequency of Tie-2-expressing monocytes after 24 h
incubation (Figure 2C). However, at 48 h, the frequency of analyzed cells was lower after
incubation with hADM 2, while no differences were observed at 72 h compared to the
unstimulated cells (Figure 2C). The frequency of CD163-expressing monocytes did not
change after 24 h stimulation when compared to the unstimulated control. However, at
48 h, we found a lower frequency of analyzed cells incubated with hADM 3 compared
to the unstimulated control, and similarly at 72 h in cells incubated with hADM 2 and
hADM 3 (Figure 2C). Similarly, no differences in CD163 expression were observed at 24 h.
In the latter time points, we found a significantly lower expression level of CD163 on
monocytes when compared to unstimulated control. Interestingly, cells incubated with
hADM 2 and hADM 3 showed lower levels of analyzed molecules when compared to
hADM 1 (Figure 2D). Unexpectedly we found no differences in the frequency of IL-10 and
TNF-producing monocytes (Figure 3B). However, at the 48 and 72 h time points, IL-10 and
TNF expression (defined as MFI) was lower in hADM 2 and hADM 3, but not hADM 1
co-incubated cells versus unstimulated control (Figure 3C).
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Figure 2. Monocyte phenotype is altered by hADM preparation method. Healthy donor PBMCs were co-incubated alone or
with hADMs for 1, 2 or 3 days. Next, cells were stained extracellularly and examined by flow cytometry. (A) Representative
CD14 × CD16 gating plots for each unstimulated and hADM condition at 24 h, 48 h and 72 h. (B) Subset frequencies for
classical (CD14++/CD16−), intermediate (CD14++/CD16+), and non-classical (CD14+/CD16++) monocytes. (C) Frequency
of CD14+/Tie-2 or CD163+ monocytes. (D) MFI quantification of CD14+ monocytes for Tie-2 or CD163. (E) Tie-2 MFI for
specific monocyte subsets. (F) CD163 MFI for specific monocyte subsets. Results expressed as medians + interquartile
ranges. Two-tailed Wilcoxon matched-pairs signed-rank test used for (B–F) n = 5 with 2 technical replicates; * p < 0.05,
** p < 0.01, *** p < 0.001.
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3.4. Differentially Manufactured Abdominoplasty Skin-Derived Acellular Dermal Matrices 

Induce a Distinct Pattern of Cytokine Responses 

Figure 3. Monocyte effector function is modulated by hADM coincubation. Healthy donor PBMCs were co-incubated alone
or with hADMs for 1, 2, or 3 days. A total of 2 h before collection, protein transportation was inhibited. Finally, cells were
permeabilized and stained extracellularly and intracellularly before being examined by flow cytometry. (A) Frequency of
CD14+/IL-10+ or TNF+ monocytes. (B) MFI quantification of CD14+/IL-10+ or TNF+ monocytes. (C) Frequency and MFI
ratios of IL-10:TNF. Results expressed as medians + interquartile ranges. Two-tailed Wilcoxon matched-pairs signed-rank
test used for (A–C) n = 5 with 2 technical replicates; * p = 0.05, ** p = 0.01.

Here we showed how differentially produced hADMs may modulate monocyte matu-
ration, initially delaying the surface expression of CD16 and maturation into intermediate
and non-classical subsets when compared to the control. Further, we observed a declining
expression of CD163 in hADM co-incubated groups over time and no difference in IL-10
and TNF-producing monocytes. Crucially, the method of hADM preparation can be seen
to induce differential monocyte subset polarization.

3.4. Differentially Manufactured Abdominoplasty Skin-Derived Acellular Dermal Matrices Induce
a Distinct Pattern of Cytokine Responses

Having found significant changes in T cell proliferation and monocyte activation,
we next wished to analyze levels of pro-inflammatory IFNγ, IL-1β, IL-6, TNF, IL-17 and
anti-inflammatory IL-10 and TGF-β in cell culture supernatants (Figure 4). We found that
hADM 2 and hADM 3 induced pro-inflammatory profiles, with high levels of IFNγ, TNF,
IL-1β, and IL-6 when compared to both unstimulated control and hADM 1 (Figure 4A–D)
in all analyzed time points. In contrast, levels of IL-17 were relatively low at 24 h, with
increasing concentrations observed in the later time points. In fact, hADM 3 showed the
highest level of IL-17 in analyzed samples. In hADM 2 and hADM 3, we observed a trend
to increase IL-17 levels at 48 h, and which reached statistical significance at 72 h time
point (Figure 4E). The highest levels of IL-10 were observed in PBMCs after incubation
with hADM 2 (Figure 4F). Although hADM 3 induced moderate IL-10 secretion, this was
still significantly greater than hADM 1 and the unstimulated control. Finally, TGF-β was
measured, but the concentrations observed in the supernatant were very low (Figure 4G).
Significantly higher levels of TGF-β were observed only in cell culture supernatants from
PBMC incubation with hADM 2 at 48 h and hADM 3 at 72 h time points (Figure 4G).
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Figure 4. Method of hADM preparation induces differential cytokine secretion in vitro. Healthy donor PBMCs were
co-incubated alone or with hADMs for 1, 2, or 3 days. Supernatants were collected, and ELISA was performed on 100 uL
fractions. (A–E) Pro-inflammatory and (F,G) Anti-inflammatory cytokine and growth factor concentrations. Results
expressed as medians + interquartile range. Two-tailed Wilcoxon matched-pairs signed-rank test used for (A–G) n = 6 with
2 technical replicates. * p = 0.05, ** p = 0.01.

Ultimately, our results demonstrate the broad pro-inflammatory profiles associated
with PBMCs co-incubated with hADMs 2 and 3 in regard to IFNγ, IL-1β, IL-6, TNF and IL-
17. Contrasting, hADM 1 possessed an attenuated inflammatory cytokine profile. Finally,
anti-inflammatory IL-10 levels were high for hADM 2 and moderate for hADM 3, while
low in hADM 1 and the control.

3.5. hADM Apical Architecture Is Differentially Extracted by Prepatory Method

The dermal layers of the skin are mainly composed of different types of collagen
fibers [46,47]. Furthermore, it is well established that immune cells may change collagen
architecture by the release of proteolytic enzymes, such as metalloproteinases [17,48,49].
Therefore, having found significant differences in the immune responses to differentially
manufactured novel abdominoplasty skin-derived hADMs, we next wished to analyze the
influence of immune cells on the extracellular matrix structure, namely collagen architecture
(Figure 5).

First, we found no visible differences in the structures of all three analyzed hADMs
after coincubation with PBMCs (Figure 5A). PBMCs were located on the apical portion of
hADMs and did not penetrate to the deeper layers of the matrix. Interestingly, in the apical
site, fragmentation of collagen IV was observed. Moreover, we found the co-localization of
mononuclear cells with collagen IV fragments, suggesting phagocytosis of released fibers
(Figure 5A). Next, we quantified type I, III and IV collagens after hADM coincubation
with PBMCs relative to hADMs incubated alone (Supplementary Figure S6). Interestingly,
we observed slight but significant differences in the density of various collagen fibers
in all three analyzed time points, namely at 24, 48 and 72 h. The presence of collagen I
was lowest in hADM 2 compared to analyzed counterparts in all analyzed time points,
while hADM 3 presented the highest content of collagen I after 24 and 72 h incubation. In
contrast, collagen III was higher in hADM 1 at 24 h and further decreased at 48 and 72 h
when compared to hADM 3. Again, hADM 2 showed the lowest density of collagen III
fibers after incubation in the presence of PBMC among analyzed matrices. In contrast, no
differences were observed in the density of collagen IV among analyzed hADMs at 24 h,
while at 48 h, hADM 2 showed a slightly higher level of this collagen. However, at 72 h,
the collagen IV level in hADM 1 was lower when compared to hADM 2.
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Figure 5. Collagen fibers are retained after coincubation with PBMCs. hADMs were examined
confocally after fluorescence-conjugated antibody staining for collagens I, III and IV. Quantifications
are derived from focused z-stack photographs using whole channel fluorescence. (A) Images for
collagens I, III and IV can be seen for each hADM and in 3 separate channels as well as merged
together. MERGE: combined representation of channels 1–3, detailed below. Channel 1 (DAPI): cell
nuclei staining via DAPI using a 405 nm laser. Channel 2 (ECM): autofluorescent collagen fibers and
ECM using a 488 nm laser. Channel 3 (specific collagen): specific collagen fibers were stained using
a primary and subsequently a secondary fluorescence-conjugated antibody using a 647 nm laser.
Process of acquisition and analysis described fully in Materials and Methods section. (B) Comparison
of collagens in PBMC co-incubated hADMs vs. hADMs without cell culture. Z-stack sections had
their absolute fluorescences divided by control sections. Quantification formula can be seen in the
Materials and Methods section. Results expressed as medians + interquartile ranges. Two-tailed
Wilcoxon matched-pairs signed-rank test used for B. n = 3 with 2 technical replicates; * p < 0.05,
** p < 0.01, *** p < 0.001. All scale bars represent 50 µm.
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Here we showed differences in collagen retention in PBMC co-incubated hADMs,
finding that collagen I was extracted in hADM 2 at all time points. Further, we found
differences in the extraction of collagen III, noting slight extraction of hADM 1 over time.
hADM appeared to possess slight collagen III depositions, but this still ultimately left it
with the lowest collagen III concentration at 72 h. Finally, we examined collagen IV, finding
only small differences in its overall quantification, although significant fragmentation was
witnessed.

4. Discussion

Here we showed that similarly sourced but differentially manufactured novel human
abdominoplasty skin-derived ADMs possess different immunogenic and immunomodula-
tory properties. Furthermore, our results indicate the potentially favorable immunomodu-
latory properties of hADM 1, while hADM 2 and hADM 3 seem to be more immunogenic,
notably characterized by high inflammatory cytokine profiles.

The preparation of biological scaffolds, including ADMs, aims to remove all cellular
and nuclear components from tissue while preserving the three-dimensional ultrastructure
of the ECM. In fact, decellularization procedures should be balanced to preserve the
delicate structure of the scaffold and remove all unwanted components that may trigger
strong inflammatory reactions [50,51]. Notably, these residual components, including
nucleic acids, may act as danger-associated molecular patterns that stimulate pattern
recognition receptors of the innate immune system, such as toll-like receptors (TLR9),
RIG-I-like receptors and AIM2-like receptors [52,53]. A greater quantity of matrix-bound
DNA (data presented in Supplementary Figure S7) partially explain the observed increased
inflammatory responses of hADMs 2 and 3 co-incubated PBMCs, including the proliferative
response of T cells monocyte activation and higher cytokine release. Moreover, it may
also explain the unexpectedly observed increase in the proliferation of hADM 2 and 3
co-incubated T cells when compared to unprocessed skin [54].

Nearly 80% of the ECM is composed of insoluble or hardly soluble proteins, mainly
collagen, which, upon application to the wound, serves as a scaffold for different cell sub-
sets [48,55–57] and improves healing potential [58]. Recent evidence shows that particular
compositional elements of the ECM can elicit immune cell activation, which in turn triggers
specific cytokine responses in vitro and in vivo [59–61]. These immune-modulatory prop-
erties may be induced by direct antigenic effects of ECM structure or released components,
including collagen fragments, laminin, hyaluronan, and integrins [60,62]. Notably, the use
of enzymes with proteolytic activity, such as trypsin and its modifications (as in hADM 3),
allows for the cleavage of proteins adherent to cells, thereby separating cellular contents
from the ECM. It has been shown that enzymatic decellularization is more destructive to
elastin and collagen fibers in comparison to ionic and non-ionic detergents, such as those
used in our study (sodium dodecyl sulfate (SDS) and Triton X-100, respectively) [63–67].
This ECM-extracting effect explains the observed higher immunogenicity of hADM 3 in
our study. On the other hand, however, the detergents modulate fibrillar collagen structure,
which may result in decreased mechanical strength of the end product [68–70]. SDS is
an anionic detergent that effectively extracts and denatures proteins, allowing for the
efficient removal of cellular and antigenic contents of processed tissue [71–73]. In addition,
SDS has been shown to reduce soluble collagen content by alteration of its molecular
structure, bringing it to the point of insolubility [74]. In contrast, Triton X-100 disrupts
DNA-protein, lipid-protein, and lipid-lipid interactions while maintaining the native struc-
ture of ECM [75,76]. It is believed that the use of both ionic and non-ionic detergents
decreases the immunogenicity of decellularized grafts [63,77]. Similarly, in our study, the
use of detergents allows for the manufacture of hADMs with relatively low immunogenic-
ity. However, the observed use of SDS seems to be more effective in the reduction in T cell
proliferation and cytokine release.

T cell responses are regulated by changes in the composition and function of T cell
subsets. They may be regulated by the induction of cellular plasticity (involving epigenetic
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machinery in response to microenvironmental changes) or induced in the process of antigen
presentation by antigen-presenting cells (such as monocytes/macrophages and dendritic
cells) [40,41,78,79]. In our study, we found no direct effect of novel human abdominoplasty
skin-derived ADMs on differential T cell subset composition. Therefore, we assumed that
our hADMs do not directly induce T cell plasticity.

Decellularization procedures can preserve ECM fragments that can regulate cell migra-
tion and modulate local inflammatory responses, improving graft integration with recipient
tissues and supporting healing mechanisms. In the wound bed, infiltrating monocytes and
dermal macrophages play a central role, orchestrating all steps of healing by (a) clearing the
wound from pathogens and debris; (b) releasing growth factors-guiding local progenitor
cells proliferation and differentiation; (c) producing inflammatory mediators-regulating
immune responses and inducing migration of immune cells and progenitor cells to the
wound; (d) releasing pro-angiogenic factors-ultimately regulating, both directly and indi-
rectly, tissue neovascularization; and (e) releasing ECM modulating enzymes-contributing
to scar maturation [45,79–81]. In addition, monocytes/macrophages have been shown to
therapeutically modulate pathological processes in hard-healing wounds and ulcers (such
as diabetic foot ulcers) treated with ADMs [31,82,83]. Therefore, the ideal dermal dressing
should target the pro-inflammatory function of monocytes and macrophages and induce
their reparatory properties, among others [84,85].

Peripheral blood monocytes constitute of three functionally distinct cell subsets,
namely (a) classical CD14++CD16− monocytes (non-activated cells with high phagocytic
activities that, upon activation by cytokines, chemokines, growth factors, the danger-
associated or pathogen-associated molecular patterns (DAMPS and PAMPS, respectively)
acquire CD16 expression); (b) intermediate (CD14++CD16+) monocytes (putative precur-
sors of alternatively activated macrophages referred to as M2 cells with high reparatory
and anti-inflammatory potential); and (c) non-classical (CD14+CD16++) monocytes (pu-
tative precursors of classically activated M1 macrophages with high pro-inflammatory
potential) [86,87]. Notably, in vitro monocyte maturation toward macrophages can be
induced by their adhesion to plastic or glass surfaces [88]. Similarly, in our study, mono-
cytes incubated without the presence of hADMs start their maturation process, which was
observed as a significant decrease in classical monocyte frequency and the subsequent
increase in CD16+ cells. It seems, however, that initially (at 24 h), our novel hADMs reduce
the activation and maturation of monocytes toward macrophage-like cells. However, in the
later time points, maturation was induced predominantly toward cells with reparatory and
pro-angiogenic potential, namely intermediate monocytes and Tie-2 expressing cells [45,89].
It is well established that the implementation of M2 macrophages to biomaterials improves
vascularization and healing more effectively when compared to M1-like cells [90–92].
However, to date, the mechanistic role of ECM components in monocyte differentiation
toward macrophages and their polarization remains elusive. Recent evidence shows that
decellularized ECM supports the generation of M2 monocyte-derived macrophages with
different CD23, CD163 and EGR2 expressions [31]. It seems that monocytes differentiate
on the surface of ECM and do not penetrate to its deeper layers [93]. Although this is also
broadly supported by our observations, in some contrast to previous reports, we found no
increase in the frequency of CD163-expressing monocytes. This may be associated with a
relatively short culture period and/or a different source of decellularized tissue. Moreover,
we found that the hADM surface is partially degraded by collagen IV release, which is
further digested by monocytes. In some contrast, collagen I and III seem to remain intact.

Finally, the distinct cytokine profiles induced by differential hADM production must
be acknowledged. Previously, an in vitro model of sterile tissue inflammation that induced
pro-inflammatory M1-like effects in macrophages was able to be abrogated by coincuba-
tion with an artificial dermal matrix composed of collagen and modified hyaluronan [94],
in addition to the aforementioned immunomodulatory effects witnessed in macrophage
interactions with integrins [61]. Therefore, the observed elevated inflammatory cytokine
expression in hADM 2 and 3 co-incubated PBMCs appears consistent with M1-like cell
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activation, providing a compelling future target in the deeper examination of modified
and/or extracted ECM components that may induce distinct immunomodulatory effects.
Taken together, we showed here that decellularization of human abdominoplasty skin
using anionic detergent (SDS) could be used for novel non-immunogenic hADM prepa-
ration (hADM 1). Given its high potential to induce monocyte polarization toward anti-
inflammatory/reparatory M2-like cells, hADM 1 represents a candidate who can serve as a
dressing for deep, hard-healing, and/or chronic wounds. However, further in vivo studies
are needed to elucidate its therapeutic potential. Moreover, there is still a substantial need
to better understand the effects of different decellularization procedures and the role of
constituent structural components of decellularized ECM regarding their ability to improve
wound healing processes.
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10.3390/pharmaceutics13122164/s1, Figure S1: Representative gating for T cell proliferation, Fig-
ure S2: T cell phenotype is not regulated by hADM coincubation, Figure S3: Representative gating
for extracellularly stained monocytes, Figure S4: hADMs do not induce differential T cell function,
Figure S5: Representative gating strategy for intracellularly stained monocytes, Figure S6: Repre-
sentative photos of ADMs without PBMC coincubation, Figure S7: Quantification of residual DNA,
Table S1: hADM decellularization protocols, Table S2: Antibodies used in flow cytometry, Table S3:
Antibodies used in confocal microscopy.
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Abbreviations

CFSE Carboxyfluorescein Succinimidyl Ester
ECM Extracellular Matrix
hADM Human-derived Acellular Dermal Matrix
IFNγ Interferon Gamma
IL Interleukin
LPS Lipopolysaccharide
MFI Mean Fluorescence Intensity
PBMC Peripheral Blood Mononuclear Cells
TGF-β Transforming Growth Factor Beta
Th1/17 T helper Types 1 or 17, respectively
TNF Tumor Necrosis Factor
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