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THE BIGGER PICTURE Understanding how different genomic attributes affect drug responses in cancer is
crucial for personalized oncology. Deep learning, an advanced computational method, has demonstrated
significant potential in identifying and predicting these intricate interactions. One such example is the
DeepDR model, which predicts how cancer cells respond to drugs. However, not all researchers have
the computational resources and programming expertise to leverage this potential. Here, we introduce shi-
nyDeepDR to bridge this gap by providing an intuitive and user-friendly web platform to access DeepDR. In
the broader scope, we envision that tools like shinyDeepDR will advance cancer research by making so-
phisticated computational models more FAIR (findable, accessible, interoperable, and reusable).

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Advancing precision oncology requires accurate prediction of treatment response and accessible prediction
models. To this end, we present shinyDeepDR, a user-friendly implementation of our innovative deep learning
model, DeepDR, for predicting anti-cancer drug sensitivity. The web tool makes DeepDRmore accessible to
researchers without extensive programming experience. Using shinyDeepDR, users can upload mutation
and/or gene expression data from a cancer sample (cell line or tumor) and perform two main functions:
"Find Drug," which predicts the sample’s response to 265 approved and investigational anti-cancer com-
pounds, and "Find Sample," which searches for cell lines in the Cancer Cell Line Encyclopedia (CCLE) and
tumors in The Cancer Genome Atlas (TCGA) with genomics profiles similar to those of the query sample to
study potential effective treatments. shinyDeepDRprovides an interactive interface to interpret prediction re-
sults and to investigate individual compounds. In conclusion, shinyDeepDR is an intuitive and free-to-use
web tool for in silico anti-cancer drug screening.
Patterns 5, 100894, February 9, 2024 ª 2023 The Author(s). 1
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INTRODUCTION

Understanding and predicting relationships between cancer

genomics and the response of cancer cells to anti-cancer

treatments are key to identify new therapeutic agents

and develop effective drug repurposing strategies. With the

advent of high-throughput sequencing techniques and drug

screening methods, global consortia have profiled the geno-

mics of thousands of pan-cancer cell lines and tumors, such

as the Cancer Cell Line Encyclopedia (CCLE)1 and The

Cancer Genome Atlas (TCGA),2 and systematically screened

hundreds of anti-cancer compounds, such as the Genomics

of Drug Sensitivity in Cancer (GDSC).3 These extensive data

resources have led to the development of advanced computa-

tional models that predict pharmacogenomic associations

between baseline (i.e., pretreatment) genomics of cancer

samples and their drug sensitivities. Given the complex and

non-linear nature of these pharmacogenomic patterns, likely

governed by both genetic and transcriptomic features,1,4

deep learning models are a viable approach for capturing

and predicting such relationships,5–11 as benchmarked by a

recent study.12

Our previously developed DeepDR model integrates gene

mutation and expression profiles of a cancer sample to predict

its response to all compounds in the GDSC library.5 The

model’s unique transfer learning design effectively integrates

drug screens of cell lines and genomics of tumors, enabling ac-

curate predictions of real-world therapy responses in

patients with cancer.5 It has since attracted extensive attention

among researchers.13–16 However, the implementation of deep

learning models, typically using Python, can pose significant

challenges for biomedical researchers with limited program-

ming expertise or computational resources. To the best of

our knowledge, PaccMann17 and DrVAEN12 are the only pub-

lished web servers that implement a deep learning drug

response predictor. Given that both tools rely on gene expres-

sion profiles for predicting anti-cancer drug sensitivity, their

capacity to encompass genetic context related to gene muta-

tions is constrained, which is yet pivotal in informing current

precision oncology practices.18 Furthermore, the tools were

developed solely by data of cell lines, thereby hindering

straightforward applications to tumor samples. Due to compu-

tational complexity, neither tool supports simultaneous predic-

tion of hundreds of compounds.

To address the unmet needs, here, we present shinyDeepDR,

aweb-based implementation of DeepDR designed for predicting

the sensitivity to a broad panel of 265 anti-cancer drugs. Built on

an R Shiny framework integrated with Python, HTML, and

JavaScript, shinyDeepDR performs deep learning computation

and enables interactive exploration of prediction results. Specif-

ically, our tool integrates mutation and gene expression features,

enables prediction of drug responses in both cell line and tumor

samples, delivers well-annotated prediction results, facilitates

user-friendly analyses, and compares predictions to real data

generated from drug screening. With two main query modules,

the goal of shinyDeepDR is to empower users to easily search

for potentially effective anti-cancer drugs for a cancer sample

(cell line or tumor) using mutation and/or expression data

(Figure 1).
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(1) Module 1 – Find Drug (core module) utilizes DeepDR to

predict the query sample’s response to 265 approved

and investigational anti-cancer compounds in the GDSC

library.

(2) Module 2 – Find Sample identifies cell lines or tumors from

the CCLE and TCGA databases with similar genomics

features to those of the query sample and examines their

real or predicted drug responses.

The query results are presented through an intuitive interface

consisting of interactive figures and data tables, allowing

straightforward downstream analyses, candidate prioritization,

and interpretation of results. In this descriptor, we showcase

the potential application of shinyDeepDR by studying a prevalent

‘‘undruggable’’ gene mutation in CTNNB1 and its frequently co-

occurring activation in MET in hepatocellular carcinoma (HCC).

Given the broad research interest in DeepDR and other deep

learning models, we expect that the introduction of shiny-

DeepDR could increase accessibility of deep-learning-based

drug response predictors and facilitate the development of

anti-cancer treatments. shinyDeepDR is freely accessible at

https://shiny.crc.pitt.edu/shinydeepdr/.
IMPLEMENTATION

DeepDR models, cancer genomics datasets, and drug
screening datasets
Full DeepDR model and associated datasets. The core of shiny-

DeepDR is the DeepDR model, our deep learning predictor for

drug sensitivity.5 In brief, the full DeepDR model takes sample-

paired mutation and gene expression data from a cancer sample

(cell line or tumor) as inputs and predicts the response to 265 po-

tential anti-cancer compounds included in the GDSC drug

screening library.3 As shown in Figure 1, DeepDR considers bi-

nary mutation status in 18,281 genes (1: missense and nonsense

mutations and frameshift insertions and deletions; 0: otherwise)

and continuous expression levels of 15,363 genes (log2[TPM+1]

values, where TPM denotes transcripts per million). As we

described in Chiu et al.,5 genomics data for cell lines and tumors

were downloaded from the CCLE/CTD19–21 and TCGA/

TumorMap databases,2,21 respectively. Drug sensitivity data

for cell lines were downloaded from GDSC.3 The multitask

output of DeepDR contains continuous IC50 values (on a log

[mM] scale) of 265 anti-cancer compounds for a cancer sample.

DeepDRwas trained with a two-step transfer learning approach.

Step 1 is ‘‘unsupervised pretraining’’ of an autoencoder on high-

dimensional mutation data (and another autoencoder on gene

expression data) using TCGA pan-cancer tumors (n = 9,059) in

order to capture tumor-relevant data representation. Step 2 is

‘‘supervised fine-tuning’’ to optimize features that predict drug

sensitivity by connecting the pretrained encoders (i.e., the

dimension-reducing component of an autoencoder) to a predic-

tion network and then training the entire network using drug

sensitivity data from GDSC (622 cell lines). An 80-10-10 partition

of cell lines was utilized for model training, validation, and

testing, respectively. Technical details of DeepDR, such as

data preprocessing, model construction, implementation,

benchmarking, and optimization of hyperparameters, were

described previously.5

https://shiny.crc.pitt.edu/shinydeepdr/


Figure 1. Server overview

shinyDeepDR is an R Shiny implementation of DeepDR, our deep learningmodel for predicting drug sensitivity.5 Givenmutations and/or gene expression profiles

in a cancer sample (human cell line or tumor), shinyDeepDR runs two main modules. ‘‘Module 1 – Find Drug’’ is the core function of shinyDeepDR that uses

DeepDR to predict the query sample’s response to 265 anti-cancer compounds. DeepDR has a transfer learning scheme that incorporates features of tumors and

cell lines (described and evaluated in Chiu et al.5). Thus, it is applicable to both tumors and cell lines. ‘‘Module 2 – Find Sample’’ searches for cell lines across the

Cancer Cell Line Encyclopedia (CCLE; n = 704) or tumors of The Cancer Genome Atlas (TCGA; n = 9,059) with similar genomics features to the query sample and

displays their drug response. We incorporate real drug response data of pan-cancer cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC; 265

compounds 3 704 cell lines) and predictions made by DeepDR, as well as predicted data of tumors (265 compounds 3 9,059 tumors) from our paper.5
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Simplified DeepDR models. Since sample-paired mutation

and expression data may not always be readily available, we im-

plemented two simplified DeepDRmodels: one takingmutations

alone, and the other taking gene expression alone. We evaluated

the performance of the full and two simplified models by per-cell

line and per-drug correlation coefficients in testing cell lines.

Since the simplified models generally performed less well than

the full model,5 for each simplified design, we trained 10 models

and implemented the best-performing one in shinyDeepDR.

Other datasets. For implementing module 2 of shinyDeepDR,

we used up-to-date gene mutation (binary status of 18,281

genes, as defined above) and expression data (15,363 log2

[TPM+1] values) in CCLE, downloaded from the Cancer Depen-

dency Map portal (https://depmap.org/portal/; v.22Q2). This

yielded a total of 704 cell lines. Drug annotation data were down-

loaded from the GDSC and PubChem22 databases.

R and web environment of shinyDeepDR
shinyDeepDR was implemented using R (v.4.2.1) and R Shiny

(v.1.7.2). Deep learning computation was performed by using

the R TensorFlow library (v.2.9.0) with a backend of TensorFlow

(v.2.10.0) in Python 3.8. Other main R libraries for data process-

ing and visualization included Plotly, Tidyverse, visNetwork, and
rcdk. shinyDeepDR is hosted on a high-performance computing

node at the Center for Research Computing of the University of

Pittsburgh. The machine is deployed on the VMWare infrastruc-

ture of the Center for Research Computing. The initial virtual

machine has 8 Intel cores and 64GBRAM. To accommodate po-

tential large usage, the computational resources, such as addi-

tional CPU cores or more memory, can be quickly increased

by re-deploying the Shiny app.

Implementation of ‘‘Module 1 – Find Drug’’
Module overview. Module 1 is the main query module of shiny-

DeepDR that predicts a cancer sample’s response to 265 anti-

cancer compounds of the GDSC library using a prebuilt

DeepDR model, taking mutations alone, gene expression alone,

or both data types. Since the DeepDRmodels were originally im-

plemented using Keras v.1.2.2, we updated all models to Keras

v.2.9.0 without changing the model parameters and imple-

mented them using the R TensorFlow library. When a user up-

loads a mutation and/or a gene expression profile, the tool

maps the input data to the requirements of DeepDR (mutations

of 18,281 genes and expression of 15,363 genes). Each un-

mapped gene, if any, is imputed by the median value across

the 622 cell lines used for constructing the DeepDR models.
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An interactive output interface is provided to summarize, sort,

search, analyze, and annotate the query sample’s predicted re-

sponses to 265 compounds.

Input data preparation. shinyDeepDR only supports human

genomics data. For mutation data, we recommend using

Mutation Annotation Format (MAF) files following the format of

cBioPortal23,24 or TCGA, which contains the columns ‘‘Hugo_

Symbol,’’ ‘‘Variant_Classification,’’ and ‘‘Tumor_Sample_Bar-

code.’’ For gene expression data, to minimize the number of un-

mapped genes, we recommend users generate their input data

following TCGA ‘‘mRNA Expression Workflow’’ with the ‘‘Orig-

inal’’ setting and GENCODE v.22 annotation. If FPKM (fragments

per kilobase of exon per million mapped fragments) values are

uploaded, shinyDeepDR provides a conversion tool to TPM us-

ing methods described in Pachter et al.25

Input sample type. The input interface allows users to specify

whether the sample under study is a cancer cell line or tumor in

order to provide appropriate reference ranges for predictions. If

the query sample is specified as a cell line, our tool provides the

ranges of real and predicted log(IC50) values for each drug

among 622 cancer cell lines and corresponding percentiles of

the predicted value for the query sample. If a tumor is specified,

the range and percentile are determined based on predicted re-

sponses to the drug across 9,059 TCGA tumors using the full

DeepDR model.

Drug-sample association networks. As one of the outputs, our

tool generates an interactive drug-sample-drug association

network to explore a given drug among the top predictions.

When a user selects a drug of interest, a network is created

with the drug being the hub, the 10 samples most sensitive to

the drug as the first-degree nodes, and the 10 most effective

drugs in each sample as the second-degree nodes. The network

is constructed using real GDSC data for cell lines and predicted

data for tumors by the full DeepDR model.

Implementation of ‘‘Module 2 – Find Sample’’
Module 2 is designed to supplement module 1 by identifying can-

cercell linesor tumors that share similar genomicsprofileswith the

query sample. Given a query sample and a specified sample type,

our tool searches through all 704cell lines of theCCLEor 9,059 tu-

mors of TCGA. The similarity between the query sample and sam-

ples in our database ismeasured and rankedby the Jaccard index

for mutated genes among 18,281 genes and by Pearson correla-

tion coefficients among 15,363 genes for gene expression data.

When sample-paired data are uploaded, the tool averages the

ranks of mutations and gene expression to determine the overall

ranking of CCLE or TCGA samples. Real and DeepDR-predicted

drug response data for CCLE samples, or predicted data for

TCGA samples, are displayed and can be interactively analyzed

as in module 1. The tool generates a sample-drug network to

show and analyze the drugs that were most effective among

CCLE or TCGA samples most similar to the query (Figure 1).

Implementation of a supplemental module for analyzing
predictions of TCGA samples with gene alterations
shinyDeepDR has a supplemental module, namely ‘‘Analyze

TCGA,’’ that provides easy access to pregenerated predictions

of drug responses across all TCGA samples as documented in

Chiu et al.5 The module enables users to explore the relationships
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between drug sensitivities and gene mutations or aberrant ex-

pressions.Users can interact with the tool by selecting the symbol

of a specific gene and the type of alteration of interest (mutated

vs. wild type, top 25% high expression vs. others, or bottom

25% low expression vs. others). The module identifies drugs

achieving significantly enhanced responses in tumors harboring

specific gene alterations in a pan-cancer or cancer-type-specific

manner. Statistical significance is assessed by the one-tailed t

test. Additionally, the tool supports the analysis incorporating

two genes by conducting a bivariate analysis that compares

drug responses among four sample groups, which are defined

by the presence or absence of the two gene alterations. This

extended analysis provides additional insights into the potential

interplay between the two genes and their impact on drug re-

sponses. Statistical significance is assessed by the one-way anal-

ysis of variance (ANOVA) test. The results generated by the mod-

ule are presented through a comprehensive data table and

boxplots, enabling users to explore the specific drug responses,

associated statistical information, and results interpretation.

RESULTS

shinyDeepDR usage
shinyDeepDR is an interactive web tool that provides a user-

friendly platform to identify and study drugs that may be effective

in a cancer sample by using our deep learning predictor

(DeepDR) and leveraging high-throughput screening data (Fig-

ure 2A). To begin the analysis, a user can simply upload a muta-

tion profile (MAF file or copy-and-paste list of mutated genes)

and/or a gene expression profile (TXT file) of a human sample,

either a cell line or tumor (patient-derived model or research tu-

mor sample) (Figure 2B). The input interface allows users to

specify whether the sample is a cell line or tumor in order to

use appropriate databases and reference ranges. Module 1

runs DeepDR and generates the response to 265 potential

anti-cancer compounds. Empowered by the transfer learning

design, DeepDR is capable of predicting drug response in both

cell lines and tumors.5 The output interface contains interactive

figures, networks, and tables to inform drug prioritization; refer-

ence ranges derived from real and predicted responses within

CCLE (n = 622) or TCGA (n = 9,059) samples; cancer type/sub-

type analyses; drug structure visualization and drug annotations

(such as mechanism of action, stage of clinical development,

and PubChem information); and drug-sample associations (ex-

amples in Figure 2C). Module 2 was specifically designed to

complement the information provided by module 1. Its objective

is to identify cancer samples in our database (cancer cell lines in

CCLE or tumors in TCGA) that exhibit genomics profiles compa-

rable to the query sample and then analyze the samples’ sensi-

tivities to drugs. Output panels include prioritization of similar

CCLE or TCGA samples, detailed clinical information of the sam-

ples, and an interactive network to visualize which drugs may be

effective in these samples. Comprehensive documentation, help

information regarding each input and output panel, and exam-

ples are provided with the web tool.

Performance evaluation
The shinyDeepDR web server is highly efficient. Running each

module takes about 10 s. In our publication providing details
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Figure 2. Server usage

(A) Screenshots of the homepage. The homepage provides a concise summary of our tool and the datasets used, as well as links to the main and supplemental

modules. Users can test eachmodule by using our built-in example files. A detailed usermanual and figure/table legends are provided alongwith individual output

panels and in the help pages.

(B) Screenshots of the input interface. shinyDeepDR takes the inputs of gene mutation (users can input a list of mutated genes into the text box or upload an MAF

file) and/or expression profiles (a TXT file) of a cancer sample. Users can specify the sample type (cell line or tumor) to use appropriate reference ranges for

prediction results, as well as the data type and normalization of gene expression data.

(C) Screenshots of the output panels. Query results are presented via a user-friendly interface of interactive figures and networks, as well as easy-to-use data

tables, enablingmeaningful downstream analyses and interpretation of results.We also provide detailed clinical and biochemical annotations to cell lines, tumors,

and drugs in the tool.
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for DeepDR,5 we systematically evaluated prediction perfor-

mance using hold-out cancer cell lines by multiple measures,

including mean squared errors in drug response and per-cancer

cell line correlation coefficients between real and predicted data

(Pearson and Spearman correlation coefficients, 0.74–0.95 and
0.70–0.92, respectively; Table S1). Results with DeepDR were

markedly improved over conventional methods, including linear

regression, support vector machine, and alternative deep

learning models trained either with cell lines alone without trans-

ferring features learned from tumors or using principal
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Figure 3. Application of shinyDeepDR to study CTNNB1 mutations

in TCGA

(A) Top-predicted drugs effective againstCTNNB1mutations in hepatocellular

carcinoma (HCC). shinyDeepDR was applied to 356 HCC tumors in TCGA

(TCGA-LIHC). Results for four drugs with significantly increased sensitivities

(smaller IC50 values) inCTNNB1-mutatedHCC tumors compared to other HCC

samples are shown. Statistical significance was assessed by a one-tailed t

test. Detailed results of all nine drugs with statistically significant results

(p < 0.0001) are summarized in Table S3. This plot can be generated with the

‘‘Analyze TCGA’’ module of shinyDeepDR by selecting the ‘‘LIHC: liver hepa-

tocellular carcinoma’’ project and the ‘‘CTNNB1_mut’’ gene alteration. We

edited the output plot using the Adobe Illustrator software to ensure the visual

quality for the publication purpose.

(B) Validation of MET-modulated response to rapamycin in CTNNB1-mutated

tumors. Pan-cancer tumors harboring CTNNB1 mutations were studied for

their sensitivity to rapamycin, with or without activatedMET. Activation of MET

was determined by the 75th percentile of its expression levels across all TCGA

tumors. Statistical significance was determined by a one-tailed t test. To

generate the figure, a user can utilize the same module of shinyDeepDR,

configuring it for a pan-cancer analysis (‘‘PanCan’’) with two gene alterations of

interest set as ‘‘CTNNB1_mut’’ and ‘‘MET_exp_high.’’ In order to assess the

statistical significance between the two groups using a one-tailed t test instead

of the ANOVA provided by the tool, the results table together with sample

groups can be downloaded from our tool, and a subsequent statistical test can

be performed using user-friendly software such as Microsoft Excel or Prism.
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components to replace encoder outputs. Furthermore, we vali-

dated the predictions with real-world clinical data from patients,

such as an approved estrogen receptor agonist (tamoxifen) for

breast cancer, approved drugs targeting the EGFR mutations

(afatinib and gefitinib) for non-small cell lung cancer, and an
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investigational compound, CX-5461, for the potential to treat he-

matopoietic malignancies. To enable the tool’s use for samples

with only single-omics data (mutation or gene expression), we

have implemented the two best-performing simplified DeepDR

models in shinyDeepDR (see implementation). We confirmed

that their per-cell line performance was comparable to that of

the full model that takes both data types (Table S1). Additionally,

we evaluated the performance with respect to individual drugs

obtained in the full and simplified models (Table S2) and pro-

vided those results on the web server, along with prediction

results.

Case study 1: Identifying potential treatments for
CTNNB1-mutated HCCs
HCC is the most dominant type of liver cancer in adults and ac-

counts for �90% of all primary liver tumors. Liver cancer is the

only cancer type that continues to show increased incidence

and mortality rates in both men and women in the United

States,26 indicating an urgent need to identify better therapeu-

tic targets.27 Unfortunately, one of the most prevalent muta-

tions in HCC—CTNNB1 that encodes b-catenin—remains un-

druggable.28,29 As a case study, we used shinyDeepDR to

predict drug sensitivity among HCC samples in TCGA (TCGA-

LIHC; n = 356) to identify potential therapeutic targets for b-cat-

enin. For each tumor, shinyDeepDR predicted response to 265

compounds using the full DeepDR model. These prediction re-

sults are made available to users through a supplemental query

module (‘‘Analyze TCGA’’) of shinyDeepDR. We identified nine

drugs that were significantly more effective in tumors harboring

CTNNB1 mutations (n = 92) compared to others (n = 264) (one-

tailed t test, p < 0.0001; Figure 3A; Table S3). These drugs

target critical cancer pathways, such as cell apoptosis (navito-

clax, a Bcl-2 inhibitor, and serdemetan, a p53 activator);

EHMT2 and chromatin histone methylation (UNC0638); RTK

(GW-441756 and SB52334) and PI3K/Akt (TGX-221) signaling

pathways; and DNA-dependent protein kinases (NU-7441).

Since CTNNB1 mutations are considered undruggable, target-

ing synthetic lethal interactions may represent a promising ther-

apeutic strategy.30,31 Indeed, our prediction identified signaling

pathways that are functionally relevant to the WNT/b-catenin

pathway. For instance, RTK signaling, which may induce

PI3K/Akt signaling,32 alternatively activates b-catenin and could

be a potential therapeutic approach for treating subsets of can-

cers driven by aberrant b-catenin activation.33 Additionally,

UNC0638 is an inhibitor of EHMT2, another key gene that acti-

vates the Wnt/b-catenin signaling pathway in HCC.34 Of note,

navitoclax was significantly more effective in CTNNB1-mutated

cancer cells in an earlier drug screening study by the Broad

Institute, namely the Cancer Therapeutics Response Portal

(CTRP).35 Taken together, our analyses revealed known drugs

and identified promising candidates that warrant further

in vitro and in vivo investigations.

Case study 2: Verifying the modulatory effect of MET on
the response of CTNNB1-mutated tumors to rapamycin
Co-occurring alterations in CTNNB1 mutations and Met activa-

tion represent approximately 11% of HCC cases, according to

our re-analyses of TCGA and French cohorts.36,37 To devise

therapeutic strategies for this co-occurrence, we previously
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established murine HCC models that co-expressed clinically

relevant mutant-CTNNB1 and human MET using sleeping

beauty transposon/transposase and hydrodynamic tail vein in-

jection.38 In these mice, HCC burden decreased significantly

after rapamycin treatment, which inhibits mammalian target of

rapamycin (mTOR). Furthermore, combination therapy of rapa-

mycin and GC-1 (a coincidental Met inhibitor) led to an even

stronger response.38 To verify this finding in human tumor

data, we predicted the response of CTNNB1-mutated tumors

to rapamycin and explored the association with MET. Because

of the limited sample size for such a bivariate analysis, we

expanded the analysis to the pan-cancer scale (TCGA; n =

9,059). We used the supplemental query module of shiny-

DeepDR to perform an integrative analysis of predicted drug

responses of tumors with gene expression data. The analysis re-

vealed that CTNNB1-mutated tumors with medium-to-low MET

expression (below 75th percentile; n = 228) would respond

significantly better than those with highly expressed Met (n =

54) (one-tailed t test, p = 0.0031; Figure 3B). Thus, data from

our tool provide additional evidence of the interplay of CTNNB1

and MET with mTOR, as well as the impact of that interplay on

treatment response.
DISCUSSION

To our knowledge, shinyDeepDR is the first web tool that inte-

grates cancer mutation and gene expression features to predict

and inform drug responses for both cell line and tumor samples.

The R Shiny framework offers a user-friendly and efficient inter-

face for interactive visualization and analysis. It provides in-

terpretable and thoroughly annotated results, as well as cross-

references to existing drug screening data. Our case studies

demonstrate that shinyDeepDR produces meaningful predic-

tions and unveils promising targets for an undruggable gene mu-

tation in HCC, aligning consistently with findings from in vivo

models. We anticipate that the tool will further enhance with

the introduction of newly developed deep learning architec-

tures10 or expansive compound libraries, such as the Profiling

Relative Inhibition Simultaneously in Mixtures (PRISM).39

Although shinyDeepDR offers a useful platform for predicting

anti-cancer drug responses using deep learning, it is crucial to

recognize its limitations. The performance of the tool is intrinsi-

cally linked to the quality of the input datasets. The model was

trained and tested using large-scale genomics data from

TCGA and CCLE, which adhere to standardized protocols and

rigorous quality standards.1,2 Suboptimal data quality can

potentially undermine the prediction accuracy. The present

version of DeepDR and shinyDeepDR focuses on gene expres-

sion and mutation data and might not encompass all factors

affecting drug responses. Continued research is warranted to

create a comprehensive approach that integrates key biological,

environmental, clinical, and other omics factors to enhance the

predictions. Currently, shinyDeepDR is intended solely for

research purposes, as explicitly stated on the website. While

our tool prioritizes data privacy by not storing user-uploaded da-

tasets, the accountability for ethical data management falls upon

the end users. The prediction results should not be used for clin-

ical interpretation or decision-making.
EXPERIMENTAL PROCEDURES

Resources availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Yu-Chiao Chiu (yuc250@pitt.edu).

Materials availability

This study did not generate any new materials.

Data and code availability

shinyDeepDR is freely accessible at https://shiny.crc.pitt.edu/shinydeepdr/

without a login requirement. Results are displayed directly on the website,

and users do not need to provide an e-mail address or contact information.

All codes and data of shinyDeepDR are deposited in Figshare (https://doi.

org/10.6084/m9.figshare.23925255).40 Python codes and results of the

DeepDR model can be downloaded from our publication5 and GitHub repos-

itory (https://github.com/chenlabgccri/DeepDR). All cell line and tumor geno-

mics, drug screening data, and drug annotation data are publicly available at

the sources described in the implementation section and in cited references.
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