

Mediators of Inflammation, 7, 79-84 (1998)

PROSTAGLANDIN (PG) D₂, PGJ₂ and Δ^{12} -PGJ₂ are antiproliferative eicosanoids. We investigated the production of PGD₂ by murine bone marrow-derived mast cells (BMMC) taking into consideration metabolism of PGD₂ to PGD₂ and Δ^{12} -PGJ₂. PG-metabolites were quantified by high performance liquid chromatography (HPLC) combined with radioimmunoassay (RIA). Stimulated with calcium ionophore A23187 BMMC released eight-fold more PGJ₂ and Δ^{12} -PGJ₂ than PGD₂. Conversion of endogenously produced PGD₂ to PGJ₂ and Δ^{12} -PGJ₂ proceeded rapidly in contrast to metabolism of exogenously added PGD₂. The antiproliferative potency of these prostaglandins is demonstrated *in vitro*. We conclude that determination of PGD₂ production by mast cells must take into consideration rapid conversion to active derivatives, which may play a significant role in growth regulation.

Key words: Prostaglandin D_2 , Prostaglandin $J_2,\,\Delta^{12}$ Prostaglandin $J_2,\,$ Cyclopentenone, Anti-proliferative activity, Mast cell

Release of prostaglandin D₂ by murine mast cells: importance of metabolite formation for antiproliferative activity

C. Haberl,^{1,CA} L. Hültner,² A. Flügel,³ M. Falk,^{1,2} S. Geuenich,¹ W. Wilmanns^{1,2} and C. Denzlinger⁴

¹Medizinische Klinik III, Klinikum Groβhadern, Ludwig-Maximilians-Universität, ²GSF Zentrum für Umwelt und Gesundheit, D-81377 München, ³Max-Planck-Institut für Psychiatrie, D-82152 Martinsried, and ⁴Medizinische Klinik, Abteilung II, Eberhard-Karls-Universität, D-72076 Tübingen, Germany

^{CA}Corresponding Author Tel: (+ 49) 89 7095–1 Fax: (+ 49) 89 7095–8875

Introduction

Prostaglandin (PG) D₂ and its metabolites PGJ₂ and Δ^{12} -PGJ₂ are potent antiproliferative eicosanoids.¹ The concentrations of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ required for regulation of cell proliferation in vitro are in the micromolar range.¹ The high molar activity suggests that these lipid mediators may play a role in the regulation of cell proliferation in vivo and that, on the other hand, this principle may be used in anti-tumour therapy. In fact, the related chemically stabilized prostanoid Δ^7 -PGA₁ has been proposed for clinical studies.² PGD₂ may also represent a component in natural anti-neoplastic defence. Mast cells are regarded as major sources of endogenous PGD₂ production. Murine bone marrow-derived mast cells (BMMC) have been reported to produce 15-120 pmol PGD₂ per million cells during 10-30 min of incubation following different kinds of stimulation.^{3,4} However, these apparently low production rates of PGD₂ are unlikely to exert major biological effects in vivo.

We hypothesized that the reported PGD₂ production rates underestimate biosynthesis of this mediator, because PGD₂ can be converted to other active metabolites including antiproliferative PGJ₂ and Δ^{12} -PGJ₂. These cyclopentenone prostanoids have been shown to occur in aqueous media, blood plasma and urine.¹

0962-9351/98/020079-06 \$9.00 © 1998 Carfax Publishing Ltd

In the present study PGD₂ and its metabolites were detected and quantified in supernatants from murine mast cells by combined use of high performance liquid chromatography (HPLC) and radioimmunoassay (RIA) analysis. The antiproliferative potencies of PGD₂ and its derivatives PGJ₂ and Δ^{12} -PGJ₂ were evaluated testing the effect of these PGs on [³H]-thymidine incorporation into human myelocytic (HL-60), monocytoid (THP-1, U937) and lymphoid (Burkitt, Raji) cell lines and on MIT-conversion by murine bone marrow-derived mast cells (BMMC) and IL-3-dependent and autonomous mast cell lines.

Materials and Methods

Chemicals

Unlabelled PGD₂, PGJ₂, Δ^{12} -PGJ₂, LTC₄, LTD₄ and LTE₄ were from Paesel & Lorei, Frankfurt, Germany, 5,6,8,9,11,12,14,15-[³H]-PGD₂ (3,7 MBq/ml), 14,15-[³H]-LTC₄, -LTD₄, -LTE₄ (925 kBq/ml), [1-¹⁴C]-arachidonic acid (AA) (1,85 MB/qml), PGD₂-RIA-kit, and [methyl-³H]-thymidine ([³H]-T) (37 MBq/ml) were from Amersham-Buchler, Braunschweig, Germany. Calcium-ionophore A23187, indomethacin, 4-hydroxy-2,2,6,6,-tetrametylpiperidine-I-oxyl (HTMP) and gelatine from porcine skin (300 bloom) were from Sigma, St Louis, MO, USA. 3-(4,5-dimethyl-2- thiazolyl)- 2,5-diphenyl-2Htetrazolium-bromid (MIT) was from Serva, Heidelberg, Germany. Fetal calf serum (FCS) and RPMI 1640 were from Biochrom, Berlin, Germany. The other chemicals used were purchased from Merck, Darmstadt, Germany and were at least of analytical grade.

Cells and cell lines

Primary polyclonal BMMC were generated in cultures of murine (BALB/c) bone marrow cells supplemented with pokeweed mitogen-activated spleen cell-conditioned medium (SCM) as previously described.⁵ Briefly, murine bone marrow cells $(1 \times 10^5/\text{ml})$ were grown in RPMI-1640 medium supplemented with 20% FCS, 20% SCM, 2 mM L-glutamine, 100 U/ml penicillin-streptomycin and 10^{-4} M α -thioglycerol. When propagating non-adherent bone marrow cells in this culture medium with weekly refeeding, homogenous populations of mast cells could be obtained within a period of 3 to 8 weeks. Mast cells used for analysis of eicosanoid production were 21-55 days ex vivo (33 ± 10 days; mean ± standard deviation (SD)). IL-3-dependent long-term cultured mast cell lines were derived from BMMC.⁵ A growth factor independent malignant autonomous mast cell line was derived from an IL-3-dependent long term cultured mast cell line.⁶

A human myeloid leukaemic cell line (HL60)⁷ was cultured in RPMI 1640 containing 15% FCS and 100 U/ml penicillin-streptomycin. Human monocytic (THP-1)⁸ and histiocytic (U937)⁹ cell lines were cultured in RPMI 1640 with 10% FCS and 100 U/ml penicillin–streptomycin. Human Burkitt¹⁰ and Raji¹¹ lymphoma cell lines were cultured in RPMI 1640 containing 10% FCS and 100 U/ml penicillin–streptomycin. HL60-, THP-1-, U937-, Burkitt and Raji lymphoma cell lines were obtained from the American Type Culture Collection (Rockville, MD, USA). Cells were cultured at 37°C under humidified atmosphere with 5% (mast cells) or 10% CO₂.

Determination of prostaglandin and leukotriene production

For analysis of radioactive AA-metabolites 5×10^7 of BMMC were prelabelled with [¹⁴C]-AA (18.5 kBq/ml) for 48 h. Cells were washed twice and resuspended in PBS (10⁷ cells/ml) containing gelatine (0.5 mg/ml) or in culture medium (RPMI 1640 with 20%FCS). After a 5-min period of preincubation, cells were incubated with or without calcium ionophore A23187 (0.2 μ M) at 37°C. Incubation was stopped by centrifugation (10 min at 4°C and 600 × **g**). For deproteinization supernatant and pellet were seperated and added to 8 volumes of 90% aqueous methanol containing 0.5 mM

EDTA and 1 mM HTMP, pH 7.4. HTMP was used for stabilization of lipid mediators. The suspensions were stored at -40° C for at least 12 h and then centrifuged (20 min at -10° C and 9000 \times g). Supernatants were evaporated to dryness in a centrifuge under low pressure (Speed Vac, Savant, Farmingdale, NY, USA) and redissolved in 30% aqueous methanol containing trace amounts of unlabelled PGD₂, PGJ₂ and Δ^{12} -PGJ₂.

[¹⁴C]-AA-metabolites were seperated by HPLC performed on a C18 Hypersil column (4.6 × 250 mm, 5 µm particles; Shandon, Runkorn, UK) with a C18 precolumn (Waters, Milford, MA, USA). The mobile phase consisted of methanol, water, acetic acid (65:35:0.1 by volume), pH4.0 adjusted with ammonium hydroxide. The flow rate was 0.4 ml/min. After a 45 min period the methanol concentration in the solvent was gradually increased to 100% Metabolites were detected by liquid scintillation counting (HPLC radioactivity monitor LB 507 A; Berthold, Wildbad, Germany). [¹⁴C]-AA-metabolites (PGD₂, PGJ₂ and Δ^{12} -PGJ₂) were identified by comigration with unlabelled standards as detected at 220 nm (Spectrophotometer, Waters, Milford, MA, USA).

Analysis of prostaglandin and leukotriene production by unlabelled mast cells was performed by sequential use of HPLC and RIA. BMMC were washed twice and resuspended in PBS (0.5 mg/ml gelatine) at a concentration of 10^6 cells/ml. Incubation and deproteinization were performed as described above. Samples were redissolved in 30% aqueous methanol containing trace amounts of [³H]-labelled PGD₂ or LTC₄, LTD₄ and LTE₄ standards.

The mobile phase of HPLC for routine prostaglandin analysis consisted of methanol, water, acetic acid (65:35:0.1 by volume), pH 4.0 adjusted with ammonium hydroxide (flow rate: 0.4 ml/min). For confirmation of the identity of endogenously produced PGD₂ metabolites, additional solvent systems were used: acetonitrile, water, acetic acid (40:60:0.1 by volume), flow rate: 0.4 ml/min and acetonitrile, water and acetic acid (50:50:0.1 by volume), flow rate: 0.5 ml/min. The mobile phase for routine leukotriene analysis consisted of methanol, water, acetic acid (65:35:0.1 by volume), pH 5.6 adjusted with ammonium hydroxide (flow rate: 1.0 ml/min). HPLCfractions were collected in 0.5-min intervals. An aliquot of these fractions was counted for tritium radioactivity to determine retention time of [³H]-standards. Another aliquot was stored at – 20°C under argon for further analysis by RIA.

The commercial [³H]-PGD₂-RIA (Amersham Buchler, Braunschweig, Germany) of HPLC-fractions was performed as described by the manufacturer. We determined cross-reactivies of PGJ₂- and Δ^{12} -PGJ₂ to be 7% and 24%, respectively. The [³H]-cysteinyl leukotriene-RIA was performed as described earlier.¹²

Determination of metabolism of [³H]-PGD₂

Metabolism of $[{}^{3}H]$ -PGD₂ to $[{}^{3}H]$ -PGJ₂ and $[{}^{3}H]$ - Δ^{12} -PGJ₂ was determined by HPLC following incubation of $[{}^{3}H]$ -PGD₂ (3.7 kBq/ml) for 0 min to 24 h in phosphate buffered saline (PBS) or in culture medium. Controls in PBS were performed with and without BMMC (10⁶ cells/ml) and with and without gelatine (0.5 mg/ml). Preparation of samples for HPLC was performed as described for analysis of endogenous PG-production including the deproteinization procedure. Retention times of $[{}^{3}H]$ -PGD₂ and its metabolites were established as described for analysis of [¹⁴C]-AA metabolites.

Proliferation assays

Cells were incubated for 24 h with or without PGD₂, PGJ₂ and Δ^{12} -PGJ₂ at concentrations of 10 nM to 0.1 mM. [³H]-T uptake into cells was used as a parameter of DNA-replication and cell proliferation. After 24 h of incubation in the presence of $[^{3}H]$ -T in microtitre plates (37 kBq/well) cells were collected on glassfibre filters by a cell harvester (Canberra-Packard, Dreieich, Germany) and radioactivity associated with the washed and dried filters was quantified with a Matrix 96 counter (Canberra-Packard, Dreieich, Germany) as β -counts. Alternatively, a colorimetric proliferation assay, the MIT-test, was used as described.⁵ Briefly, cultured cells in microtitre plates were incubated for 4h with MIT. Incubation was stopped with acidified isopropanol. Optical density (OD) was detected in a ELISA-reader (SLT, Salzburg, Austria) at a test wave length of 550 nm and a reference wave length of 690 nm. Results are shown as OD 550-690 values.

Results

Mast cells release PGD₂ that is rapidly converted to PGJ₂ and Δ^{12} -PGJ₂

Following labelling with [¹⁴C]-AA and stimulation with calcium ionophore A23187 BMMC released [¹⁴C]-AA and small amounts of its metabolites comigrating on HPLC with LTC₄, PGD₂, PGJ₂ and Δ^{12} -PGJ₂ (not shown). In addition a number of unidentified metabolites were formed.

Release of unlabelled PGD₂, PGJ₂ and Δ^{12} -PGJ₂ by BMMC was quantified by combined use of HPLC and RIA. PGD₂, PGJ₂ and Δ^{12} -PGJ₂ were detected in samples stimulated with A23187 ($0.2 \,\mu$ M) for 30 min (Fig. 1). The total concentration of these mediators amounted to $153.6 \pm 78.4 \text{ pmol}/10^6 \text{ cells } (n = 4)$ (Fig. 2). The relative quantities of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ were $11 \pm 8\%$, $53 \pm 18\%$ and $36 \pm 17\%$ (*n* = 4, mean SD), respectively (Figs. 1 and 2). The ± A23187-stimulated release of PGD₂, PGJ₂ plus Δ^{12} -PGJ₂ was 169% ± 14% of the unstimulated samples $(n = 3, \text{mean} \pm \text{SD})$ (Fig. 2).

FIG. 1. PGD₂ and its metabolites detected by [³H]-PGD₂-RIA in HPLC fractions of a supernatant of BMMC. BMMC were stimulated with calcium ionophore A23187 (0.2 μ M). Supernatants were separated by HPLC and HPLC-fractions were analysed by RIA. Retention times of authentic PGD₂, PGJ₂ and Δ^{12} -PGJ₂ standards are indicated by arrows.

FIG. 2. Endogenous production of PGD₂, PGJ₂, Δ^{12} -PGJ₂ and of total of these prostaglandins (PGD₂ + metab.) and of LTC₄. BMMC were suspended in PBS with (+) or without (-) calcium ionophore A23187 (0.2 μ M) for 30 min at 37°C. Results are given as mean \pm SD or range of two to 10 independent experiments (number in parenthesis).

FIG. 3. Metabolism of [³H]-PGD₂ in PBS (A) and culture medium containing FCS (B). After incubation of [³H]-PGD₂ in PBS or culture medium, samples were processed as described in the Methods section. [³H]-PGD₂ and its metabolites were detected by continuous radiodetection in the HPLC eluate. [³H]-PGD₂ (\blacksquare), [³H]-PGJ₂ (\blacktriangle) and [³H]-A¹²-PGJ₂ (\blacksquare) were identified by comigration with authentic unlabelled standards. [³H]- Δ ¹²-PGJ₂ could only be detected in culture medium containing FCS.

The identity of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ released in the supernatant by BMMC was confirmed by comigration with authentic [³H]-labelled PGD₂ and authentic unlabelled PGD₂, PGJ₂ and Δ^{12} -PGJ₂ with varying mobile phases and flow rates as described in the Methods section (data not shown).

 PGD_2 is spontaneously metabolized to PGJ_2 and $\Delta^{12}\text{-}PGJ_2$

PGD₂ was metabolized to PGJ₂ in PBS. Further metabolism to Δ^{12} -PGJ₂ occurred in culture medium containing FCS (Fig. 3). Following 30 min of incuba-

tion in PBS or culture medium 19% or 33% of $[{}^{3}\text{H}]$ -PGD₂ were metabolized, respectively. The half-life of PGD₂ was more than 10 h in PBS and 3 h in culture medium. Metabolism of extracellular PGD₂ was not altered in the presence of 10⁶ BMMC per ml. Gelatine (0.5 mg/ml) had also no effect on PGD₂ metabolism. The procedures of sample preparation had no influence on recovery or metabolism of PGD₂.

BMMC produce large amounts of LTC₄

Following 30 min of incubation, BMMC produced $85.4 \pm 74.0 \text{ pmol LTC}_4/10^6 \text{ cells } (n = 10) \text{ and } 42.1 \pm 10^6 \text{ cells}$

Table 1. Concentrations of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ required for 50% inhibition of cell proliferation (IC₅₀) in selected cell lines (n = 4)

Cell culture	IC ₅₀ of		
	PGD ₂	PGJ ₂	Δ^{12} -PGJ ₂
HL-60-myelocytic cell line (human) Primary bone marrow-derived mast cells (BMMC) (murine) IL-3-dependent mast cell line (murine) Autonomous mast cell line (murine) THP-1 monocytic cell line (human) U937 histiocytic cell line (human) Burkitt lymphoma cell line (human) Raji lymphoma cell line (human)	11 μM 10 μM 4 μM 50 μM 70 μM 2.5 μM 7 μM	11.5 μM 25 μM 9 μM 11 μM 50 μM 80 μM 3.5 μM 7 μM	12 μM 20 μM 5 μM 6 μM 30 μM 40 μM 5 μM

FIG. 4. Modulation of cell proliferation by PGD₂ and by its metabolites. Results obtained in a THP-1 monocytic cell line (human) (A), a HL-60 myeloid leukemic cell line (human) (B) and a murine autonomous mast cell line (C) are demonstrated. Results are expressed in percentage of control of [³H]-T-uptake or MTT-conversion. PGD₂ (**■**), PGJ₂ (**▲**) and Δ^{12} -PGJ₂ (**●**) show distinct antiproliferative activity. Indomethacin (□) had no significant effect on cell proliferation. Experiments were performed in quadruplicates (mean ± SD).

33.8 pmol LTC₄/10⁶ cells (n = 5; mean ± SD) with and without calcium ionophore A23187 (0.2 μ M), respectively. LTC₄ was not metabolized to LTD₄ or LTE₄ under the conditions used.

PGD_2 and its derivatives PGJ_2 and $\Delta^{12}\mbox{-}PGJ_2$ exert strong antiproliferative activity

PGD₂ and its metabolites inhibited cell proliferation in all *in vitro* models tested (Table 1, Fig. 4). The IC₅₀ values varied between 2.5 and 80 μ M in different cell types. PGD₂, PGJ₂ and Δ^{12} -PGJ₂ were equally effective. At concentrations below 0.5 μ M, no significant effect on cell proliferation was observed. Indomethacin (0.1 mM to 10 nM) had no influence on the proliferation of BMMC, TPH-1, U937 or HL-60 cells (Fig. 4). PGD₂ was rapidly metabolized in culture medium to PGJ₂ Δ^{12} -PGJ₂ and other not identified metabolites or conjugates.

Discussion

Our data demonstrate that murine BMMC release PGD₂ and LTC₄, potent eicosanoid mediators. PGD₂ undergoes immediate metabolism to PGJ₂ and Δ^{12} -PGJ₂ during production by BMMC (Fig. 1). This rapid metabolism of PGD₂ is not explained by degradation in extracellular fluid, because the half-life of PGD₂ is more than 10 h in PBS and 3 h in culture medium containing FCS. Mast cells do not contribute to conversion of extracellular PGD₂.

The total of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ produced by stimulated mast cells is about eight-fold the amount of PGD₂ alone (Figs 1 and 2). Separation of PGD₂metabolites is required prior to RIA, because considerable differences exist in the immunoreactivity of the various PGD₂ metabolites corresponding to very different cross-reactivity profiles in radio-immunologic analysis. Direct radio-immunologic analysis³ may thus result in gross underestimation of the PGD₂ production and of the PGD₂ mediated antiproliferative potential of BMMC. Stimulation of BMMC with A23187 significantly increased the release of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ in total. This is largely due to an increased release of the latter two metabolites (Fig. 2).

A number of peaks detected in the HPLC chromatogram of supernatant or pellet of $[^{14}C]$ -AA-labelled BMMC have not yet been identified. Some of them may represent further products derived from PGD₂.^{1,13–15} Identification of these metabolites requires more efficient procedures to label BMMC with $[^{14}C]$ -AA. The respective experiments are under way.

In contrast to PGD₂ LTC₄ remained stable under the conditions investigated, i.e. in serum-free medium. The amounts of LTC₄ produced in our model of murine BMMC accord with data shown by Razin *et al.*³ indicating that BMMC represent a reproducible model for analysis of eicosanoid production.

The metabolites PGJ_2 and Δ^{12} - PGJ_2 were about equipotent to PGD₂ in their anti-proliferative activity on myelocytic, mastocytic, monocytic/histiocytic and lymphocytic cells (Table 1, Fig. 4). PGD₂, PGJ₂ and Δ^{12} -PGJ₂ had distinct antiproliferative effects with IC_{50} values ranging from 2.5 to 80 μ M. The metabolism of PGD₂ in culture medium (Fig. 3) and the fact that there were no significant differences in the antiproliferative effects of PGD₂, PGI₂ and Δ^{12} -PGI₂ in the proliferation assays using incubation times of 24 h (Table 1, Fig. 4) are both in line with the suggestion of Narumiya and Fukushima^{1,15}, that Δ^{12} -PGJ₂ is the active metabolite of PGD₂ and that PGD₂ may exert no growth inhibition by itself.

The mechanism of action of Δ^{12} -PGJ₂ is not fully understood. There are no surface receptors. The lipid mediator is actively transported into cells through a temperature-dependent transporter on plasma membranes. Δ^{12} -PGJ₂ accumulates in the nuclei, where it binds to thiol groups of nuclear proteins.¹⁶

Gluthatione depletion enhances antiproliferative activity of PGJ₂ and Δ^{12} -PGJ₂.¹⁴ Recently it has been shown that intracellular glutathione modulates induction of apoptosis by Δ^{12} -PGJ₂.¹

PGD₂ and its metabolites exerted a more distinct antiproliferative effect in lymphocytic, myelocytic and mast cells than in monocytic or histiocytic cells. Primary murine BMMC were more resistant to growth inhibition by PGD₂, PGJ₂ or Δ^{12} -PGJ₂ than IL-3-dependent and autonomous mast cell lines (Table 1). Indomethacin had no effect on proliferation of BMMC, U937 or HL60 cells in the proliferation assays used.

We conclude that measurement of PGD₂ disregarding its conversion to metabolites may grossly underestimate PGD₂ production and effects related to these mediators. Our results suggest that the total of PGD₂, PGJ₂ and Δ^{12} -PGJ₂ produced by stimulated mast cells may be expected to exert significant antiproliferative activity. Production of antiproliferative PGD₂ metabolites by BMMC in vitro raises the possibility that mast cells exert an anti-proliferative and anti-neoplastic activity by the release of anti-proliferative PGD₂ metabolites in vivo.

References

- 1. Fukushima M. Prostaglandin J2-anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids 1990; 3: 189-199.
- Sasaki H, Fukushima M. Prostaglandins in the treatment of cancer. Anticancer Drugs 1994; 5: 131-138.
- Razin E, Mencia-Huerta JM, Lewis RA, Corey EJ, Austen KE. Generation of leukotrien C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow. Proc Natl Acad Sci USA 1982; 79: 4665-4667.
- 4. Murakami M, Penrose JF, Urade Y, Austen KF, Arm JP. Interleukin 4 supresses c-kit ligand-induced expression of cytosolic phospholipase A2 and prostaglandin endoperoxide synthase 2 and their roles in separate pathways of eicosanoid synthesis in mouse bone marrow-derived mast cells. *Proc Natl Acad Sci USA* 1995; **92**: 6107–6111.
- 5. Hültner L, Moeller J, Schmitt E, et al. Thiol-senstive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J Immunol 1989; 142: 3440-3446.
- 6. Hültner L, Moeller J, Dörmer P. Reproducible generation of autonomous malignant sublines from non-tumorogenic murine interleukin 3-dependent mast cell lines. Blut 1986; 53: 451-455.
- 7. Collins SJ, Gallo RC, Gallagher RE. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 1977; **270**: 347–349.
- Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171-176.
- Ralph P, Moore MAS, Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med 1976; 143·1528-1533
- 10. Calender A, Billaud M, Aubry J-P, Banchereau J, Vuillaume M, Lenoir GM. Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc Natl Acad Sci USA 1987; 84: 8060-8064.
- 11. Epstein MA, Achong BG, Barr YM, Zajac B, Henle G, Henle W. Morphological and virological investigations on cultured burkitt tumor ymphoblasts (strain Raji). J Natl Cancer Inst 1966; 37: 547–559.
- Denzlinger C, Haberl C, Wilmanns W. Cysteinyl leukotriene production in anaphylactic reactions. Int Arch Allergy Immunol 1995; 108: 158 - 164
- 13. Atsmon J, Sweetman BJ, Baertschi SW, Harris TM, Roberts II LJ. Formation
- Ashion J, Sweetnah BJ, Baetechi SW, Falirs HV, Roberts H J, Forhaton of thiol conjugates of 9-deoxy-Δ⁹, Δ¹² (E)-prostaglandin D₂ and Δ¹² (E)-prostaglandin D₂. *Biochemistry* 1990; **29**: 3760–3765.
 Atsmon J, Freeman ML, Meredith MJ, Sweetman BJ, Roberts II LJ. Conjugation of 9-deoxy-Δ⁹, Δ¹² (E)-prostaglandin D₂ with intracellular glutathione and enhancement of its antiproliferative activity by glutha-cience dealerise. *Converts Proceeds* **100**, **50**, 1970–1985. tione depletion. *Cancer Research* 1990; **50**: 1879–1885. 15. Narumiya S, Fukushima M Δ^{12} -Prostaglandin J₂, an ultimate metabolite
- of prostaglandin D2 exerting cell growth inhibition. Biochem Biophys Res Commun 1985; 127: 739-745
- 16. Negishi M, Koizumi T, Ichikawa A. Biological actions of Δ^{12} -prostaglandin J₂. J Lipid Mediators Cell Signalling 1995; **12**: 443–448.
- 17. Kim HS, Lee JH, Kim IK. Intracellular glutathione level modulates the induction of apoptosis by Δ^{12} -prostaglandin J₂. *Prostaglandins* 1996; **51**: 413-425.

ACKNOWLEDGEMENTS. This study was supported in part by the Münchner Medizinische Wochenschrift (MMŴ).

Received 28 November 1997: accepted 19 December 1997