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Abstract

Electronic Health Records (EHR) contain extensive information on various health outcomes and 

risk factors, and therefore have been broadly used in healthcare research. Integrating EHR data 

from multiple clinical sites can accelerate knowledge discovery and risk prediction by providing a 

larger sample size in a more general population which potentially reduces clinical bias and 

improves estimation and prediction accuracy. To overcome the barrier of patient-level data sharing, 

distributed algorithms are developed to conduct statistical analyses across multiple sites through 

sharing only aggregated information. The current distributed algorithm often requires iterative 

information evaluation and transferring across sites, which can potentially lead to a high 

communication cost in practical settings. In this study, we propose a privacy-preserving and 

communication-efficient distributed algorithm for logistic regression without requiring iterative 

communications across sites. Our simulation study showed our algorithm reached comparative 

accuracy comparing to the oracle estimator where data are pooled together. We applied our 

algorithm to an EHR data from the University of Pennsylvania health system to evaluate the risks 

of fetal loss due to various medication exposures.
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1. Introduction

1.1. Integrate evidence from multiple clinical sites

Electronic Health Records (EHR) contain information collected routinely as a part of 

clinical care. These data include diagnoses, medications, procedures, imaging and clinical 

notes. Since 2009, the use of EHR has grown tremendously across the nation. This allows 

for meaningful use of data recorded there [1, 2]. Institutional data integration is a major 
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trend in EHR-based research [3, 4]. Integrating data from different institutions or clinical 

sites allows us to obtain more meaningful sample size and potentially accelerates knowledge 

discoveries in a more general population. In particular, for studying relatively rare events or 

conditions, such as complications from invasive procedures, adverse events associated with 

new medications, association of disease with a rare gene variant, and many others, 

integrating EHR data from different clinical sites is critical for obtaining more accurate, 

generalizable and reproducible results [5]. Moreover, because of the healthcare process 

biases endemic in EHR, it is necessary to validate findings across multiple sites. This allows 

for assessment of clinical practice bias (e.g., one drug is prescribed more frequently at a 

particular hospital), race/ethnic disparities in populations that results in differences in the 

exposure and/or the outcome at a given site and other types of biases that may be due to the 

specific research database housed at a given institution [6].

To address these issues, the Observational Health Data Sciences and Informatics (OHDSI) 

consortium was formed (https://ohdsi.org/) for the primary purpose of developing open 

source tools that would be shareable across multiple sites. They also developed a Common 

Data Model [7] to enable each site to map their local data to a common shareable 

framework. This allows for a single script to be run across multiple sites without alteration. 

This simultaneously minimizes the probability of a database translation error (when a script 

is translated from one database structure to another to extract the same type of result) while 

speeding up the time to results.

Many studies have been conducted that have successfully utilized the OHDSI consortium, 

including a treatment pathways study [8], a birth season – disease risk study [9, 10] and 

several pharmacovigilance studies [11]. Using multiple sites allows researchers to study 

geographic variation [8, 10], which can be caused by regional changes in pollution and other 

exposures [10].

1.2. Distributed Computing

One barrier of institutional data sharing is regularity and government challenges on privacy 

protection [12]. In general, patient-level information with regards to important outcomes 

such as presence/absence of a medical condition or important confounders such as 

comorbidities, race/ethnicity, and age are not possible to share across institutions. As a 

consequence, current multi-site studies that rely on consortia, such as the OHDSI 

consortium [8, 10] or the eMERGE network (Electronic Medical Records and Genomics), 

can only utilize summary statistics that are shared across institutions. This necessitates the 

use of meta-analysis methods to aggregate signals from across the network [10].

As of 2018, the OHDSI consortium runs each script locally at a given institution and returns 

results, typically summary statistics (p-values, effect estimates) to the primary investigator 

for a given protocol. The Shared Health Research Information Network (SHRINE) has 

constructed a federated query network whereby analyses are run through the network and 

results are returned to the investigator [13]. If patient-level information were shareable in a 

privacy-preserving manner, it would enable more sophisticated patient-level statistical 

modeling and analyses [14].
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Distributed Computing is a strategy where a computational goal is achieved by distributively 

computing its components from multiple sites. With data from multiple clinical sites, 

statistical analyses can be performed distributively without sharing patient-level information. 

For example, motivated by the pSCANNER project (patient-centered Scalable National 

Network for Effectiveness Research), a distributed algorithm for conducting logistic 

regression, termed as GLORE (Grid Binary LOgistic Regression), was developed and 

deployed to pSCANNER consortium [12, 15]. Another example was the WebDISCO (a web 

service for distributed Cox model learning) method for fitting the Cox proportional hazard 

model [16] on EHR data from multiple clinical sites without sharing individual patient-level 

data [17]. These methods proved the utility and plausibility of a distributed privacy-

preserving computing approach for obtaining results from multiple sites while still adjusting 

for patient-level covariates [15].

Despite their usefulness and promise, as acknowledged by the investigators, the 

aforementioned methods [12, 17] require iteratively transferring information across sites, 

which is time consuming and labor intensive in practice. Such practical limitation could be 

one of the barriers to adapt distributed algorithms in research consortia. This limitation 

motivated researchers to develop non-iterative distributed algorithms [18, 19]. A recently 

published paper by Jordan et al proposed an innovative one-shot distributive computing 

framework, where the main idea is to construct a surrogate likelihood function through the 

use of patient-level data from a local site and aggregated information from other sites [20]. 

This idea was also proposed in distributed analysis for high-dimensional regression with 

sparsity [21]. In this study, we exercise the surrogate likelihood idea in logistic regression 

and develop a One-shot Distributed Algorithm to perform Logistic regressions (termed as 

ODAL). A major advantage of the proposed method, inherited from the merits of the 

surrogate likelihood [20], is that it only requires synthesizing summary statistics from 

multiple clinical sites once. Compared to algorithms that require iterative communication 

across sites, it is more practical to be deployed in research consortia.

2. Material and Method

In this section, we first present our motivating problem, then introduce our proposed 

method, and describe the design of simulation studies for evaluating the performance of our 

method.

2.1. Clinical Cohort and Motivating Problem

We extract females treated at one of the hospitals and/or clinics that comprise the University 

of Pennsylvania health system (abbreviated as UPenn). UPenn clinics are located in the 

entire Philadelphia Metropolitan area, which includes Delaware and Southern New Jersey. A 

pregnancy is defined as ‘normal’ if the woman was coded with any of the Z34 ICD-10 codes 

or a V22 ICD-9 code. A pregnancy is labeled as ending in fetal loss if any ICD-9 code is 

used within 630 through 639 or O00-O08 in the ICD-10 system. A similar fetal loss 

definition was used previously [22]. We only include patients who were prescribed or listed 

as taking at least 1 of the top 100 prescribed medications within 1 year prior to the first 

diagnosis of either a fetal loss or a normal pregnancy. The demographics of our cohorts are 
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given in Table 1. P-values for differences between the fetal loss cohort and the normal 

pregnancy cohort are determined using a t-test. The variable race is dichotomized as white 

versus non-white in our models. The weight and BMI variables are averages across an 

individual’s entire medical record. The statistics reported in Table 1 are excluding those with 

0 weight or 0 BMI (i.e., indicating that no entries are available for those parameters). 

However, because the average weight and BMI is computed across the individual’s entire 

record the value is smaller for those with longer records containing null entries.

Our proof-of-concept study involves predicting pregnancy outcome: fetal loss versus normal 

pregnancy. We include 4 relevant demographic covariates: age, race, Body Mass Index 

(BMI), and weight. We include our ‘exposure’ term of interest – namely the medication 

exposure. We ran our algorithm for each of the top 100 medications (ranked by drug 

prevalence) prescribed within 1 year prior to the pregnancy outcome while adjusting for the 

4 demographic confounders. For purposes of this study, we randomly assign each pregnancy 

id to one of ten clinic IDs to ensure that an equal proportion of data is assigned to each of 

the ten clinics (approximately 3,557 pregnancies per clinic).

2.2. Algorithm

In this subsection, we introduce the distributed algorithm ODAL. First, we introduce the 

needed notations. We denote Y to be a binary outcome and z to be a (p − 1)-dimensional 

vector, which contains the exposure of interest and potential confounders to be adjusted in a 

regression model. Let x = (1, z). Suppose we have N observations from K different sites. 

Without loss of generality, we assume that each site contains n observations, noting that the 

algorithm also applies to sites with unequal sample sizes. Let (xij, Yij) denotes the i-th 

observation in the j-th site. Under the assumption of a logistic regression model, the log 

likelihood function for the combined data can be written as

L(β) = 1
N ∑ j = 1

K ∑i = 1
n Yi jxi j

T β − log 1 + exp xi j
T β ,

where β is a p-diemsional vector including the regression intercept and coefficients. Since 

the individual patient-level information is not allowed to be transferred across sites, we 

cannot obtain L(β) directly. To tackle this challenge, we apply Taylor expansion on the log 

likelihood function (1) around an initial value β, and obtain

L β = L β + ∇L β β − β + ∑ j = 2
∞ 1

j!∇ jL β β − β ⊗ j .

Suppose we have the full access to the data stored in a local site (without loss of generality, 

assume it is the site 1). The log-likelihood at the local site can be written as

L1 β = 1
n ∑

i = 1

n
Y i1xi1

T β − log (1 + exp xi1
T β . (2)

Similarly, we can expand the local log likelihood function L1(β) around an initial value β,
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L1 β = L1 β + ∇L1 β β − β + ∑ j = 2
∞ 1

j!∇ jL1 β β − β ⊗ j .

Using the idea from Jordan et al. 2018 [20], the higher order terms of the local likelihood 

L1(β) in (2) can be used to approximate the higher order terms of the combined likelihood 

L(β) in (1), resulting in the following surrogate likelihood function after dropping the 

constant terms,

L β = L1 β + 1
K Σk = 1

K ∇Lk β − ∇L1 β β, (3)

where ∇Lk(β) = 1
n ∑i = 1

n Y ik − exp xik
T β / 1 − exp xik

T β xik .

There are several notable features of the above surrogate likelihood. First, the terms L1(β) 

and ∇L1 β  can be calculated using data from the local site. Secondly, the term ∇Lk β  can be 

computed from the site k and transferred to the local site. Note that each ∇Lk β  is with 

dimension p and contains only aggregated information. Therefore, the information 

transferring maintains low communication cost and is privacy preserving. The ODAL 

estimator is then obtained locally by minimizing the surrogate likelihood function in 

equation (3), i.e.

β = arg max
β

L β .

Regarding the initial value β, a nature choice of β is the maximum likelihood estimator of 

the local likelihood L1(β). A detailed algorithm is outlined below.

Algorithm: ODAL

1. Initial value: obtain β = arg max
β

L1 β . using data in the local site (i.e., site 1), where L1(β) is the log likelihood 

of logistic regression defined in equation (2)

2. Initial communication: transfer β to the other sites (i.e., sites 2, 3, …, K)

3. For j = 2 to K

4.  do compute ∇L j β , where Lj(β) is defined similarly as in equation (2)

5.   transfer ∇L j β  to the local site

6.  end

7. Compute the surrogate likelihood L β  defined in equation (3)

8. obtain β = arg max
β

L β

9. return β
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2.3. Simulation Design

To evaluate the empirical performance of the ODAL method, we consider a setting where a 

binary outcome is associated with two continuous risk factors and two binary risk factors. 

We generate the two continuous variables from a standard normal distribution N(0,1) and a 

uniform distribution U(0,1) respectively. The two binary variables are generated from 

Bernoulli distributions with probability 0.1 and 0.5 respectively. Slightly different from the 

previous notation, we let x denote the vector of all the risk factors. The outcome Y is 

generated from Bernoulli distribution, with the conditional probability satisfying the logistic 

regression model,

logit Pr Y = 1 x = α + xTβ,

where logit(p) = log {p/(l − p)}, β is the vector of coefficients and α is the regression 

intercept.

To mimic a distributed research network, we generate total number of N subjects and 

randomly divide them into K sub-datasets. The local dataset is set to be the first sub-dataset 

and the number of subjects of the local dataset is n. We design the simulation study to 

investigate the relative accuracy of the ODAL compared to the two methods:

i. the pooled estimator: the individual patient-level data pooled from all clinical 

sites are used, which can serve as a gold standard for the best possible accuracy; 

i.e., the estimate that maximizes the log likelihood in equation (1);

ii. (ii) the local estimator: only individual patient-level data from the local site are 

used; i.e., the estimate that maximizes the log likelihood in equation (2).

We use mean square error (MSE) to summarize the performance of the three estimators and 

consider the following four scenarios:

A. We randomly generate data for N patients, and evenly divide them into 10 sites. 

We increase N from 1000 to 10000. This reflects a setting where a network, such 

as PEDSnet (the National Pediatric Learning Health System), contains a fixed 

number of pediatric hospitals, but the number of patients increases over time and 

is updated quarterly [23],

B. We randomly generate data from K sites each has 1000 patients, and increase K 
from 2 to 100. This is a setting where a consortium involves a growing number 

of clinical sites, and the number of patients per site is relatively stable. For 

example, the Hospital Compare dataset (https://www.medicare.gov/

hospitalcompare/search.html) contains results from Meaningful Use measures 

(e.g., 30-day réadmissions) for increasing number of hospitals reporting those 

measures, however the average hospital size remained relatively constant.

C. We randomly generate data for 10000 patients, and evenly divide them into K 
sites. We increase K from 2 to 100. This setting is included to investigate the 

relative performance of the ODAL for a small versus large number of clinical 

sites, while holding the total number of patients fixed. Depending on how the 

Duan et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.medicare.gov/hospitalcompare/search.html
https://www.medicare.gov/hospitalcompare/search.html


data are stored in each hospital, the investigators may choose to perform a 

distributive analysis on the hospital-level or on the clinic-level.

D. We randomly generate data for 10000 patients divide them into 10 sites. The 

local site has sample size n, and other 9 sites evenly split the rest of data. We 

increase n from 100 to 9100. This setting is to investigate the performance of the 

ODAL when the relative size of the local site, compared to the total number of 

patients, increases from a small percentage to a large proportion. For example, 

OHDSI contains many sites of varying sizes from 0.5 million patients to 

hundreds of millions of patients. Depending on where an investigator is located, 

the ‘local’ dataset will vary with regards to the proportion of the dataset as a 

whole.

3. Results

3.1. Simulation Results

Figure 2 presents the mean square errors of the ODAL, the pooled and the local estimators 

under four different scenarios. Overall, it shows that in all considered scenarios, the ODAL 

provides estimates with comparable accuracy as the best possible pooled estimates. In 

Setting A, where number of sites is fixed and each site has relatively the same number of 

subjects, ODAL can reach almost the same accuracy as the pooled estimator when total 

sample size is relatively large. When total sample size is limited, ODAL can still provide 

much more accurate estimation than the local estimator (MSE of the local estimator is 15 

times higher than MSE of ODAL when N = 1000). This suggests that by borrowing simple 
gradient information ∇Lk β  from other sites, the ODAL estimate gained substantial 

statistical efficiency compared to the estimate using the data at the local site alone. Setting B 

shows that by borrowing information from more sites, the accuracy of estimation increases. 

In addition, the ODAL and the pooled estimators provide estimates with negligible 

difference in accuracy.

Setting C shows that by dividing a fixed number of subjects into increasing number of sites, 

as expected, the performance of the pooled estimator stays the same. ODAL performs as 

good as the pooled estimator when the number of sites is relatively small. With increasing 

number of sites, ODAL has slightly increased amount of error, but is much more accurate 

compared to the local estimator (MSE of the local estimator is 13 times of the MSE of the 

ODAL estimate when K = 100). The results from Setting C suggest that ODAL can 

guarantee reasonable accuracy even when the number of sites are moderately large. Such 

investigation also provides quantitative guidance on choosing between performing the 

distributed analysis at the clinic level (relatively large number of sites) or the hospital level 

(relatively small number of sites). Setting D considers the influence of number of subjects 

contained in the local sites on the accuracy of each methods. As expected, the local 

estimator performs worse with smaller number of subjects in the local site. The change of 

local sample size does not influence the performance of the pooled estimator since the total 

sample size is fixed. Compared to the pooled estimator, the ODAL performs almost the same 

where the ratio of MSE decreases from 1.22 to 1.00 with the increase of local sample size.
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The distributed algorithm GLORE, which leads to exactly the same estimate as the pooled 

estimator, requires cross-site iterations until a convergence is reached. In our simulation, the 

number of iterations to obtain the pooled estimates ranges from 6 to 10 using the glm() 

function in R 3.4.1. In the case with more covariates involved, it may require larger number 

of iterations to achieve convergence, which creates a substantial burden in communication 

across clinical sites.

3.2. Fetal Loss Prediction via ODAL

We apply ODAL to the EHR data described in Section 2.1 to evaluate the risks of fetal loss 

due to various medication exposures. We include the top 100 medications prescribed within 

1 year prior to a normal pregnancy or fetal loss outcome. We randomly assign each of our 

pregnancies to 1 of 10 clinics to test the performance of ODAL. We include one medication 

at a time adjusting for maternal age, race/ethnicity (collapsed to a binary variable of White 

versus non-White), weight and BMI. Figure 3 compares the estimates from ODAL to the 

pooled estimator. The average relative difference in the odds ratios between ODAL and the 

pooled estimator is 0.0046 across all 100 medications. This indicates that the result from 

ODAL is very close to the result that would be achieved if all individual-level data are 

pooled together for the analysis.

Figure 4 presents the top 10 medications that are positively associated (left panel) and 

bottom 10 medications that are negatively associated (right panel) with fetal loss. To 

compare our findings with existing knowledge in the literature, we use information on the 

pregnancy safety of the drug using the Food and Drug Administration (FDA)’s A-X category 

system. This information is readily obtainable from drugs.com, a freely available online 

resource, for drugs and their various therapeutic uses and effects (https://www.drugs.com/). 

Each drug’s FDA category is shown above in Figure 4. Drugs in category A are drugs where 

no fetal risk has been observed in controlled human studies, category B drugs are drugs with 

no evidence of fetal risk in animal models but well-controlled human studies are lacking, 

category C drugs are drugs where fetal risk has been shown in animal models but the effects 

are unknown in humans while category D and X are drugs with known evidence of some 

fetal risk in humans and animals [24]. Of the top 10 drugs associated with fetal loss Figure 

4, six are either category D or X with known evidence of fetal risk in the literature. Three 

drugs are category C pain relievers, two are drug combos of Tylenol (acetaminophen) with 

an opioid (codeine or oxycodone) while ibuprofen is an over-the-counter pain reliever. The 

only category A or B drug in the top 10 is hydrochlorothiazide (a diuretic that treats 

hypertension), a category B drug. However, hydrochlorothiazide is considered a category D 

drug, and contra-indicated in pregnancy, is used to treat pregnancy-related hypertension. 

Therefore, there is likely a dosage that is fetal toxic. In the ten medications that are 

negatively associated with fetal loss, we identify 8 types of prenatal vitamins with folic acid, 

docosahexaenoic acid (DHA) and metoclopramide hcl. These findings are consistent with 

the literature on the importance of prenatal vitamins to prevent early term miscarriages and 

fetal loss. For example, it has been suggested by many studies that folic acid has positive 

impacts on preventing early pregnancy loss [25]. In summary, the ODAL method leads to 

estimates that are highly consistent with the pooled estimates, and the identified associations 

are also consistent with our current understanding of these medications.
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4. Discussion

The integration of EHR data from multiple healthcare databases increases statistical sample 

size and heterogeneity of exposure, as well as reduces clinical bias and improves the power 

of statistical analyses. The rise of large healthcare networks, such as ODHSI, pSCANNER, 

SHRINE and PEDSnet provide platforms for data integration and evidence synthesis [23]. 

To avoid sharing individual-level information, distributed algorithms have been developed 

which can conduct population-level analyses in a privacy-preserving manner. In this paper, 

we propose a novel privacy-preserving and communication-efficient distributed algorithm to 

study binary outcomes with a set of risk factors using logistic regression. As demonstrated 

by our simulation study and the application to fetal loss data analysis, our algorithm 

provides a close approximation to the pooled estimator where all patient-level information is 

pooled together.

The communication efficiency of our algorithm comes from two aspects. First, in contrast to 

the existing iterative algorithms such as GLORE and WebDISCO, our algorithm does not 

require iterative communication across sites. This is crucial especially in the healthcare field 

where data and information exchange often require large amount of administrative work and 

technical support. On the other hand, the intermediate result that need to be transferred in the 

ODAL method is only the first gradient of the likelihood function evaluated at an initial 

value, which is a vector with dimension equal to the number of parameters p. In contrast, for 

algorithms such as GLORE [12], in each iteration, the value of the second gradient of the 

likelihood function need to be transferred, which is a p×p matrix. When studying a large 

amount of risk factors, for example large number of potential confounders or genetic 

variations, the dimension of the matrices can be big which might cause high communication 

cost for transferring the data.

On the other hand, ODAL requires access of individual patient-level data for one clinical 

site, in order to construct the surrogate likelihood function. In situations where individual 

patient-level data are inaccessible in any site, GLORE is preferred.

The OHDSI consortium consists of many partner institutions where patient-level data 

sharing is not permissible as this often conflicts with regional legislation. In this instance an 

individual researcher may have patient-level data available at their given site, but then would 

deploy their algorithms at other sites without having access to the patient-level data. For 

these situations ODAL is ideal because aggregated information from other sites is only 

borrowed once without having access to the patient-level data in those countries and regions 

where that is impermissible.

Deploying ODAL within OHDSI and other large consortia would enable us to further 

validate our findings with regards to medications taken within 1-year prior to normal 

pregnancy or fetal loss diagnoses. Validation of these results and also larger scale assessment 

of medications that potentially increase the risk of fetal loss is still much needed. Algorithms 

have been developed to assess the fetal effect of category C medications [22], but these can 

often be limited by confounding and other local institution-specific biases. Use of ODAL 

across a large international consortium such as OHDSI would propel adequate assessment of 
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each drug’s fetal toxicity even for those where the effects remain unknown (i.e., category C 

medications).

In the future, we are planning to extend our method to other types of outcomes, such as 

continuous, categorical, and time-to-event data. Furthermore, we are developing open-source 

software packages for directly implementing ODAL on distributed networks. We believe that 

our algorithm can be a good complement to the existing distributed algorithms.
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Figure 1. 
Schematic illustration of ODAL. Using data from the local site (i.e., site 1), the local 

estimator β is calculated and transferred to other sites. The intermediate term ∇L j β  is then 

evaluated at each site j (j=2, …, K) and transferred back to the local site. Combined with 

∇L1 β  and L1 (β) we construct the surrogate function L β  in the local site and obtain the 

ODAL estimator β by maximizing L β .
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Figure 2. 
Mean square errors (MSE) of ODAL, the pooled and the local estimators under settings A, 

B, C and D. In setting A (upper left panel), we evenly divide N subjects in to 10 sub-

datasets, and increase N from 1000 to 10000. In setting B (upper right panel), each site 

contains 1000 subjects and the number of sites K is then increased from 2 to 100. In setting 

C (lower left panel), we generate 10000 subjects, and evenly divide them into K sub-

datasets, where K increases from 2 to 100. In setting D (lower right panel), we generate 

10000 subjects, and divide them into 10 sub-datasets, where the local dataset has n subjects 

and the other 9 sub-datasets has the equal number of subjects. We increase n from 100 to 

9900.
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Figure 3: 
Odds ratio estimates from the ODAL method (red triangles) and the pooled data (blue 

circles) for 100 medications and their associations with fetal loss. The 100 medications from 

left to right are sorted by their prevalence in the population.
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Figure 4: 
Odds ratio estimates from ODAL and the pooled estimator for the top 10 medications 

positively associated (left panel) and negatively associated (right panel) with fetal loss. On 

the left panel, the ten medications are misoprostol, acetaminophen codeine, doxycycline 

hyclate, oxycodone acetaminophen, ibuprofen, levonorgestrel, medroxyprogesterone acetate, 

etonogestrel ethinyl estradiol, hydrochlorothiazide and norelgestromin eth estradiol. On the 

right panel, the ten acronyms are referring to prenatal vitamins (without vit. A) with DHA, 

iron, folic acid and docusate sodium; Prenatal vitamins with Iron fumarate, Folic Acid; 

Prenatal vitamin with Folic Acid and DHA; DHA; Prenatal vitamins with Iron, Sulfate, and 

Folic Acid; Prenatal vitamin (without vit. A) with DHA, Folic Acid, Extra Iron and 

Docusate sodium; Prenatal vitamins; Prenatal multi-vitamin with Folic Acid and minimum 

Iron; Prenatal vitamins with Iron, Docusate sodium, and Folic Acid; Metoclopramide hcl. 

The letter on each medication shows the FDA assigned pregnancy category, where A, B and 

C means of no or unknown risk, D and X means of risk. N means the medication is not 

assigned a category. Detailed interpretations can be found at https://chemm.nlm.nih.gov/

pregnancycategories.htm.
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Table 1.

Demographics of Pregnancies Treated at UPenn Health System

Demographics Normal Pregnancy (N=30,810) Fetal Loss (M=4,763) P-value

Race

 White* 13911 (45.2%) 2291 (48.1%)

 African American 12918 (41.9%) 1871 (39.3%)

 Other 1916 (6.2%) 274 (5.8%)

 Asian 2065 (6.7%) 327 (6.9%)

Age 29.40 32.15 <0.001

Weight (pounds) 126.26 115.43 <0.001

Body Mass Index 19.06 16.61 <0.001

*
For race, we only used a binary variable for white versus non-white

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.


	Abstract
	Introduction
	Integrate evidence from multiple clinical sites
	Distributed Computing

	Material and Method
	Clinical Cohort and Motivating Problem
	Algorithm

	Table T2
	Simulation Design

	Results
	Simulation Results
	Fetal Loss Prediction via ODAL

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3:
	Figure 4:
	Table 1.

