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Abstract: The traditional design of effective vaccines for rapidly-evolving pathogens, such as influenza
A virus, has failed to provide broad spectrum and long-lasting protection. With low cost whole
genome sequencing technology and powerful computing capabilities, novel computational approaches
have demonstrated the potential to facilitate the design of a universal influenza vaccine. However,
few studies have integrated computational optimization in the design and discovery of new vaccines.
Understanding the potential of computational vaccine design is necessary before these approaches can
be implemented on a broad scale. This review summarizes some promising computational approaches
under current development, including computationally optimized broadly reactive antigens with
consensus sequences, phylogenetic model-based ancestral sequence reconstruction, and immunomics
to compute conserved cross-reactive T-cell epitopes. Interactions between virus-host-environment
determine the evolvability of the influenza population. We propose that with the development of
novel technologies that allow the integration of data sources such as protein structural modeling,
host antibody repertoire analysis and advanced phylodynamic modeling, computational approaches
will be crucial for the development of a long-lasting universal influenza vaccine. Taken together,
computational approaches are powerful and promising tools for the development of a universal
influenza vaccine with durable and broad protection.
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1. Introduction

In the history of fighting infectious diseases, vaccinations are amongst the most cost-effective
approaches available to prevent infection. Traditional approaches to vaccine design have been successful
against many pathogens. But vaccines that target rapidly-evolving and genetically-diverse disease
agents have frequently failed to generate long lasting protection for human populations. This is
particularly true for influenza viruses, a single-stranded, negative sense RNA virus. One of the
important weapons being developed to effectively prevent influenza virus infection is a vaccine that
can provide durable and broadly-reactive protection against multiple subtypes, including those that
may cause potential pandemics, that is, a universal influenza vaccine [1]. The National Institute of
Allergy and Infectious Diseases (NIAID) has defined the criteria for universal influenza vaccine, which
includes (1) being at least 75% effective against symptomatic influenza infection; (2) protecting against
group I and group II influenza A viruses (influenza B would be a secondary target); (3) having durable

Vaccines 2019, 7, 45; doi:10.3390/vaccines7020045 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
https://orcid.org/0000-0001-6810-7304
https://orcid.org/0000-0001-7356-338X
https://orcid.org/0000-0001-7572-4300
http://dx.doi.org/10.3390/vaccines7020045
http://www.mdpi.com/journal/vaccines
https://www.mdpi.com/2076-393X/7/2/45?type=check_update&version=2


Vaccines 2019, 7, 45 2 of 23

protection that lasts at least 1 year and preferably through multiple seasons [1]. These are challenging but
achievable goals to effectively develop a vaccine that can protect against the globally-disseminated virus.

Recent approaches to vaccine design have taken advantage of large-scale viral sequencing
platforms, phylogenetic frameworks, protein structural modeling and systems biology to design novel
broadly-reactive vaccine candidates, which have been used for influenza and other pathogens [2].
These new approaches have revealed insights of viral evolution, transmission dynamics and biological
functions of proteins from mountains of genomic data and metadata [2–5]. Novel approaches for
rational design in the genomic era can aid in achieving goals of universal influenza vaccine design.
However, it has found limited applications in the design and discovery of new vaccines, an area where
proper integration of computational support and design is urgently needed [2,6].

In this review, we aim to briefly summarize the currently applied approaches of seasonal and
universal influenza vaccine design and their disadvantages (part 2), gather information on new or
potential computational approaches and challenges (part 3), and to propose necessary resources and
efforts needed for computational approaches of universal influenza vaccine candidates (part 4). We will
explore the important role of computational vaccine design to improve the identification of pathogen
antigens and key components for designing and evaluating a universal vaccine design. Furthermore,
we will discuss the potential of incorporating interactions of virus-host-environment to develop models
that allow for precise prediction for viral evolution and vaccine candidates. This review provides a
framework to integrate computational advances that could help in restructuring the existing seasonal
influenza vaccine design and contribute to the development of universal influenza vaccine.

2. Current Approach for Influenza Vaccine Design

2.1. Selection of Circulating Influenza Viruses for Seasonal Vaccine Design

To prevent infections from circulating seasonal influenza viruses, the annually administered
influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic
group 2 hemagglutinin) and two influenza B virus components (Victoria-like and Yamagata-like) [7].
The vaccine candidates from natural influenza virus strains are recommended by the World Health
Organization (WHO) based on the characterization and prediction of circulating strains likely to
dominate in upcoming epidemic seasons. Twice a year, the expert panel from the WHO Collaborating
Centers and essential laboratories and academies reviews the evidence of global surveillance, laboratory
and clinical studies and evaluate the availability of vaccine strains to make recommendation on the
components of influenza vaccine [8]. The evaluations are mainly based on viral antigenic and genetic
characterization, which requires tremendous annual surveillance efforts and laboratory tests. After the
selection of vaccine strains, it takes at least 6-8 months to produce sufficient global supplies of influenza
vaccine via current vaccine production technologies with egg-based, cell-based or recombination-based
vaccine [9,10]. For a comprehensive review of traditional approaches for influenza vaccine selection,
design, development and challenges refer to this review paper by Wong and Webby [11].

Influenza vaccines selected from natural influenza virus strains predominantly elicit specific
antibodies against the globular head domain of the surface protein hemagglutinin (HA) for each
subtype or lineage, which is only effective to protect against closely-matched antigenic variants [7].
The HA, however, undergoes rapid antigenic drift that accumulates from point mutations under
immune selection pressure in the major antigenic sites, allowing the virus to escape neutralizing
antibody responses [12], resulting in imprecise predictions of circulating strains. Despite significant
efforts of continuous surveillance and vaccine strain updates, vaccine mismatches have occurred
many times [13]. In addition to potential antigenic mismatch from selection procedure and delays in
production, egg-adapted mutations accumulated during egg-based vaccine production can further
exacerbate this issue, where the vaccine virus strain obtains relevant functional amino acid changes
in the HA protein, resulting in low vaccine effectiveness [14–17]. Studies investigating the impact
of vaccine mismatch have reported broad ranging vaccine efficacy (10% to 60%) for these annual
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vaccines, demonstrating severely low and unstable immune protection from influenza infection [18].
Predictive models of viral evolution to forecast dominant circulating influenza viral strains in the
upcoming influenza seasons through the analysis of genetic and epidemiological data from influenza
surveillance system have been developed to make quantitative predictions of viral evolution and
aim to improve the selection of seasonal influenza vaccine candidates [10,19]. This framework has
demonstrated potential to integrate multiple data sources to improve influenza vaccine design.

2.2. Universal Influenza Vaccine Design

Seasonal vaccines offer a little or no protection to emerging zoonotic influenza viruses with
pandemic potential, as many species, especially wild aquatic birds, are recognized as the natural
reservoir of all subtypes of influenza A viruses and have the potential to occur spillover and infect
humans directly [20]. As with past pandemics, the surface glycoproteins, HA and neuraminidase
(NA) are replaced through reassortments of zoonotic strains where the human population has
no pre-existing immune protection and the vaccines in use are not cross-reactive with these new
strains [21–23]. Experimentally-identified, conserved and immunogenic M2 protein antigens [24], and
HA-stalk design [24–26] have the potential to elicit broadly protective antibodies against seasonal
influenza strain. M2-based universal vaccine design focuses on the conserved antigens that have been
experimentally identified on M2 protein. However, the low immunogenicity and epitope density
by viral nature has been a fatal limit to make the cross-protection from M2 being effectively applied
into vaccine design [24]. To solve this issue, many approaches have been developed to improve M2
immunogenicity, details of which can be found in this review by Zhang et al. [24]. Similar with
M2-based design, HA-stalk design tries to elicit the conserved and cross-reactive protection from the
membrane-proximal stalk domain [25]. While the stalk domain is conserved across multiple influenza
subtypes, it is shielded by the immune-dominant head domain. To amplify the broad protection from
stalk domain, truncated HA without head domain, concentrated short peptides from stalk domain
or recombinant chimeric HA proteins have been employed [24–26]. Despite the potential for both
M2 and HA-stalk design vaccines to elicit broadly reactive immune response, a number of challenges
remain (reviewed in [24] and [27]), including a limited understanding of the full repertoire of potential
epitopes. More systematic computational approaches that go beyond circulating strain prediction and
incorporate a full profile of antigens stimulating both humoral and cellular immune responses are
needed for universal vaccine design [24–26]. To overcome these challenges, computational approaches
have been employed to rationally design promising vaccine candidates that can induce broadly (ideally
universally) cross-protective and durable immunity for all seasonal and even emerging pre-pandemic
strains [13,28,29].

3. Computational Design of Universal Influenza Vaccines

3.1. The Rationale of Computational Design Approaches

Traditional approaches have failed to produce stable and protective vaccines for hypervariable
and rapidly-evolving viral pathogens, including influenza viruses [30,31]. The reasons for this failure
include inherent uncertainty in pathogen evolution [32]. While global surveillance efforts and data
sharing agreements have increased available information, vaccine design often ignores the underlying
processes of the global influenza meta-population which generates diversity that allows the viral
populations to escape vaccine-induced immune responses and anti-viral treatments. Furthermore,
hemagglutination inhibition assay, central to vaccine strain selection, is a poor approximation for the
average immune response that does not account for the heterogeneity of immune responses between
hosts and pathogens, which cannot provide a full profile of pathogen immunogenic features [33].
The failure to synthesize information across the host-pathogen-environment, including ecological and
epidemiological determinants of disease persistence and spread (Figure 1) [2], has resulted in major
information gaps that can be addressed by existing computational approaches and a concerted effort
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to develop a unified framework. Individual immune response to a vaccine is an interplay of genetic,
molecular and ecological factors from both host and pathogen populations on large tempo-spatial
scales [2]. As a consequence, traditional design inefficiently captures few pathogen features based on a
limited input that does not account for the high diversity of pathogen and high heterogeneity of host’s
immune responses [2,34].
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Figure 1. Framework of potential novel computational design. The summarized potential approaches
combine the epidemiologic triad of infectious diseases. From host perspective, data on host
characteristics are modeled to understand the susceptibility and immune response to influenza
viruses by studying the host immunogenetics, for example, the antibody repertoire analysis or the
human leukocyte antigen (HLA) structure analysis. From virus perspective, phylogenetic modeling is
to understand the evolutionary history and patterns of viral genetic and phenotypic characteristics.
Further, developing phylodynamic modeling, generalized linear model (GLM), and other more
advanced models are critical to identify important epidemiological and ecological determinants that
affect viral evolution and host immunity to influenza virus. In order to generate critical components for
vaccine design and accurately predict viral evolvability, all three perspectives are combined to form a
machine learning pipeline to incorporate information and learn from these data and models. Evidence
from experimental tests on these components can be used into machine learning pipeline to improve
outputs. Many iterations are needed with input of more information. The ultimate goal is to generate
high-quality information and broad-reactive components for a universal vaccine of influenza viruses.
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Fortunately, the growth of databases containing genome sequences sampled throughout global
epidemics [35–37], increased computational power and theoretical algorithms allow complex data
sources to be integrated into a unified framework allowing for a more complete understanding of
pathogen and host features. Huge amount of data generated by the high-throughput technologies are
currently available with more data regularly being made available. Computational approaches with
advance data integration and quantitative empirical analyses fit the needs of universal vaccine design
for highly diverse influenza virus in several promising aspects [38,39]: (1) being able to model and
analyze all available viral genomic data over a large tempo-spatial scale and shift from HA only design
to cover more antigens on multiple viral proteins; (2) rapidly and cost-effectively screening antigens
and epitopes in the early phase of vaccine candidate discovery; (3) capability of incorporating protein
functional structure and antibody repertoire analysis via structural biology; (4) machine learning to
incorporate viral, ecological, epidemiological and host immunological data to make precise assessment
and prediction.

Computational approaches to identify candidates for universal influenza vaccine design have
been used with a variety of novel vaccine production strategies in development. These approaches
mainly focus on the ‘unnatural immunity’ [40] induced by more conserved or less immune-dominant
domains in the surface proteins, internal proteins or both, to tackle with the high degree of variability
in influenza viruses by boosting the immunity from the conserved or less evolvable proteins of
the viruses. Current rational vaccine design uses comparative genomic methods to identify these
conserved regions. These inferential methods include naïve approaches where conserved regions
are identified from multiple sequence alignment comparison [27,28,41–43], phylogenetic approaches
where common ancestry is estimated [44] and peptide engineering based on 3-D protein structure
and immunomics. Figure 2 has summarized these current computational approaches. Table 1 has
highlighted the advantages, disadvantages and examples of these approaches.
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Table 1. Summary and examples of computational influenza universal vaccine design.

Approach Conceptual Design Evidence-Level Advantages Disadvantages Examples

Consensus-based
optimized approach Figure 2A Pre-clinical

(1) Efficiently generate a potentially full profile of conserved
immunogenicity in viral genome;
(2) Induce broad HA inhibition antibody titers that are
cross-reactive with diverse strains within the same subtype;
(3) Neutralize the receptor binding sites to prevent influenza
disease with a clear path towards clinical proof of correlation
for protective efficacy in humans

(1) Biased viral samples may not generate consensus
sequences that represent full profile of conserved
immunogenicity;
(2) Large efforts on surveillance data required

Pre-clinical tests on H1,
H3 and H5 HA

[28,41–43,45]

Ancestral sequence
reconstruction Figure 2B Pre-clinical

(1) Induce broad cross-reactive protection within highly diverse
influenza subtype
(2) Account for sampling bias and the variability of substitution
rates among sites;
(3) Potentially avoid the detrimental effects of antigenic drift
with ancestral sequences;
(4) Incorporate protein functional and structural domains

(1) More sophisticated and advanced models to
incorporate protein domains are still under
development;
(2) Experimental data on protein function is needed

Pre-clinical tests on
ancestral sequence of

H5N1 HA and NA [44]

Immunomics Figure 2C Pre-clinical & Clinical

(1) Account for the heterogeneity of the major
histocompatibility complex (MHC) in host;
(2) Protections and viral clearance from T-cell response has
been distinctively tested

(1) Indirect estimation on epitope affinity to MHC;
(2) To keep conformational epitopes to be function
when designed into vaccine can be challenge

FP-01.1
Flu-v

Multimeric-001
See Table 2 for details
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Figure 2. Framework for computational influenza universal vaccine design. (A) Model-free
consensus-based optimized approach. Consensus sequences from previously defined clusters are
generated by aligning and comparing multiple sequences and selecting the most common residue at
each position. It may go through several steps until the generation of a final consensus. (B) Model-based
ancestral sequence reconstruction approach. Maximum likelihood and Bayesian approaches are the
most commonly used statistical phylogenetic methods to reconstruct ancestral sequence at the ancestral
node (shown as black dot on the tree) [46–48]. Evolutionary models that incorporate protein structural
domains can be used to separately estimate the evolutionary history on each functional partition as
the HA head and stalk domains. Based on the evolutionary relationship among different subtypes of
influenza A virus, common ancestral sequences of head and stalk domains can be generated within
influenza A virus Group 1 (H1, H2, H5, H6, H7, H8, H9, H11, H12, H13, H16, H17, and H18) and
within Group 2 (H3, H4, H7, H10, H14, and H15), respectively. (C) Immunomics approach. The T-cell
epitope prediction tools can be used to identify the potential CD4+ T-cell and CD8+ T-cell epitopes
from the pathogen proteome or protein(s) based on the high binding affinity between epitope-Major
Histocompatibility Complex (MHC) complex. Some epitopes will be presented by the MHC-I on the
surface of infected cells or by MHC-II on the surface of antigen presenting cells (APC) to the host
CD8+ or CD4+ T-cells, respectively. These processes elicit the cellular and/or humoral immunity.
The predicted T-cell epitopes that are evolutionarily conserved and common across or within subtypes
will be constructed into peptides or proteins. All outputs from these three approaches, like epitopes,
peptides, proteins or virus-like particles (VLPs), will be tested at in-vitro and/or in-vivo models to
evaluate their immunogenicity. The proposed concept as shown is based on HA gene sequences, but
these approaches should be used for all the gene segments of influenza viruses to generate a full profile
of viral immunogenicity.
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3.2. The Host

3.2.1. Immunoinformatics to Immunomics

The field of immunoinformatics or computational immunology received major attention in 2000’s
from the research and governmental funding agencies [49,50]. Immunoinformatics research mainly
focuses on study and design of high-throughput in-silico approaches to explore the immune system at
genome level (Figure 2) [51]. These technological developments coupled with pathogen genomes have
tremendously contributed to the selection process of optimal vaccine antigens by lessening the time
and cost involved in the conventional methodologies that involve pathogen cultivation and protein
extractions. This methodology of analyzing pathogen genome to identify potential vaccine antigens is
called “reverse vaccinology” [52,53].

The study of immunomes coined as a new discipline “immunomics”, where the ‘immunome’ is
quoted as “the detailed map of immune reactions of a given host interacting with a foreign antigen” [50].
Immunomics tools such as B-cell epitope and T-cell epitope mapping methods mimic the diverse
molecular pathways of adaptive immune system that accounts for humoral immunity (B-cells) and
cellular immunity (CD4+ T-cells and CD8+ T-cells) to predict potential epitopes or immunomes from
the pathogen proteomes [51,54]. B-cell epitopes are surface exposed clusters of amino acids, which
can be categorized as linear (a stretch of amino acids) and conformational (discontinuous) epitopes
recognized by B-cell receptors (BCR) [55]; while T-cell epitopes are only linear, and T-cells receptors
(TCR) can recognize epitopes when they are bound to the major histocompatibility complex (MHC)
molecules. Two distinct subsets, CD4+ T-cells (helper T cells) and CD8+ T-cells (cytotoxic T cells)
recognize epitopes when they bind with MHC class II and MHC class I, respectively [56]. MHC genes
are highly polymorphic across different ethnicities that determines the fate of an epitope presentation
to T-cells [56].

Immunomics can aid in identifying optimal B-cell and T-cell epitopes directly from the pathogen
proteomes, while the literature suggested that T-cell predictions are more advanced and reliable
than that of B-cell epitope predictions [57,58]. A workshop on the B-cell epitope prediction tools
reported that the prediction performance of B-cell tools is still far from reality due to a lack of
high-quality experimental datasets [57]. Detailed description on the existing epitope mapping tools,
and challenges have been discussed in the cited review articles [55,58–62]. Key limitations include:
(1) the availability of experimental datasets essential in training and developing any epitope prediction
tool; (2) selection of epitope prediction tools may also introduce discrepancy in the identification
of potential T-cell epitopes due to methodological differences. T-cell epitope prediction tools that
include sequence- and structure-based methods are reviewed in Patronov et al. [56] and Luo et al. [63]);
(3) the availability of high-quality datasets on the binding affinity of epitope-MHC, which directs the
development and success of T-cell epitope prediction tools. A prediction of strong binding affinity
suggests that an epitope will be presented to T-cells. But this requires an experimental assessment; and
(4) The population coverage of an epitope is related to MHC polymorphism that exists in humans.
The efficacy of epitope-based vaccine(s) can be limited due to variability of MHC alleles among
different ethnicities. This may reduce the maximum population coverage of epitope-based vaccine
leading to the failure of the vaccine to elicit T-cell immune responses. The current tools, IEDB
population coverage [64] and EPISOPT [65], that are used to predict the population coverage are based
on the limited experimental HLA frequency data from world-wide MHC allele frequency database
(http://www.allelefrequencies.net/).

T-cell immunity plays a critical role in viral clearance thereby reduction in disease severity.
Particularly, memory CD4+ T-cells can provide substantial protection against influenza infection
through direct effector mechanisms as well as indirect regulatory and helper functions [66–68].
In the absence of neutralizing antibodies, the cross-reactive T-cell immune responses towards the
well-conserved T-cell epitopes may play a significant role in promoting clearance of virus and reducing
disease severity [69–71]. This phenomenon was well documented during the 2009 pandemic H1N1,

http://www.allelefrequencies.net/
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as its unanticipated milder disease severity was largely attributed to the preexisting cross-reactive
T-cell immune responses towards the evolutionarily conserved T-cell epitopes between seasonal H1N1
and 2009 H1N1 strains [72–78]. Taken together, these studies suggest that an epitope-based universal
influenza vaccine can be developed by selecting the well-conserved and immunodominant epitopes
across influenza subtypes using the immunomics approach.

A major challenge in the design of epitope-based vaccines is to focus immune response onto
multiple well-conserved epitopes in order to elicit broad protective/neutralizing immune responses.
Epitope grafting or scaffolding, has been proposed as a solution for epitope-based vaccine design.
In this method, minimal epitopes that are highly conserved in pathogen are grafted onto an
appropriate heterologous-protein scaffold. Approaches for scaffold selection and design include
single algorithm-based tools like MAMMOTH or meta-servers like TM-align and consensus-based
designs [30]. Three main criteria have been proposed for the selection of scaffold that include size,
where smaller-sized scaffolds help to focus immune responses to grafted epitopes while preventing
unwanted responses to scaffold. Second criterion is the flexibility of scaffold with a possible positive
correlation between flexibility and immunogenicity. The third criterion is the structural environment
of the graft. A well-defined structural boundary between protein scaffold and epitopes enhances the
specificity of immune responses [30].

3.2.2. Advanced Universal Influenza Vaccines in Clinical Development

There are currently three promising epitope-based universal influenza vaccines, FP-01.1, Flu-v and
Multimeric-001 (M-001) are at different stages of clinical trials (Table 2). Each vaccine is briefly
described below.

FP-01.1 vaccine (also called as Flunisyn™), comprises six different synthetic peptides (length:
35 amino acids) each conjugated to the fluorocarbon moiety C8F17(CH2)2-COOH. These epitopes were
derived from the nucleoprotein (NP), matrix protein (M), and polymerase basic proteins (PB1 and PB2)
and have high level conservancy across H1-H9 influenza A subtypes with wider population coverage.
The phase I clinical trial [79] results observed that vaccine has acceptable safety and tolerable profiles
and generate robust CD4+ and CD8+ T-cellular immunity [80].

Flu-v vaccine contains multiple highly conserved T cell epitopes derived from NP, matrix proteins
(M1 and M2) from influenza A and NP from influenza B viruses and are conserved across most influenza
viruses with high population coverage [81,82]. The phase II clinical trials with adjuvant+Flu-v triggered
the T-cellular responses and also induced antibody response [83].

Multimeric-001 (M-001), a universal influenza epitope-based vaccine, is currently at the pivotal
phase III clinical trial to assess the safety and clinical efficacy as a standalone universal flu vaccine in
participants with age of older than 50 for a two-year follow-up [84]. M-001 comprised with a single
recombinant protein that contains nine linear, conserved and common epitopes from NP, M1, and HA of
influenza A and B viruses to activate both humoral and cellular immune system to provide multi-strain
protection from the seasonal and pandemic influenza viruses [85]. The predicted population coverage
of these selected epitopes is greater than 90%. The epitopes from the HA1 region which is hypervariable
were not included in the M-001. At phase II clinical trial in 120 participants aged 65 years and older,
M-001 was first administered to the study participants and three weeks later they were immunized with
2011-2012 seasonal trivalent inactivated vaccine. Results reported that M-001 alone elicited cellular
responses and enhanced HA inhibition seroconversion to 2011/12 vaccine strains, and even to certain
former vaccine strains [86].

The positive note on the epitope-based universal vaccine efficacy in eliciting the robust immune
responses at clinical trials underpins the immunomics in advancing the current vaccine development
approaches to prevent infections from remerging or emerging highly evolving influenza viruses.
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Table 2. Promising epitope-based universal influenza vaccines at clinical trials.

Vaccine Company Projects Clinical Phase Clinical Trial
Registration# Reference

I II III

FP-01.1
Immune Targeting Systems

Ltd., London, UK.

FP-01.1 completed completed
NCT01265914,
NCT01677676,
NCT02071329

Francis 2015 [80]

FP-01.1-Adjuvant completed NCT01677676 unpublished
FP-01.1 + seasonal TIV + FP-01.1-Adjuvant completed NCT01701752 unpublished

Flu-v PepTcell Limited Flu-v completed NCT01226758,
NCT01181336 Pleguezuelos 2015 [82]

adjuvanted Flu-v completed NCT03180801,
NCT02962908 van Doorn 2017 [83]

Multimeric-001
(M-001) BiondVax Pharmaceuticals Ltd

M-001 completed completed NCT01146119,
NCT01010737 Atsmon 2014 [86]

M-001 (prime) + seasonal TIV vaccine (boost) completed completed
NCT03058692,
NCT01419925,
NCT02293317

Atsmon 2014 [86]

M-001 (prime) + H5N1 vaccine (boost) completed completed NCT02691130 unpublished
M-001 as standalone vaccine ongoing NCT03450915 unpublished
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3.2.3. Computational Approaches that Incorporate Host Immunological Factors

Antibody repertoire analysis can be used to directly incorporate host immune response for
vaccine design. It combines sequence analysis with structural modeling and machine learning to
predict and analyze all the antibody affinity and specificities that can be produced by an individual,
which can be a valuable tool for quantitative evaluation of vaccine-induced immune responses [30].
Though it is currently used to characterize broadly neutralizing antibody (bnAb) lineages, with the
development of next-generation sequencing (NGS) technologies and systems biology, the analysis of
antibody repertoire encoded by B cells in the blood or lymphoid organs can be used to understand
humoral immune responses and to identify antibodies specific for antigens of interest in animal
models and human vaccine trials [30,87–89]. The antibody NGS can have impact on the rational
vaccine design by decoding the human immune responses and delineating B and T cell antigen
receptors [90,91]. This approach has been well developed in HIV-1 to identify hypervariants and
evolution on neutralization and binding to bnAbs [92,93] and explore the antibody lineage via
phylogenetic modeling [89,94]. These technologies and bioinformatics tools can be applied to influenza
virus vaccine design with creating library of antibody repertoire by NGS. The library then can be used
in computational approaches to quantitatively measure the immune responses and further to predict
the effects of vaccine candidates without completely relying on costly animal tests.

The main limitation with this approach is that linear sequence may not accurately predict the
conformational variations when these antigens are put back in a complete protein context [95]. When the
conformational structure of the epitope is not accurate, the corresponding immune response cannot
be precisely computed [96]. To solve this issue, some high-performance bioinformatics tools such as
molecular dynamics simulations can be used to predict the 3-D structure and stability of proteins or
peptides [97,98]. Furthermore, in the previous section, the successful maintenance of the conformational
epitope in these clinical tested vaccines has provided positive evidence for epitope-based universal
vaccine design. Taken together, with this antibody repertoire analysis tool, the computational estimation
of immune stimulation of these predicted viral antigens in hosts could be more accurate.

3.3. The Pathogen

3.3.1. Model-free Consensus-Based Optimized Approach

Consensus sequences are usually generated by aligning and comparing multiple sequences
and selecting the most common residue at each position (Figure 2A). These sequences are expected
to effectively capture a profile of conserved genetic and epitope information which can induce
cross-reactive cellular immune responses [99]. The outcome of this approach is a sequence alignment
with conserved antigens that can be expressed on virus-like particle (VLP), which are similar to intact
virions but not pathogenic [41,100]. Influenza VLP vaccines have advantages that a live virus is not
used at any step during vaccine production [101] and they can maintain conformational epitopes by
presenting surface antigens in their original structures. Consensus-based studies [29,99,101] have
generated consensus sequences for NA protein of H1N1 and several influenza proteins of H5N1,
including HA, NA and matrix protein M1, which have elicited broadly-reactive immune response.
However, the nature of consensus-based antigen design determines that it is highly influenced by the
input sequences and thus subject to sampling bias [102]. For example, H5N1 isolates were sampled
in different geographical locations and from different hosts, including human and avian. If samples
from one location or one host are overrepresented in the sequences used to generate consensus, then
it can bias the output consensus sequence, which may not accurately represent the full conserved
genetic profile of the whole H5N1 population. To overcome issues from sampling bias, an iterative
optimization strategy has been implemented in an approach known as computationally optimized
broadly reactive antigens (COBRA) [41].

The critical step in designing COBRAs is to use multiple rounds of consensus generation.
Within each phylogenetic subclade of the influenza virus subtype, the primary consensus with the
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most common amino acid at each position is generated for each individual outbreak group that is
defined based on geographic location and collection time. The secondary consensus is generated from
the primary consensus to represent the subclade. The third or fourth consensus is generated based on
previous round of consensus, until the final consensus is generated and termed COBRAs [41].

The COBRAs generated by multiple rounds of consensus generation are representative of the
diversity in the viral population and are able to induce neutralizing antibodies or other immune
boosting response to protect against past, current and ideally, future circulating strains of this specific
HA subtype [27]. COBRAs-based designed HA protein of H1, H3 and H5 have been tested with in-vitro
assays and animal models. This preclinical evidence has showed broad HA inhibition antibody titers
that were cross-reactive with different strains within the same subtype [28,41–43,45]. This approach
has advantages over other universal vaccine candidates, because COBRA HA-elicited antibodies are
able to neutralize the receptor binding site and the design has a clear path towards clinical proof of
correlate for protective efficacy in humans [28]. However, there are some concerns associated with
this approach. To be universally cross-reactive, the ideal CORBA HA protein should contain all the
conserved information present in multiple subtypes. The conserved immunogenic profile of consensus
sequences from COBRA approach is dependent upon the sharing of epidemiological and genetic data
collected during public health investigations and surveillance of outbreaks. With biased viral samples,
the consensus sequence generated may not represent the full profile of conserved immunogenicity along
viral evolving history. Even with increased global efforts to collect data and characterize epidemics it is
unlikely that sufficient data could be collected to overcome this challenge. Alternative approaches, such
as phylogenetic modeling of viral proteins along a characterized evolutionary trajectory that account
for impacts of sample biases and missing data could greatly improve design of COBRA candidates.

3.3.2. Phylogenetic Model-Based Approaches to Ancestral Sequence Reconstruction

Another way to identify potential broadly reactive antigens is ancestral sequence reconstruction,
which is to computationally infer ancestral gene sequences and the translated ancestral protein sequence
(Figure 2B) [103]. Ancestral sequences can reveal conserved functions of the pathogen protein where
the potential cross reactivity of the ancestral virus would also be evolutionarily conserved [104].
These conserved functions may indicate potential immune targets. Phylogenetic evolutionary models
have been used to infer influenza viral evolutionary history for decades with molecular data, including
the analysis of large phylogenetic trees, complex evolutionary models for more accurate ancestral
inference and detection of the imprints of selection pressure in molecular sequences [105,106].
Phylogenetic algorithms have been developed to reconstruct ancestral sequences for broadly-reactive
vaccine design [44,107]. This phylogenetic approach with marginal reconstruction yields the maximum
likelihood at the site with a specific amino acid after comparing all probabilities of different amino
acids at a site on an internal node [107]. It can more accurately account for sampling bias and the
variability of substitution rates among sites that can affect the consensus approaches described above.

In detail, Ducatez and colleagues [44] developed an ancestral sequence reconstruction method
for highly pathogenic avian influenza (HPAI) H5N1 surface proteins HA and NA. Based on a
maximum likelihood tree, several ancestral sequences were reconstructed at the internal nodes of
co-circulating HPAI H5N1 viral lineages to capture the conserved genetic characteristics of these
viruses. These ancestral sequences were synthesized into attenuated influenza viruses that could
replicate. Their cross-reactive protection against H5N1 morbidity and mortality have been confirmed in
preclinical experiments with ferret models. These findings provide strong evidence that computationally
derived vaccine candidate sequences and these technologies should be used to explore and enhance the
cross-reactivity, which can be easily fit into the current licensed vaccine platform. These computationally
derived ancestral sequences as vaccine candidates may help in avoiding the detrimental effects of
antigenic drift on the vaccine effectiveness. But this approach can be weakened by phylogenetic
uncertainty in particular when trees possess long branches due to insufficient information [108].
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The functional and structural domains of pathogen protein can be under disparate immunologic
pressures and thus have impacts on the evolutionary phylogeny [109] and the accuracy of ancestral
sequence reconstruction. Even though advanced models, including those that account for protein
sequence and structure [110,111] have not been applied for vaccine design, the computational approach
is promising. Precise estimation of influenza virus evolution including protein structural and its
functional information supported by experimental data [112], may help to efficiently identify and
select target antigens for universal vaccine design [30].

The integration of protein functions and structures into evolutionary models has two main
challenges: (1) published viral protein structural and functional information may not be available or
sufficiently resolved based on current studies; and (2) The assumption of nucleotide site independence
in the model cannot capture the biological reality that some sites are linked due to shared function [113].
Some modeling approaches with a protein structure scoring system or partitioning schemes on the
protein sequence [98,110,111] can potentially overcome these challenges; for example, protein structure
has been explored with coarse-grained models for structure prediction, prediction of protein interaction
and molecular dynamics simulations of protein folding [98]. This provides the statistical potential like
a scoring system for sequence-structure compatibility, which can be used to evaluate the probability of
fixation of a given mutation and improve the precision of ancestral reconstruction [111]. However,
few studies have incorporated protein structural information into the evolutionary analyses. Simple
representations of protein functional and structural domains have been used so far. Hypothetically,
novel models with a more complete representation with a full site mapping of the protein functions
and structures would yield a better fit. But in a phylogenetic context, structurally informed models are
still outperformed by some site-independent models in terms of fit [111]. Preliminary data suggest
that this would become less of a concern with increased sharing of sequence data [110].

High-throughput experiments quantify the effects of all single substitutions on gene function
so that evolutionary model can adequately capture the heterogeneity of selection at different sites,
which may improve phylogenetic inference and ancestral sequence reconstruction [112,114]. The new
experimental technique is called deep mutational scanning, where a gene is randomly mutagenized
and subjected to functional selection in the laboratory, and then deep sequenced to quantify the
relative frequencies of mutations before and after selection [115,116]. This technique has been used to
quantify the impacts of codon changes to several proteins or functional domains [114,115,117–120].
This information of protein function from rapid high-throughput experiments may greatly improve
the precision of ancestral sequence reconstruction [121].

3.4. The Environment

Pathogen Evolvability

Uncovering the important ecological, immunological and environmental determinants on viral
evolution is very important to make predictions of the viral emergence, fitness, transmissions and
circulating potential after new substitution is introduced [122]. Evolvability, first coined by Kirschner
and Gerhart in 1998, means that the organism’s capacity to generate heritable phenotype [123].
The zoonotic nature and complicated ecology of influenza viruses make evolvability more difficult
to quantify and predict. But with the advances of phylogenetic algorithms, models can integrate
and evaluate the impacts of environmental determinants. For example, an important development
in phylogenetic modeling was the field of viral phylodynamics that was introduced in 2004 to
study “how epidemiological, immunological, and evolutionary processes act and potentially interact
to shape viral phylogenies” [124,125]. Dynamics of influenza virus infections and transmissions
at individual-level (such as viral evolution within an infected host), population-level (individual
hosts within a population), or ecology-level (entire populations of different host species) have been
studied [124]. Specially, phylodynamics have been used to study factors of interest on some viral
phenotypes, including virulence, viral transmissibility, cell or tissue tropism, and antigenic phenotypes
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that can facilitate immune escape, etc. [108,124]. Details of methods and examined significant factors
can be found in these reviews [108,124,125].

Furthermore, the complements between phylodynamic modeling and experimental testing can be
integrated together to improve prediction on influenza virus evolvability. For example, experimental
studies designed to assess viral evolvability [126,127] demonstrated that a measured fitness score or
estimated tolerance for mutations can be used in phylodynamic modeling to link phenotypes, genetic
characteristics and other ecological factors, which can improve the prediction of viral evolvability for
natural influenza virus strains [127]. The potential predictors and consequent mutations computed by
models can enhance our understanding on viral characteristics, potential immune escape, or influenza
antiviral drug resistance [128]. Challenges for this area are how to get accurate and sufficient information
on the epidemiological, immunological and ecological factors, how to expand, integrate and enhance
phylodynamic models [108], and how to gather the current modeling factors to improve prediction of
viral evolvability [122].

4. Resources and Efforts Needed for Computational Vaccine Design

Computational models with incorporating host-pathogen-environment can efficiently facilitate the
understanding of viral evolution and the selection on critical information for vaccine design. With the
challenges summarized above, extra resources and efforts are needed for developing computational
vaccine design.

4.1. Data Collection and Sampling Efforts

Computational vaccine design relies on the input data quality [30]. To be specific, the representative
of the collected samples, the completion and precision of recorded data, and the timely manner of
data sharing and availability can ameliorate the output from computational modeling [19,129,130].
Compared to other infectious disease sampling, influenza viruses have already established an excellent
global network of sentinel institutions to monitor outbreaks and collect human samples [131]. With the
lower cost of full-genome sequencing, a large amount of genetic data has been available for influenza
research. However, three main limitations exist in current surveillance: (1) the imbalanced sampling
efforts on different hosts and geographical regions; (2) the incompletion of data records [129]; and (3)
the delayed availability of sequence data [19,130].

The unequal sampling of geographical regions is caused by global and local resource
allocation [132]. Policies to globally optimize resource allocation with considering the representative of
collected samples from outbreaks in different regions are needed. But majorly, the unequal sampling in
zoonotic hosts is more severe. Human influenza outbreaks have been well monitored and sampled [129].
However, to better understand viral evolvability and predict potential pandemic emerging from
zoonotic strains, more sampling efforts are definitely necessary in animal hosts, especially wild aquatic
birds [129]. Olson et al. [129], examined 11,870 GenBank records and reviewed 50 non-overlapping
studies and over 250,000 birds to access the status of historic sampling efforts during 1977–2012, where
they found that sampling in different hosts, location and viral subtypes are severely imbalanced and
there are a high proportion of non-tested samples globally. If we aim to identify a high proportion
of the virus subtypes in circulation in a given time period with limited resources, a sample-based
accumulation curve can provide an initial rationalization and optimal sample size for avian influenza
virus surveillance [129,133,134].

The affiliated sequence meta-data records have been improved with samples from recent years;
however, the epidemiological information, viral phenotypic characteristics and host characteristics
are not sufficiently recorded. With no accurate information on geographical region, host species and
migratory pathways and viral characteristics, we do lose lots of power in our model inference [135],
not to say improving the prediction of viral evolvability. GISAID [35] and GenBank [36], these open
access database platforms have facilitated the accessibility and sharing of influenza sequence data to
the science community. Despite the availability of these platforms, the sharing of viral sequence data is
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often long after the outbreaks and records are frequently incomplete [136]. Therefore, a standardized
protocol on how to record collected samples and what information is needed to report should be
established for sharing more complete viral and host-related information.

4.2. Integration of Experimental Evidence and Model Development

As shown in Figure 2, computational models that fully integrate multiple sources of information,
including experimental evidence, could aid in the identification of critical components for vaccine
design. However, we cannot solely rely on computational design, where computed antigens have
uncertain biological effects. Experimental evidence (Figure 1) from animal models or approved human
clinical trials are valuable to be incorporated into computational design. The experimental data on
pathogen immunogenicity and host immune system can first provide preliminary evidence on natural
or computed antigens and further amplify the usage of this new evidence to the computational
procedure for more accurate prediction and evaluation [19].

More complicated and realistic models previously limited by computing capability can be
developed with the advances of computing power [137]. For example, it becomes possible to
develop viral phylodynamic models that can incorporate results from laboratory experiments of
viral antigens and host immune responses [108]; The development on structured coalescent for better
estimation on viral population and mutation or migration events [138,139]. Furthermore, to avoid
overparameterization, model selection procedure should be applied during the process of novel model
development to optimize the balance of biological reality and parameterization [137,140]. With all
these, the next step would be to introduce and apply machine learning to the computational process
for vaccine design.

Machine learning is a subset of artificial intelligence in the field of computer science, which usually
uses statistical techniques and mathematical models to make computers “learn” with data without
being explicitly programmed, that is, performance on a specific task progressively improves [141].
Machine learning algorithms discover patterns in data and construct mathematical models using
these prior discoveries. One advantage of machine learning is that the models can be used to make
predictions on future data by cumulating from previous evidence and improving on forecasting
algorithms [142–144]. Though still in an early phase of implementation, the concept of machine
learning has been used in viral evolutionary modeling and has been a rapid way to gather and
update information based on known information [145,146]. Machine learning can incorporate different
modeling steps and all available surveillance, genetic and experimental data to keep updating
information and make predictions for computational vaccine design (Figure 1). For example, the
model of conserved epitope prediction mentioned in previous sections can also be incorporated into
the platform with host and environmental factors to make prediction on currently circulating viruses,
where broad-reactive vaccine candidates can be rapidly computed and tested.

5. Conclusions

For decades, we have been using the traditional approaches to design and develop influenza
vaccines. The rapid genetic changes and antigenic drift of influenza virus populations result in
short-term protection necessitating continual vaccine updates with novel viral components based on
analysis of globally circulating variants. Furthermore, these vaccines do not offer any immunological
protection against potential pandemic zoonotic strains, one of the lessons learned through the
unprecedent appearance of swine-origin 2009 pandemic H1N1 virus.

Recent decades have witnessed the technological advancements in the viral genetic sequencing
and computational modeling in tracing the complexities involved in the interactions of host-
pathogen-environment that produced important insights into influenza disease dynamics across
biological scales. Integrating these computational and technological pipelines into the vaccine design
protocols can facilitate the development of a broadly cross-reactive, evolutionarily-resistant universal
influenza vaccine.
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