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A B S T R A C T   

Background: DNA methylation can play a pathogenic role in the early stages of hyperglycemia linking homeo-
stasis imbalance and vascular damage. 
Material and methods: We investigated DNA methylome by RRBS in CD04+ and CD08+ T cells from healthy 
subjects (HS) to pre-diabetics (Pre-Diab) and type 2 diabetic (T2D) patients to identify early biomarkers of 
glucose impairment and vascular damage. Our cross-sectional study enrolled 14 individuals from HS state to 
increasing hyperglycemia (pilot study, PIRAMIDE trial, NCT03792607). 
Results: Globally, differentially methylated regions (DMRs) were mostly annotated to promoter regions. Hyper-
methylated DMRs were greater than hypomethylated in CD04+ T cells whereas CD08+ T showed an opposite 
trend. Moreover, DMRs overlapping between Pre-Diab and T2D patients were mostly hypermethylated in both T 
cells. Interestingly, SPARC was the most hypomethylated gene in Pre-Diab and its methylation level gradually 
decreased in T2D patients. Besides, SPARC showed a significant positive correlation with DBP (+0.76), HDL 
(+0.54), Creatinine (+0.83), LVDd (+0.98), LVSD (+0.98), LAD (+0.98), LVPWd (+0.84), AODd (+0.81), HR 
(+0.72), Triglycerides (+0.83), LAD (+0.69) and AODd (+0.52) whereas a negative correlation with Cholesterol 
(− 0.52) and LDL (− 0.71) in T2D. 
Conclusion: SPARC hypomethylation in CD08+ T cells may be a useful biomarker of vascular complications in 
Pre-Diab with a possible role for primary prevention warranting further multicenter clinical trials to validate our 
findings.   

1. Introduction 

According to the World Health Organization (WHO), the prevalence 
of prediabetes (Pre-Diab) has increased in the past 10 years and its 
incidence will continue to increase in the coming years [1,2]. This in-
termediate metabolic state between normoglycemia and diabetes is 
associated with an increased risk of type 2 diabetes (T2D), and cardio-
vascular diseases (CVDs) [1,2]. Currently, it is estimated that Pre-Diab 

affects about 40% of the adult individuals of which about 5–10% can 
develop T2D while the remaining part could present macrovascular 
complications, mostly coronary heart disease (CHD) and microvascular 
damage [3–5]. Pre-Diab and T2D are highly heterogeneous at the mo-
lecular and clinical levels in which environmental risk factors, such as 
poor diet and sedentary life, play a relevant role in affecting the indi-
vidual genetic background associated with the risk of CVD onset. Thus, 
the identification of novel candidate genes affecting individual sensi-
tiveness to CVDs in increasing hyperglycemia offers a relevant route to 
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clarify the molecular mechanisms underlying the early pathogenesis of 
vascular damage, a necessary prerequisite for the rational development 
of novel preventive biomarkers and drug targets. 

DNA methylation can directly impact gene expression at transcrip-
tional level [6], and several clinical studies demonstrated that periph-
eral insulin resistance, hyperglycemia, and inflammation can 
significantly alter DNA methylome of circulating cells in early stages by 
providing a putative mechanistic link between glucose homeostasis 
imbalance and vascular damage [7–13]. DNA methylation mainly oc-
curs at cytosine bases of cytosine-phosphate-guanine (CpG) di-
nucleotides which are enriched in gene promoters and “CpG 
islands”representing large regions with about 50% of CpG [6]. Gener-
ally, hypermethylation of CpG sites in gene promoters, or associated 
CpG islands, can inversely modulate gene expression in a 
spatio-temporal manner [6]. We hypothesized that DNA methylation 
changes can appear already at the Pre-Diab state or during the transition 
to T2D providing putative novel candidate genes underlying vascular 
damage which might be useful as early biomarkers for primary 
prevention. 

Our group has a longstanding experience in epigenetics and CVDs 
[14–23]. This pilot study is part of the clinical trial PIRAMIDE 
(NCT03792607) aimed at investigating early epigenetic interactions in 
diabetes and its progression by combining big data and 
network-oriented analysis [24]. We performed a very complex DNA 
methylome analysis on both circulating CD04+ and CD08+ T cells iso-
lated from healthy subjects (HS), Pre-Diab, and T2D patients (Fig. 1A). 
We aim to identify differentially methylated regions (DMRs) and an-
notated genes to clarify if these circulating cells may carry out detri-
mental signals underlying early vascular damage. Indeed, as previously 
reported in patients with acute coronary syndrome (ACS) [25], which 
are strongly associated with hyperglycemia [26], alterations of 
methylation signatures in both CD04+ and CD08+ T cells provided po-
tential clinical biomarkers and therapeutic targets [26–28]. Since DNA 
methylation into regulatory regions is highly correlated with 

cell-specific patterns of repressive chromatin marks [6], we chose the 
reduced representation bisulfite sequencing (RRBS) platform which 
provides an enrichment of both promoters and CpG islands [29]. By 
using liquid-based assays, the identification of novel early and 
non-invasive molecular biomarkers may help physicians to select 
high-risk hyperglycemic patients, and stratify the risk of developing 
CHD and vascular complications [30]. 

2. Materials and methods 

2.1. Patient enrollment 

In this pilot study, we enrolled a subgroup of patients from our 
ongoing PIRAMIDE clinical trial [24] (NCT03792607) by including a 
total of 14 individuals classified in HS, Pre-Diab, and T2D. Following, 
the main clinical characteristics distributed among the three groups: 
body mass index was higher in Pre-diab and T2D patients, even if not 
statistically significant. Otherwise, glycemia, Hb1Ac, insulin, total 
Cholesterol, and LDL-C showed significant increased levels from normo- 
to hyperglycemia. Our study population was recruited at the Depart-
ment of Advanced Medical and Surgical Sciences (DAMMS), University 
of Campania "Luigi Vanvitelli". Patients were clinically diagnosed as 
Pre-Diab and T2D based on clinical history, symptoms, and laboratory 
tests, according to the current guidelines [31]. Specifically, Pre-Diab 
was diagnosed by evidence of fasting plasma glucose ≥5.6 mmol/L 
but <7.0 mmol/L (100–125 mg/dL; impaired fasting glucose, IFG), a 2-h 
glucose ≥7.8 mmol/L but <11.1 mmol/L during a 75 g oral glucose 
tolerance test (OGTT) (140–199 mg/dL; impaired glucose tolerance, 
IGT), or a plasma hemoglobin (Hb) A1c ≥5.7% but <6.4%. T2D was 
diagnosed by evidence of IFG>7.0 mmol/L (>125 mg/dL), 
post-prandial glycemia >11.1 mmol/L (>200 mg/dL), and evidence of 
HbA1c>6.6%. Patients with a known history of malignancy disorders, 
active infections, and chronic or immune-mediated diseases were 
excluded from the study to avoid confounder effects. As controls, we 
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selected subjects free of hyperglycemia and with no signs and symptoms 
of vascular damages or medication use. This study was approved by the 
local Ethical Committee (Protocol N. 114) and all patients signed a 
written informed consent. The study was conducted following the 
principles of the Declaration of Helsinki. 

2.2. Clinical data analysis 

Statistical analysis was performed to compare clinical characteristics 
for Pre-Diab and T2D groups by using R software (version 3.03). 
Continuous variables were expressed as mean ± standard deviation or 
standard error. Unpaired Student’s t-test was used for comparison be-
tween two groups. Categorical variables were expressed as percentages 
and were compared using the Chi-Square test or Fisher’s exact test. A p- 
value of <0.05 was considered significant. 

2.3. Cell isolation and DNA extraction 

Peripheral venous blood samples (about 25 mL) were collected from 
HS and patients and processed immediately after the blood draw. Pe-
ripheral blood mononuclear cells (PBMCs) were separated from whole 
blood by Ficoll gradient using Histopaque®-1077 (Sigma-Aldrich), 

according to manufacturer’s instructions. Then, T cells were separated 
and purified, and genomic DNA (gDNA) samples were immediately 
extracted according to manufacturer’s instructions (Supplementary S1) 
(Supplementary Fig. 1). 

2.4. Library preparation 

Sequencing was performed at the Genomix4Life S.r.l. (Salerno, 
Italy). Briefly, 2 μg of gDNA were used for each library preparation. DNA 
samples were digested by MspI restriction enzyme and purified with the 
GeneJet PCR Purification Kit (Thermo Fisher Scientific). All libraries 
were prepared by TruSeq Library Prep Kit (Illumina) and bisulfite con-
version was obtained using the EZ DNA Methylation-Gold Kit (Zymo 
Research). DNA amplification reaction was performed using Pfu-
TurboCxHotstart DNA Polymerase (Agilent Technologies, USA) and the 
amplified fragments were purified by AMPure XP Beads. Finally, they 
were quantified by the Agilent 4200 TapeStation (Agilent Technolo-
gies). Each DNA library was analyzed by paired-end sequencing read (2 
× 75 cycles) on Illumina Nextseq 500. 

Fig. 1. A) Dynamics of DNA methylation in different stages of impaired glucose homeostasis. PIRAMIDE clinical trial aimed at investigating early epigenetic- 
sensitive regulatory networks in different stages ranging from normoglycemia to Pre-Diab and conclamate T2D. B–C-D-E) Distribution of overlapping and unique 
DMRs. Venn diagrams show the distribution of unique and overlapping DMR-related genes which have been identified in our three groups. The number of unique (B 
and D) and overlapping (C and E) DMRs in both CD04+ and CD08+ T cells is reported. 
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2.5. DNA sequence processing and alignment 

Raw reads were assessed for quality by using FastQC (v011.8, Bab-
raham Bioinformatics, UK) and trimmed to remove Illumina adaptors 
and low-quality reads using TrimGalore (v0.6.3, Babraham Bioinfor-
matics, UK) with the default settings (Supplementary S2). 

2.6. Downstream bioinformatic analysis 

2.6.1. Identification of differentially methylated regions (DMRs) 
We identified DMRs by using the R package (v1.10.0) [32]. For both 

T cell types, we explored and compared three DNA methylation profiles: 
1) HS vs Pre-Diab patients, 2) HS vs T2D patients, and 3) Pre-Diab vs T2D 
patients. To prevent PCR bias and increase the power of the statistical 
test, CpG sites covering less than 10 reads or more than the 99.9th 
percentile of coverage distribution in each sample were filtered out. 
Coverage values between samples were normalized as by default. Read 
coverage per base and correlation plots were calculated and displayed in 
Supplementary Fig. 2. To define DMRs, we used a tiling window of 1 Kb. 
DMRs among the three groups were defined as regions with more than 
25% methylation differences (|ΔM|) and q-value <0.01, after applying 
logistic regression by using the SLIM method to correct p-value for 
multiple hypothesis testing. Positive and negative values indicate hyper- 
and hypomethylation in patients, respectively. DNA methylation pro-
files covering >300,000 CpG dinucleotides in both T cell types isolated 
from each study participant were generated by using Illumina Nextseq 
500 platform. Then, multiple t-tests were performed. Overall, circu-
lating T cells revealed no statistically significant changes in global DNA 
methylation trend in HS vs increasing hyperglycemia (Supplementary 
Table 1). 

2.6.2. Gene annotation and functional analysis 
By using the R package ChIPseeker (v1.20.0) [33], we represented 

the % of DMRs located into promoters, coding sequences, introns, distal 
intergenic regions, 5′ UTR and 3′ UTR in all three datasets, for both T 
cells (Supplementary S3). 

2.6.3. Correlation analysis 
After DMRs annotation, we considered methylation levels of relevant 

overlapping DMR-related genes from both T cell types for correlation 
analysis. A significant association between their methylation status 
(hyper- and hypo-) and quantitative clinical parameters/laboratory tests 
for both T cell types and from each disease group was calculated by 
Spearman’s Correlation, using as threshold corr> 0.5. 

2.6.4. Chromatin state discovery and characterization 
We used the ChromHMM (v1.19) software [34] to characterize epi-

genomic regions according to 18 chromatin states, defined from both 
CD04+ and CD08+ T cells, and grouped in HS, Pre-Diab, and T2D. 
ChromHMM acquires chromatin state signatures by using a multivariate 
Hidden Markov Model (HMM) that fits the combinatorial and spatial 
presence or absence of each chromatin state. From these signatures, 
ChromHMM generates a genome-wide annotation for each cell type and 
condition by calculating the most probable state in each genomic 
segment. Then, we annotated two methylated groups by applying the R 
package ChIPseeker and we found 564 genes annotated to hypo-states 
and 8389 annotated to hyper-states. Finally, we performed functional 
analysis for only promoters regions (≤1 Kb), by using g: Profiler web 
server. 

Raw data have been deposited in the NCBI Gene Expression Omnibus 
(GEO) database under the accession number PRJNA600866 (htt 
ps://www.ncbi.nlm.nih.gov/sra). 

2.6.5. Gene prediction analysis 
GeneMANIA tool was performed to perform gene function pre-

dictions based on GO annotations patterns for genes of interest [35]. 

Only physical interactions were selected. 

3. Results 

3.1. Differentially methylated regions (DMRs) 

To characterize the most significant DMRs in distinct Pre-Diab and 
T2D groups, we firstly showed the distribution values for each sample. 
Annotated DMRs were mapped according to their distance from estab-
lished CpG islands. Globally, DNA methylation changes were rather 
concentrated among CpG islands located in the promoter regions (about 
30–35% of total DMRs), for both T cell types and each comparison 
(Supplementary Fig. 3). To individuate the overlapping changes during 
increasing hyperglycemia, we calculated the number of annotated DMR- 
related genes by using the Venn Diagram (Fig. 2A–D). Moreover, we 
performed heatmaps to show the DMR methylation changes in both T 
cells (Supplementary Fig. 4A-B) (Supplementary Tables 2 and 3). The 
summary of significant DMRs is shown in Supplementary Table 4. 
Moreover, we identified the genomic locations which were most 
impacted by changes in DNA methylation between HS and increasing 
hyperglycemia. Then, we discerned hypo- and hypermethylated DMRs- 
related genes (Supplementary Fig. 4C-D). In general, we observed that 
the number of hypermethylated DMRs was greater than those hypo-
methylated in CD04+ T cells; on the contrary, CD08+ T cells showed a 
higher number of hypomethylated DMRs than hypermethylated ones. 

3.1.1. Analysis of CD04+ T cells 
We identified 437 DMRs (FDR<0.05) and 418 annotated genes, of 

which 35% (n = 154) were hypo- and 65% (n = 283) were hyper-
methylated in HS vs Pre-Diab (Supplementary Table 5). Moreover, from 
the comparison between HS and T2D, we identified 351 DMRs (FDR 
<0.05) associated with 335 annotated genes, of which 32% (n = 112) 
were hypo- and 68% (n = 239) were hypermethylated (Supplementary 
Table 6). Finally, from the comparison between Pre-Diab and T2D 
groups, we identified 84 DMRs (FDR <0.05) associated with 83 anno-
tated genes of which 51% (n = 43) were hypo- and 49% (n = 41) were 
hypermethylated (Supplementary Fig. 4C). 

3.1.2. Analysis of CD08+ T cells 
We identified 594 DMRs (FDR < 0.05) of which 74% (n = 438) were 

hypo- and 26% (n = 156) were hypermethylated associated with 566 
annotated genes by comparing HS vs Pre-Diab group (Supplementary 
Table 7). From the comparison between HS and T2D, we identified 786 
DMRs (FDR <0.05), of which 68% (n = 535) were hypo- and 32% (n =
251) were hypermethylated and associated with 717 annotated genes 
(Supplementary Table 8). Finally, from the comparison between Pre- 
Diab and T2D groups, we identified 62 DMRs (FDR <0.05) of which 
37% (n = 23) were hypo- and 63% (n = 39) were hypermethylated and 
associated with 59 annotated genes (Supplementary Fig. 4C). 

3.1.3. Overlapping DMRs in CD04+ T of HS vs Pre-diab and T2D 
By analyzing the heatmap, we noticed that there were some clusters 

of DMR-related genes which retained the same hyper- or hypo-
methylation level in increasing hyperglycemia, as depicted in red boxes 
(Supplementary Fig. 5A). We focused on the top 18 highly significant 
DMR-related genes, which were shared in HS vs increasing hypergly-
cemia, of which 13 were hyper- and 5 were hypomethylated (Fig. 2A and 
B) (Supplementary Table 9). Moreover, we reported two opposite trends 
for DNA methylation in HS vs increasing hyperglycemia. The first trend 
demonstrated an increasing grade of DNA methylation from normo- to 
increasing hyperglycemia. GIGYF2 gene resulted in the highest hyper-
methylated gene (q = 2.85E-19 and q = 1.78E-21 in Pre-Diab and T2D, 
respectively). However, the ZNF564 gene showed the highest fold 
change (FC = 15) of differential methylation between Pre-Diab and T2D 
(Fig. 2A). The second trend demonstrated an increased level of hypo-
methylation from normo- to increasing hyperglycemia. In particular, the 
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MT1X gene resulted in the highest hypomethylated gene (q = 3.01E-09 
and q = 6.21E-10 in Pre-Diab and T2D, respectively) (Fig. 2B). However, 
KLK10 and PSMB10 genes showed the highest FC of differential 
methylation (FC=6) both in Pre-Diab and T2D. Interestingly, MT1X gene 
presented an inverse correlation with SBP (− 0.70), DBP (− 0.82) and 
AODd (− 0.64) in Pre-Diab group and with SBP (− 0.55), Glucose 
(− 0.54), Cholesterol (− 0.64), LDL (− 0.71), LVSD (− 0.65) in T2D pa-
tients, as well as a positive correlation with Triglycerides (+0.66). 

3.1.4. Overlapping DMRs in CD08+ T of HS vs Pre-diab and T2D 
We identified a total of 60 DMR-annotated genes, of which 40 were 

hypo- and 19 hypermethylated in HS vs hyperglycemia (Supplementary 
Fig. 5B). We focused on the top 20 highly significant DMR-related genes 
shared in HS vs increasing hyperglycemia, of which 7 were hyper- and 
13 were hypomethylated (Supplementary Table 10). Also, we reported 
two opposite trends for DNA methylation in HS vs increasing hyper-
glycemia. The first trend demonstrated an increased level of DNA 
methylation from normo- to increasing hyperglycemia (Fig. 2C). NLRP7 
resulted the highest hypermethylated gene (q = 4.50E-42 and q = 3.49 
E-60 in Pre-Diab and T2D, respectively). On the other hand, the PYCR1 
gene showed the highest FCof differential methylation (FC=18) in HS vs 
increasing hyperglycemia. The second trend demonstrated a decreasing 
grade of methylation from normo- to increasing hyperglycemia 

(Fig. 2D). In particular, SPARC resulted the highest hypomethylated 
gene (q = 3.77E-18 and q = 1.20E-14 in Pre-Diab and T2D, respectively). 
TAB2 gene showed the highest FC (FC= 6) (q = 1.54E-15 and q = 1.51E- 
07 in Pre-Diab and T2D, respectively). We noticed that SPARC charac-
terized Pre-Diab condition, showing a positive correlation with DBP 
(+0.76), HDL (+0.54), Creatinine (+0.83), LVDd (+0.98), LVSD 
(+0.98), LAD (+0.98), LVPWd (+0.84), AODd (+0.81), HR (+0.72), 
Triglycerides (+0.83), LAD (+0.69) and AODd (+0.52) whereas a 
negative correlation with Cholesterol (− 0.52) and LDL (− 0.71) in T2D. 

3.2. Functional analysis 

DMR-related genes of CD04+ T cells in Pre-Diab patients were mainly 
involved in the early damage to the micro-domains leading to abnor-
malities of eye morphology, physiology, and movement as well as 
neurogenesis (Supplementary Table 11). In CD08+ T cells from Pre-Diab 
patients, DMRs were associated with abnormalities of the central ner-
vous system mainly involving high mental function and brain 
morphology as well as eye abnormalities. Moreover, it raised during 
early damage of cardiac muscle tissue, newly developed blood vessels, as 
well as liver, limb, and muscle (Supplementary Table 12). 

Besides, we evaluated the functional characteristics and signaling 
pathways associated with overlapping DMR-related genes in HS vs 

Fig. 2. Trend of methylation in overlapping DMR-related genes. The bar plots show the fold change (FC) of methylation level s associated to the top overlapping 
DMR-related genes in CD04+ (A and B) and CD08+ (C and D) T cells. Red circles indicate DMR-related genes with the higher FC of methylation in HS vs Pre-Diab and 
T2D (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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increasing hyperglycemia (Supplementary Table 13). From results, the 
binding protein was the most prominent in the molecular process group, 
followed by catalytic activity (mainly hydrolase and transferase en-
zymes), nucleic acid binding, and transcription process. Interestingly, 
the human phenotype group highlighted abnormalities of the vascula-
ture, mainly aortic morphology and cardiac system. Moreover, abnor-
malities in the eye, digestive system, muscle-skeletal system (mainly 
hypotonia), immune system, and liver were predicted. A detailed GO 
analysis of significantly DMR-related genes in increasing hyperglycemia 
was summarized (Supplementary Table 14). At the biological process 
level, a major regulation of the immune system and neuron development 
was observed followed by hematopoiesis and response to lipid. KEEG 
database highlighted the involvement of the insulin signaling pathway, 
whereas REACTOME database pointed to signal transduction (cytokines, 
interleukins, receptor tyrosine kinases), immune system, metabolism, 
transcription regulation, and neural system, mainly protein-protein in-
teractions (PPIs) at synapses. 

3.3. Chromatin state discovery 

We applied ChromHMM, a machine learning approach evaluating 

epigenomic information (called marks) across multiple cell types 
(CD04+ and CD08+ T cells) and multiple conditions (HS, Pre-Diab, T2D). 
As reported, this method allows us to recognize chromatin states, by 
identifying their genomic occurrences (see supplementary data). The 
combination of multiple marks and the relative genomic annotation can 
be highly informative of distinct biological functions. Starting from 18 
emission states (Fig. 3A–C) (Supplementary Table 15), we selected only 
genomic regions associated with a decreased (state 1) or increased 
(states 7, 9) methylation level. We found 600 genomic regions associ-
ated with hypo-state 1 and 13,947 associated with hyper-states 7 and 9 
from Pre-Diab to T2D. GO analysis is illustrated in Fig. 3C and D. 
Interestingly, we observed that most states were distinctly associated 
with hypermethylation status during increasing hyperglycemia. From 
REACTOME, we found 54 genes, such as CD36, PPP2R5C, and SOS1 
involved in the pathogenesis of “insulin resistance”, “glycemic control of 
T2D′′ and “CVDs”. Moreover, we noticed a lot of genes involved in 
“innate and adaptive immune system pathways”. Finally, also through 
GO analysis, we found alterations in numerous “human phenotypes”. A 
total of 51 genes characterized the increased “inflammatory response”. 
In particular, some cytokine genes, such as IL-1, several complement 
cascade members, such as C5 and C4B showed a pathogenic role in 

Fig. 3. ChromHMM analysis parameters. In the upper panel, we report the combination of multiple marks (Emission and Transition parameters) (A-C) and the 
relative genomic annotation (Fold Enrichments Genome_18) from 18 emission states. In the lower panel, the bar plots show the enrichment score (− log10Pvalue) for 
Human Phenotype GO terms from genes associated to hypo- (D) and hyper-(E) states characterizing hyperglycemic status. 
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“arterial hypertension”, whereas SMAD3 mediated “diabetic cardiac 
hypertrophy”. 

3.4. Gene prediction 

We interrogated GeneMANIA to predict SPARC interactions, in 
particular PPIs, and function in the human interactome by selecting only 
physical interactions. We obtained a network of 21 nodes and 537 total 
links. We observed that SPARC protein interacts with twenty other 
proteins which are significantly annotated to an extracellular matrix 
organization, platelet activation, leukocyte migration, and differentia-
tion as well as organ and embryonic development. 

4. Discussion 

Our study showed that: 1) the number of hypermethylated DMRs was 
greater than those hypomethylated in CD04+ T cells during increasing 
hyperglycemia, whereas the opposite trend was observed in CD08+ T 
cells; 2) functional analysis of DMR-related genes revealed that in 
CD04+ T cells early modifications of DNA methylation were already 
evident in Pre-Diab patients leading to possible ocular damage. More-
over, we did not observe an association between DMRs and vascular 
damage for T2D patients in CD04+ T cells. In contrast, we observed that 
different methylation profiles in CD08+ T cells were involved both in 
micro- and macrovascular damage from Pre-Diab to T2D patients 
(Fig. 4A); and 3) circulating T cells showed a set of overlapping DMR- 
related genes with increasing or decreasing levels of DNA methylation 
from Pre-Diab to T2D patients. Pre-Diab represents a high risk for T2D 
onset and inflammatory-induced vascular damage in asymptomatic 
patients [1,2]; however, there are no stringent diagnostic criteria to 
define when and what pharmacotherapy may aid to prevent cardiac 
dysfunction at the individual level. [36] 

The strengths of our study are that we evaluated and compared the 
differential DNA methylation profiles of CD04+ and CD08+ T cells 
focusing on the promoter regions which may contribute to early vascular 
damage in different stages of impaired glucose homeostasis. Recently, a 
DNA methylome analysis reported a predominant contribution from 
CD04+ and CD08+ T cells in regulating expression levels of IL6R, FASLG, 

and CCL18 genes in ACS patients vs HS suggesting a significant role in 
disease pathogenesis [25]. Since the pathogenesis of ACS is related to 
vasculature damage and diabetes [37], we hypothesized that DNA 
methylation changes in both CD04+ and CD08+ T cells may reveal early 
molecular signals of cardiac dysfunction in Pre-Diab and T2D. 

Previously, DNA methylome analysis was focused on PBMNCs [11, 
13] and tissue biopsies [12,38,39] isolated from HS vs T2D patients, 
without considering the Pre-Diab state. Moreover, PBMNCs and tissue 
biopsies are characterized by cell heterogeneity which does not fit with 
the cell-specific DNA methylation patterns limiting the identification for 
starting sites of disease pathogenesis. Another strength of our RRBS 
analysis is that we specifically analyzed DMRs rather than the methyl-
ation level of single CpG dinucleotides. In fact, DMRs can control 
spatiotemporal gene expression, have the most statistical power and 
by-pass putative effects of genetic polymorphisms during 
epigenome-wide association studies [40]. 

Our epigenetic trajectories suggested that hyperglycemia might early 
affect the interactome of both CD04+ and CD08+ T cells already in Pre- 
Diab patients by regulating DNA methylation at a different set of genes. 
Interestingly, SPARC was the most hypomethylated gene in Pre-Diab 
and its methylation level gradually decreased in CD08+ of T2D pa-
tients. SPARC gene encodes for a multifunctional protein modulating the 
interaction between cells and the extra-cellular matrix (ECM) by the 
regulation of collagen and vitronectin [41]. SPARC protein is involved in 
many processes including wound healing, inflammation, angiogenesis, 
cardiac remodeling, and modulation of growth factor signaling [41]. 
Moreover, SPARC is expressed in adipocytes and pancreatic cells with 
profibrotic effects [41]. 

Since the negative correlation between DNA methylation promoter 
and gene expression, we would expect gradually increased levels of 
SPARC protein from Pre-Diab to T2D patients. Previous studies reported 
that increased plasma levels of SPARC protein were correlated to 
inflammation, insulin resistance, and dyslipidemias in gestational dia-
betes [42]. Moreover, SPARC protein was increased in plasma of hy-
perglycemic patients, also correlating with early nephropathy in T2D 
[43]. This evidence fits with our expected trend, for which DNA hypo-
methylation of SPARC promoter could increase levels of gene expression 
in increasing hyperglycemia. Besides, our network analysis predicted an 

Fig. 4. A) Association between DNA methylation profile and vascular damage in increasing hyperglycemia. Early modifications of DNA methylation un-
derlying microvascular damages appear in CD04+ T cells of Pre-Diab patients . Otherwise, CD08+ T cells undergo to changes in DNA methylation already in Pre-Diab 
and persist in T2D state patients leading to abnormalities of micro- and macro-domains in vasculature of hyperglycemic patients. B) GeneMANIA network. Gen-
eMANIA PPI network of the SPARC gene predicted 21 nodes and a total of 537 total links representing physical interactions mainly involved in extracellular matrix 
organization, platelet activation, and leukocyte migration. 
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interesting physical interaction between SPARC and VEGFA. Since 
VEGFA is commonly deregulated in diabetic-related microvascular 
damage [44], we emphasized that a possible regulatory interaction be-
tween SPARC and VEGFA proteins should be investigated in Pre-Diab. 

Targeted quantification of SPARC mRNA levels should be performed 
to confirm whether these changes of DNA methylation lead to modula-
tion of gene expression in CD08+ T cells and/or other tissues isolated 
from Pre-Diab and T2D patients. 

5. Conclusion 

The adaptive immune response is strongly involved during progres-
sion from HS to Pre-Diab, T2D, and insulin therapy; thus, novel patho-
genic mechanisms may improve primary prevention of CVDs [7,36] This 
is the first molecular-bioinformatic approach combining RRBS DNA 
methylome analysis and clinical data in different stages of impaired 
glucose homeostasis in 2 subtypes of cells (e.g., CD04+ and CD08+ T 
cells). Our pilot study established that the differential methylation of 
genes involved in T2D pathogenesis, such as SPARC, correlated with 
DBP, Creatinine, LVDd, LVSD, LAD, LVPWd, and AODd. Our data needs 
to be confirmed in large multicenter studies. This evidence suggested a 
putative biomarker useful to early diagnose Pre-Diab patients and pre-
dict the presence/absence of vascular damage and kidney complica-
tions. Further longitudinal clinical trials combining network-oriented 
analysis and liquid-based assays should be performed to identify the 
precise epigenetic-sensitive pathways involved in transition from nor-
moglycemia to Pre-diab state which may increase the individual risk for 
vascular damage later in life [7,24,30,45,46]. 
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