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ABSTRACT We have developed a procedure to isolate, from skeletal muscle, enriched terminal 
cisternae of sarcoplasmic reticulum (SR), which retain morphologically intact junctional "feet" 
structures similar to those observed in situ. The fraction is largely devoid of transverse tubule, 
plasma membrane, mitochondria, triads (transverse tubules junctionally associated with ter- 
minal cisternae), and longitudinal cisternae, as shown by thin-section electron microscopy of 
representative samples. The terminal cisternae vesicles have distinctive morphological char- 
acteristics that differ from the isolated longitudinal cisternae (light SR) obtained from the same 
gradient. The terminal cisternae consist of two distinct types of membranes, i.e., the junctional 
face membrane and the Ca 2+ pump protein-containing membrane, whereas the longitudinal 
cisternae contain only the Ca 2÷ pump protein-containing membrane. The junctional face 
membrane of the terminal cisternae contains feet structures that extend ~12 nm from the 
membrane surface and can be clearly visualized in thin section through using tannic acid 
enhancement, by negative staining and by freeze-fracture electron microscopy. Sections of 
the terminal cisternae, cut tangential to and intersecting the plane of the junctional face, 
reveal a checkerboardlike lattice of alternating, square-shaped feet structures and spaces each 
20 nm square. Structures characteristic of the Ca 2+ pump protein are not observed between 
the feet at the junctional face membrane, either in thin section or by negative staining, even 
though the Ca 2÷ pump protein is observed in the nonjunctional membrane on the remainder 
of the same vesicle. Likewise, freeze-fracture replicas reveal regions of the P face containing 
ropelike strands instead of the high density of the 7-8-nm particles referable to the Ca ~+ pump 
protein. The intravesicular content of the terminal cisternae, mostly Ca2+-binding protein 
(calsequestrin), is organized in the form of strands, sometimes appearing paracrystalline, and 
attached to the inner face of the membrane in the vicinity of the junctional feet. The terminal 
cisternae preparation is distinct from previously described heavy SR fractions in that it contains 
the highest percentage of junctional face membrane with morphologically well-preserved 
junctional feet structures. 

The muscle fiber contains an intricate membraneous network 
that controls muscle contraction and relaxation by regulating 
the intracellular calcium concentration. The plasma mem- 
brane or plasmalemma invaginates transversely into the mus- 
cle sarcoplasm to form transverse tubules, which are con- 
nected to an internal reticular membrane system, the sarco- 
plasmic reticulum (SR). 1 The SR surrounds the sarcomere in 

Abbreviation used in this paper. SR, sarcoplasmic reticulum. 

a sleevelike manner, and is composed of  two distinct portions: 
(a) the terminal cisternae which are junctionally associated 
with the transverse tubule, and (b) the longitudinal cisternae 
or longitudinal SR, which connect medially with the two 
terminal cisternae. The terminal cisternae are connected to 
the transverse tubule via junctional structures referred to as 
"feet" (6, 13, 14, 20, 31, 36). The major component of  the 
SR membrane is the Ca 2÷ pump protein, which has a molec- 
ular weight of  ~ 115,000. This protein is responsible for the 
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characteristic asymmetric appearance of the membrane (34). 
The present study describes the isolation and morphological 

characterization of enriched terminal cisternae and compares 
them with light SR referable to longitudinal cisternae. 

MATERIALS AND METHODS 

Electron Microscopy: Fixation ofsamplesin 2% glutaraldehyde with 
or without 1% tannic acid for thin-section electron microscopy was performed 
as described previously (33, 34). Representative sampling of thin sections was 
ensured by using the filter procedure described by Palade et al. (30) or by using 
small pellets and examining complete sections cut perpendicular to the axis of 
centrifugation. The percentage of surface area of the terminal cistemae occupied 
by the "feet" structure and thereby referable to junctional face membrane was 
measured using a Dietzen (Chicago, IL) map measure on electron micrographs 
of thin sections. The ratio of the length of the junctional face occupied by the 
feet to that of the total membrane perimeter of all the vesicles was determined. 
The prints were enlarged x200,000; the original negative was xS0,000. The 
standard deviation of the distance measurement was 3%. The values presented 
were obtained with 500 representative cross sections of vesicles. For negative 
staining or freeze-fracture the samples were fixed, in suspension, for at least 2 
h at 0-4°C in 2% (vol/vol) glutaraldehyde, 8% (wt/vol) sucrose, 10 mM sodium 
cacodylate, pH 7.2. The samples for negative staining were then treated with 
1% (wt/vol) phosphotungstic acid, adjusted to pH 7.2 with NaOH and prepared 
for examination (8, 33). For freeze-fracture, the glutaraldehyde-fixed samples 
were sedimented and then infiltrated with 30% glycerol. Freeze-fracture and 
preparation of replicas, including rotary shadowing, was as previously described 
(33, 34). As before, shadowing was initiated within 2 s after fracture. 

Biochemical Assay: [Ca 2*, Mg2+]ATPase activity was measured at 
25°C in the presence of 1.5 #g of A23187/ml, I00 #M CaCl2, 60 #M potassium 
EGTA, 100 mM KC1, 5 mM MgCl2, 0.3 M sucrose, 5 mM Na2ATP, 5 mM 
potassium HEPES, pH 7.0, and 10 #g of protein/ml using a coupled-enzyme 
assay containing 8.5 U/ml ofpyruvate kinase, 12 U/ml of lactic dehydrogenase, 
400 #M NADH, and 2 mM phosphoenolpyruvate (39). The [Ca 2÷, Mg 2+] 
ATPase activity was the difference between the linear rates measured in the 
presence of Ca 2+ and that in its absence (with 4 mM potassium EGTA). 

Phospholipid phosphorus was quantitated as described by Rouser and 
Fleischer (32), and protein was measured according to the method of Lowry et 
al. (24) using bovine serum albumin as a standard. Slab PAGE in the presence 
of sodium dodecyl sulfate was carried out according to Laemmli (21), with 3% 
stacking gel and 8 % resolving gel. The gels were stained with Coomassie Brilliant 
Blue R-250. Protein standards used were, in molecular weight, phosphorylase 
b (92,500), bovine serum albumin (66,200), and ovalbumin (45,000). 

Isolation of SR Terminal and Longitudinal Cisternae: New 
Zealand white female rabbits ( 1-3 kg weight) were killed by cervical dislocation, 
and all subsequent steps were carried out at 0-4°C. The predominantly white 
portions of the hind leg muscles 2 were separated away from muscle which was 
pink in appearance and connective tissue. Dissection was performed on a glass 
tray seated on packed ice. The muscle was ground in a meat grinder (General 
Model H meat grinder) with a faeeplate having 2-mm holes. The ground meat, 
in 50 g portions, was homogenized in 250 ml of 0.3 M sucrose, 5 mM imidazole- 
HCI, pH 7.4 (homogenization medium), using a Waxing blender (Waring 
Products Div., New Hartford, CT) at maximum speed for one min. The 
homogenate was centrifuged in a JA l0 rotor (Beckman Instruments, Inc., 
Fullerton, CA; model J-21 centrifuge) for l0 min at 8,000 rpm (7,700 g=~). 
The supematant (Sl) was saved during initial studies, and the pellets were 
rehomogenized as before in another 250 ml of homogenization medium. The 
rehomogenate was kept ice-cold and again centrifuged as before and the 
supernatant ($2) saved. The longitudinal and terminal cisternae of SR were 
obtained from the $2 supematant. The superuatant was filtered through 3-4 
layers of cheesecloth, and a microsomal pellet was obtained by centrifugation 
for 90 min at 30,000 rpm (110,000 g=~) in a Beckman 35 rotor. The micro- 
somes were resuspended in homogenization medium (l I ml) using a Dounce 
homogenizer and layered onto a sucrose step gradient, one 250-ml homogenate 
equivalent per one to two gradient tubes. The gradient steps, 7 ml each, 
consisted of 45% (wt/wt) sucrose (1.6 M), 38% sucrose (1.3 M), 32% sucrose 
(I.1 M), and 27% sucrose (0.8 M), all buffered with 5 mM imidazole-HCl, pH 
7.4. The gradients were centrifuged overnight (14-16 h) in a Beckman SW 27 
rotor at 20,000 rpm (70,000 g=~). The membrane fractions at the interfaces 
between the gradient steps (Fig. 1 ) were collected, diluted approximately twofold 
with 5 mM imidazole-HC1, pH 7.4, and centrifuged in a Beckman 35 rotor for 

2 The predominantly white muscles or portions thereof were sartorius, 
gracilis, vastus lateralis, vastus medialis, adductor magnus, gluteus 
(maxima, medius, minimus), biceps femoris, and gastrocnemius. 

FIGURE 1 Discontinuous sucrose gradient for subfractionation of 
muscle microsomes (see Materials and Methods). The microsomes 
obtained from the second homogenization of muscle ($2, cf. Ma- 
terials and Methods) give rise to a well-defined terminal cisternae 
fraction (R4, arrow). Fraction R2 is enriched in longitudinal cisternae. 

2 h at 32,000 rpm (125,000 g=~). The pellets were then resuspended in 
homogenization medium and quick-frozen in liquid nitrogen, and stored at 
-70"C until use. 

Isolation of Light and Heavy SR: The isolation procedure was 
essentially as described by Meissner (25), which included 0.6 M KC1 in the first 
zonal centrifugation throughout the layers of the gradient and a final salt 
extraction of the light and heavy SR fractions. 

RESULTS 

Isolation of Fractions Enriched in SR Terminal and 
Longitudinal Cisternae 

A procedure has been developed for the isolation of termi- 
nal and longitudinal cisternae of SR from the same gradient 
(cf. Materials and Methods). The microsomes obtained from 
the second rehomogenization of the muscle were subfraction- 
ated on a sucrose step gradient centrifuged to equilibrium 
(Fig. 1). The composition of the different fractions was ex- 
amined by electron microscopy. Fraction 1 contained mostly 
SR longitudinal cisternae (or light SR) with some transverse 
tubules and plasma membrane. Fraction 2, at the 27/32% 
sucrose interface, was enriched with longitudinal cisternae of 
SR, although it contained some terminal cisternae as well. 
Fraction 3 (32/38% interface) contained a mixture of longi- 
tudinal and terminal cisternae. Fraction 4 (38/45% interface) 
consisted of highly enriched terminal cisternae of SR. Fraction 
5 contained aggregated contractile protein and intact mito- 
chondria. 

The composition of the fractions from the step gradient 
differed depending on whether the microsomes were obtained 
from the first or second homogenization of ground muscle. 
Fraction 4 obtained from microsomes prepared from the first 
homogenization consisted of vesicles containing electron- 
opaque contents. Some of these vesicles contained junctional 
"feet" structures but others did not and resembled more the 
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FIGURE 2 Thin-section electron microscopy of the highly enriched terminal cisternae fraction. A sample of fraction R4, 50-100 
#g of protein, was fixed with tannic acid/glutaraldehyde in 2 ml of dilute suspension and then centrifuged to obtain a thin pellet. 
The oriented pellet was sectioned perpendicularly to the axis of centrifugation to provide a full cross section, x 12,000 (a). A 
higher magnification is shown in thin section (x 60,000) (b) and by freeze-fracture (x 50,000) (c). The fraction consists mainly of 
spherelike vesicles of sarcoplasmic reticulum terminal cisternae, containing electron-opaque contents (b). Characteristic junctional 
feet (compare with in situ, Fig. 4f), indicative of the junctional face, can be observed in many of the vesicles (arrowheads). The 
terminal cisternae vesicles observed in thin section (b) or by freeze-fracture (c) range in size from 70 to 300 nm in diameter. 

heavy SR fraction described by Meissner (25) which has not 
been salt-extracted (not shown). Fraction R4, obtained from 
the second homogenization, consisted of vesicles containing 
both electron-dense intravesicular contents as well as appre- 
ciable numbers of junctional feet structures (Fig. 2). These 
vesicles thus resemble the terminal cisternae in situ and have 
been designated "terminal cisternae" vesicles. The terminal 
cisternae (fraction IL) and longitudinal cisternae (fraction R2) 
have been characterized in this paper and compared with light 
and heavy SR (25). 

Biochemical Characterization 

The terminal cisternae (fraction IL are distinctly different 
from the longitudinal cisternae (fraction R2), in that they have 
a (a) lower lipid-to-protein ratio, (b) lower specific activity of 
[Ca 2÷, Mg z+] ATPase, and (c) high content of Ca2+-binding 
protein (calsequestrin). These differences can be explained by 
the high content of CaZ+-binding protein in the terminal 
cisternae, approximating half that of the Ca 2÷ pump protein 
on a weight basis (Table I, Fig. 3). Morphological studies, 
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TABLe I 

Biochemical Characterization of Membrane Fractions from 
Skeletal Muscle 

[Ca2+,Mg 2+] 
Phospholipid Ratio* of ATPase + 

Yield* content CBP/CPP A23187 

mg umol P/rag protein ~mol]min per mg protein 
Microsomes 66 0.84 - -  - -  
Fraction R1 2 1.13 0.10 2.3 
Fraction Rz 12 0.65 0.11 3.7 
Fraction R3 9 0.55 0.30 2.7 
Fraction R4 6 0.52 0.50 2.5 
Light SR 4 0.90 0.056 3.4 
Heavy SR 4 0.52 0.46 3.0 

Fractions R,-R4 were prepared from microsomes obtained from the second 
homogenization (cf. Materials and Methods). Light and heavy SR were 
prepared according to a modification of Meissner, in the presence of 0.6 
M KCl (25). 

* From 50 g wet weight of muscle (average results from at least three 
preparations are presented). 

* Obtained from densitometric tracings of SDS polyacrylamide gels stained 
with Coomassie Brilliant Blue {as described in Fig. 3). CBP, Ca2+-binding 
protein (calsequestrin); CPP, Ca 2+ pump protein. 

covered with the junctional feet. The percentage of surface 
area, of all the section measured, occupied by the feet was 
found to be 16%. The larger vesicles or sections had a higher 
percentage of junctional face. The remainder of the mem- 
brane of the terminal cisternae consists of Ca 2÷ pump-con- 
taining membrane. The junctional face of the isolated termi- 
nal cisternae of SR is morphologically similar to that in situ, 
where it is junctionally associated with the transverse tubule. 

There is considerable variation in the appearance, in thin 
sections, in the percentage of junctional face at the perimeter 
of the vesicles (Fig. 4, a-c). In the extreme case, junctional 
feet were observed over the entire perimeter of the section 
(Fig. 4c), suggesting that this portion of the vesicle derived 
entirely from the junctional face. 

The longitudinal cisternae vesicles appear to consist of a 
single type of membrane composed largely of the Ca 2÷ pump 
protein (Fig. 3). We have designated this membrane "the Ca 2÷ 
pump-containing membrane." The characteristics of this 
membrane by three different methods of sample preparation 
for electron microscopy are: (a) a highly asymmetric trilayer 
membrane (7, 2, 2 nm) observed in thin section with tannic 

described below, show that a portion of the terminal cisternae 
is junctional face membrane, which is distinct from the more 
common Ca 2÷ pump-containing membrane, contributing in 
small part (~16%, see below) to the reduced [Ca 2÷, Mg 2÷] 
ATPase specific activity of fraction IL. A high-molecular- 
weight component was observed in the terminal cisternae 
fraction which was not found in the longitudinal cisternae 
(fraction R2) and light SR (Fig. 3). Cadwell and Caswell (2) 
have suggested that high molecular weight proteins are com- 
ponents of the junctional feet. The longitudinal and terminal 
cisternae fractions are both capable of Ca 2÷ transport (Chu, 
A., P. Volpe, B. Costello, and S. Fleischer, manuscript in 
preparation). The longitudinal cisternae (fraction R2) are con- 
taminated in part by terminal cisternae (-20%) as indicated 
by thin-section electron microscopy and by the content of 
Ca :÷ binding protein (Table I). The yield of longitudinal 
(fraction R2) and terminal (fraction 1L~) cisternae is greater 
than that for the light and heavy SR described by Meissner 
(25). Additional light and heavy SR is also obtainable from 
the first supernatant (S1). 

M o r p h o l o g y  o f  Isolated SR Terminal  and 

Longi tud inal  Cisternae Vesicles 

The uniformity of the terminal cisternae fraction was as- 
sessed using complete sections cut perpendicular to the axis 
of centrifugation (Fig. 2a). Thin-section and freeze-fracture 
electron microscopy indicate largely terminal cisternae vesi- 
cles ranging between 70 and 300 nm in diameter (Fig. 2, b 
and c), as compared with 200 nm for the light SR and 70- 
100 nm for heavy SR. 

Both terminal cisternae vesicles and heavy SR contain 
electron-dense contents, whereas the longitudinal cisternae 
and light SR lack such contents (Fig. 4). The unique feature 
of this terminal cisternae fraction is the relatively high per- 
centage of junctional face membrane containing well-pre- 
served junctional feet structures. We find from thin-section 
electron microscopy that roughly 38% of the sections of 
vesicles exhibited these structures. Of the sections which have 
feet structures, on the average, 34% of the perimeter was 
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FtGure 3 SDS PAGE of sucrose gradient fractions. The gradient 
fractions, R1 R4 (see Fig. 1) were loaded onto the stacking gel 
(Materials and Methods). The arrows denote the beginning of the 
resolving gel (top) and the dye front (bottom). Protein standards (S) 
are shown in the last lane. The molecular weight standards (x 10 -3) 
were phosphorylase b (92.5), bovine serum albumin (66.2), and 
ovalbumin (45). Fractions of light {LSR) and heavy sarcoplasmic 
reticulum (HSR), prepared by modif ication of the method described 
by Meissner (25), are presented for comparison. 8 #g each of the 
various fractions of SR were applied. The Ca 2+ pump protein (CPP), 
Ca2+-binding protein (calsequestrin (CBP), and a 55,000-mol-wt 
protein (Mss) are indicated. The terminal cisternae preparation (R4) 
is rich in Ca2+-binding protein as compared with longitudinal cis- 
ternae (R2) and light SR. Note the intense high molecular weight 
component  (arrowhead) as well as smaller molecular weight com- 
ponents in the terminal cisternae fraction which are present to only 
a small extent in heavy SR and are essentially absent in the light SR. 



FIGURE 4 Comparison of SR terminal cisternae vesicles with light SR. Terminal cisternae vesicles, observed in thin section (a-c 
and j) and by negative staining (g, h, and i), consist of two types of membranes. One corresponds to the junctional face containing 
the feet structures (arrowheads), while the other is the Ca 2+ pump-containing membrane (double arrowheads). The lumen of the 
terminal cisternae vesicles contain electron-opaque contents which appear to be attached to the junctional face. The junctional 
face membrane contains feet structures (arrowheads) that project 12 nm from the surface of the membrane with a repeat spacing 
of 40 nm. Note the absence of surface material characteristic of the Ca 2+ pump protein (arrow) between the junctional feet 
(arrows, a - c  and f, in situ). The terminal cisternae sections vary widely in the percentage of junctional face membrane observed 
at the perimeter, i.e., only a small portion (b in thin section, and g, negative staining), about half (a) to nearly all (c). Sometimes 
adjacent feet structures appear continuous with one another (note arrows in i and j). On occasion the junctional face membrane 
appears flat (b, arrow). The junctional face membrane of the terminal cisternae retains the characteristic morphology observed in 
situ in thin sections if). The separation between transverse tubule and terminal cistemae membranes of the triad junction, in situ, 
is approximately 13 nm (f). TC, terminal cisternae; TT, transverse tubule. Light SR, referable to longitudinal cisternae, consist only 
of the Ca 2+ pump-containing membrane observed in thin section (e) or by negative staining (d). x 260,000. 

acid enhancement (34) (Fig. 4e); (b) 3-4-nm particles on the 
outer face by negative staining (16) (Fig. 4d); and (c) a highly 
asymmetric distribution of 7-8-nm particles mostly in the P 
face as observed by freeze fracture (5) (Fig. 6, c and d). These 
features are referable to the Ca 2÷ pump protein (34). The 
longitudinal cisternae fraction described in this study has 
essentially the same morphology as the light SR (25). 

The junctional face-containing membrane has been char- 
acterized by electron microscopy using three methods of 
sample preparation. It is distinctly different from the Ca 2÷ 
pump-containing membrane (34) (Figs. 4-6). Thin-section 

electron microscopy with tannic acid enhancement reveals 
that the feet structures are ~20 nm in width with a repeat 
spacing o f - 4 0  nm and extending 12 nm from the surface of 
the membrane (Fig. 4). The junctional feet can be observed 
as discrete units separated from one another (Fig. 4, a and c). 
When viewed in thin section using tannic acid enhancement, 
the surface between the junctional feet structures is devoid of 
material characteristic of Ca 2÷ pump proteins (Fig. 4, a and 
c), even though the Ca 2÷ pump-containing membrane is ob- 
served elsewhere on the same section of the vesicles (Fig. 4, a 
and b). Stain penetration was clearly not a problem in these 
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FIGURE 5 Freeze-fracture replicas of terminal cisternae. Junctional feet are denoted by arrowheads and can be observed in both 
the E and P faces (a, c, and d). In a, conventional shadowing was used; the remainder were rotary shadowed. The spacing and 
dimensions of the feet structures (arrowheads) are comparable to those observed in thin section (b). The P face has regions of 
low particle density containing ropelike strands (arrows, e-g) with different arrangements, spokelike (e), approximating parallel 
arrays (f) and more random (g), which are never seen in light SR and appear to be referable to the junctional face membrane. 
The ropelike strands are not observed on the E face of the terminal cisternae (d). x 260,000. 

sections, because the internal contents of the terminal cister- 
nae vesicles were heavily stained. In situ, the triad junction 
also reveals a junctional face membrane devoid of surface 
structures characteristic of the Ca 2÷ pump protein (Fig. 4f). 
In contrast with the longitudinal cisternae, which have a 
uniform broad outer layer (Fig. 4 d), some areas of the Ca 2÷ 
pump-containing membrane of terminal cisteruae appear 
patchy in thin-section micrographs after tannic acid enhance- 
ment (Fig. 4, a vs. e). 

The junctional feet are also clearly observed by negative 
staining to project from the surface of the junctional face of 
the terminal cisternae vesicles and are clearly distinguishable 
from the 3-4-nm particles referable to Ca 2÷ pump protein 
(Fig. 4, h vs. d). The dimensions of the junctional feet struc- 
tures observed by negative staining are comparable to those 
observed in thin sections with tannic acid enhancement. The 
absence of Ca 2÷ pump protein between the junctional feet 
structures was similarly confirmed by negative staining (Fig. 
4 h) by the absence of 3-4-nm particles at the surface even 
though such particles were observed elsewhere on the same 
vesicle (Fig. 4g). By contrast, the entire surface of longitudinal 
cisternae SR vesicles is uniformly studded with these surface 
particles (Fig. 4 d). 
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Freeze-fracture (Fig. 5) reveals feet structures of comparable 
dimensions to those observed in thin section (Fig. 4, a-c) and 
by negative staining (Fig. 4h). These are seen in both the E 
(Fig. 5, a and d) and P faces (Fig. 5, c and g). Some regions 
of the fracture faces of terminal cisternae look distinctly 
different from the longitudinal cisternae vesicles. In such 
regions, the P face is devoid of particles or considerably 
reduced in particle density. Instead, ropelike strands can be 
observed (Fig. 5, e-g) which are not seen in the E face. Such 
regions are undoubtedly referable to the junctional face mem- 
brane. By contrast, the P face of the longitudinal cisternae 
vesicles reveals a high density of 8-nm particles, referable to 
the Ca 2÷ pump protein (Fig. 6 d). 

Freeze-fracture revels two structures in the terminal cister- 
nae other than the feet in the terminal cisternae which are 
not observed in the longitudinal cisternae: (a) filaments are 
observed at the hydrophobic center of the P face (Fig. 5, e- 
g). Such filaments appear to be the anchoring of the intrave- 
sicular paracrystalline or ropelike arrays observed in thin 
section or negative staining; (b) the E face of some terminal 
cisternae vesicles reveal 4-5-nm (in diameter) pits separated 
by -30-34-nm repeat distances (Fig. 6 a). Such pits have been 
observed in situ (12), but the relationship, if any, of the pits 



FIGURE 6 Freeze-fracture replica comparison of terminal cisternae with light SR. The E and P faces of the terminal cisternae (a 
and b) are compared with light SR (longitudinal cisternae) (c and d). The replicas were prepared by rotary shadowing. In a 
regularly spaced pits, 4-5 nm in diameter, can be observed on the E face (arrowheads), which are not seen in light SR. Occasionally 
large cylindrical particles with hollow centers can also be observed (arrows). Rotary shadowing reveals two different size particles 
in the P face of both terminal cisternae (b) and longitudinal SR (d). Most abundant are the more usual 7-8 nm (arrows) particles 
referable to the Ca 2+ pump protein (arrows); the smaller particles, ~4-6 nm (arrowheads), are less numerous, x 260,000. 

to the junctional feet is unclear. In the P face of some terminal 
cisternae vesicles, 4-6-nm particles are sometimes observed 
amidst the more typical 8-nm particles (Fig. 6 b). The longi- 
tudinal cisternae also contain 4-6-nm particles which are 
visible only by rotary shadowing (Fig. 6 d), but they are devoid 
of a and b above. 

Intravesicular Contents 
Electron-opaque material which stains heavily after tannic 

acid enhancement is observed within the lumen of the ter- 
minal cisternae vesicles (Fig. 7). Such material is not observed 
in the longitudinal cisternae (Fig. 4 e) and corresponds largely 
to Ca2+-binding protein (calsequestrin) (25) (Table I). The 
electron-opaque material sometimes has the form of ropelike 
filaments or strands and is attached at the lumenal side of the 
junctional face membrane in the vicinity of the feet (Fig. 7, 
a-e). 

Sometimes the intravesicular contents can be observed in 
paracrystalline array. Such arrays can be seen both in thin 
section (Fig. 7 e) and by negative staining (Fig. 7f). The arrays 
appear to be composed of filaments, 5-6 nm in diameter with 
a center-to-center repeat spacing of 12 nm. It is interesting 
that the intravesicular contents, even when highly ordered in 

this fashion, are attached at the inner face where the junctional 
feet are located (Fig. 7 e). On occasion, some sections reveal 
what appear to be a continuity of the feet structures to the 
internal contents (Figs. 7, c and e and 8 d). 

Organization of the Feet Structures at the 
Junctional Face 

Sections tangential to the junctional face of isolated termi- 
nal cisternae vesicles reveal the two-dimensional arrangement 
of the feet structures at the junctional face. The feet structures 
extending ~12 + 1 nm (500 measurements) from the mem- 
brane surface, are square-shaped ~20 _+ 1 nm (100 measure- 
ments) on each side, and alternate with spaces in a checker- 
board array as observed in thin section (Fig. 8, a-d) as well 
as by negative staining (Fig. 8 e). A diagrammatic representa- 
tion of the arrangement of the feet structures at the junctional 
face is given in Fig. 8, f-h. 

DISCUSSION 
This study describes the isolation of an enriched terminal 
cisternae preparation and provides ultrastructural characteri- 
zation of this portion of the sarcoplasmic reticulum as corn- 
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FIGURE 7 Emphasis on compartmental contents of the terminal cisternae, a-e show thin-section glutaraldehyde-OsO4 fixation, 
a, b, d, and e were enhanced with tannic acid; f is by negative staining. The contents frequently have a ropelike appearance (a- 
e) or appear aggregated (d, asterisk). Occasionally, the contents appear paracrystalline (*) in thin section (e) or by negative staining 
(f). x 260,000. 

pared with longitudinal cisternae isolated from the same 
preparation. Terminal cisternae vesicles consist of two types 
of membranes, i.e., the Ca 2÷ pump-containing membrane and 
the "junctional face membrane." We have estimated that 
-16% of the membrane is junctional face membrane, the 
remainder is Ca 2÷ pump-containing membrane. The availa- 
bility of the enriched terminal cisternae fraction enabled 
detailed characterization of the junctional face membrane 
and the junctional feet structures. The checkerboard array, 

consisting of square-shaped feet structures and spaces, is 
clearly visualized in thin sections parallel to the junctional 
face (Fig. 8). Essentially complementary structural informa- 
tion is obtained from each of the three methods of sample 
preparation incuding the observation that the junctional face 
membrane is devoid of Ca 2+ pump protein. 

Examination of freeze-fracture replicas of the terminal cis- 
ternae reveals the unique ultrastructure characteristic of the 
junctional face membrane. Ropelike structures, in the P face, 

FIGURE 8 Structure of terminal cisternae. (a) The shape and arrangement of the junctional face are revealed in thin section. 
x 50,000. (b-d) Numerous feet structures are observed (arrowheads) in sections approximately parallel to the junctional face. 
x 260,000. The arrays of alternating square-shaped feet, 20 nm on each side, and spaces give a checkerboardlike lattice 
(arrowheads) observed in thin section (b-d) and by negative staining (e). In d, the checkerboard array (arrowheads) appears 
contiguous with the compartmental contents of the vesicle. The repeat distance between arrowheads is 28 nm. The membrane 
containing a foot structure can be seen on the far end of the vesicle (arrow). (e) Feet structures can also be seen at the perimeter 
of the negatively stained vesicle (arrow). x 260,000. Diagrammatic representations of the junctional face membrane are shown 
in f-h. The junctional feet and intervening spaces are depicted as square-shaped, with checkerboard lattice arrangement (g and 
h). Two types of membranes are shown (f and h). The junctional face membrane (JFM) at the upper surface contains the feet 
structures. The remainder is Ca 2+ pump-containing membrane (CPM). In this context, the following characteristics may be noted: 
(i) the junctional face is distinct from the Ca 2+ pump-containing membrane; (ii) the junctional feet are 20 nm on each side with a 
center-to-center spacing of 40 nm and extend 12 nm from the surface of the junctional face; (iii) the junctional face is devoid of 
Ca 2÷ pump protein; (iv) the remainder of the membrane is Ca 2+ pump-containing membrane; (v) the presence of the intravesicular 
electron-dense material, which is sometimes arranged in filamentous or even paracrystalline arrays; (vi) the intravesicular contents 
are attached to the junctional face membrane. 
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are described for the first time in regions devoid of the 7-8- 
nm intramembrane particles (5). These structures appear to 
anchor the CaZ+-binding protein. By contrast, the 7-8-nm 
particles, referable to the Ca 2÷ pump protein (38), are observed 
in the Ca 2÷ pump-containing membrane of the terminal cis- 
temae and throughout the longitudinal cisternae. Thin-sec- 
tion and negative-staining electron microscopy of isolated 
terminal cisternae confirmed that the junctional face of the 
terminal cisternae is devoid of Ca 2+ pump protein. In support 
of these findings, indirect immunoferritin labeling of frozen 
sections indicated that the Ca 2+ pump protein was localized 
in the longitudinal SR and in the nonjunctional regions of 
the terminal cisternae (18). The model of the terminal cister- 
nae and the junctional face presented here (Fig. 8, f a n d  h) 
builds upon and extends that of the SR/transverse tubule 
junction presented by Franzini-Armstrong and Franzini-Arm- 
strong and Nunzini (11, 13, 14) and others (e.g., 6, 19, 20). 

In this laboratory, Mitchell et al. (27) described an enriched 
preparation of isolated triads Negative staining of the triads 
showed that the junctional feet structures sometimes appeared 
to be attached to each other. In this study, the feet structures 
on the isolated terminal cisternae also occasionally appeared 
to be attached to one another (Fig. 4b). This can now be 
explained by the angle of the section with respect to the 
checkerboard arrangement of the feet structures on the junc- 
tional face (Fig. 8). 

Comparison With Other Heavy SR Preparations 
Several groups have reported isolation of heavy SR corre- 

sponding to terminal cisternae (3, 22,,23, 25, 28, 35, 37). In 
this laboratory, Meissner (25) reported the first subfractiona- 
tion of highly purified SR vesicles into light and heavy SR 
vesicles and related them to longitudinal and terminal cister- 
nae, respectively. This was based on the observation that the 
electron-opaque contents in the heavy SR matched that ob- 
served in situ in terminal cisternae, whereas longitudinal 
cisternae and light SR were devoid of such contents. The 
electron-opaque contents were shown to be referable largely 
to the Ca2÷-binding protein (calsequestrin) (9, 25). However, 
the heavy SR, prepared according to Meissner (25), which 
contained electron-opaque intraluminal contents, was isolated 
using salt extraction and did not show characteristic junc- 
tional feet structures. The preparation averaged smaller vesi- 
cles than those reported here and was more uniformly stained 
with tannic acid in the outer trilayer of the membrane (data 
not shown). The heavy SR which is not salt-extracted resem- 
bles the preparation we now obtain by subfractionation of 
microsomes obtained from the first supernatant (i.e., fraction 
4 obtained from the first homogenization of muscle) in that 
it contains some junctional feet but fewer than the terminal 
cisternae fraction. This fraction appears to be similar to the 
heavy SR vesicles reported by Campbell et al. (3), which is 
essentially a modification of the light and heavy SR prepara- 
tion by Meissner (25) in which no salt extraction was used. 
We analyzed the preparation described by Campbell et at. (3) 
and found that I 1% of the sections contained feet structures 
and, of these vesicles, 23% of the perimeter was junctional 
face membrane; the percentage of surface area occupied by 
the feet was found to be 2.5%. The lower content of junctional 
feet, in this fraction which was not salt-extracted suggests that 
(a) heavy SR may be derived from a different portion of the 
terminal cisternae, which may be nonjunctional in origin, 
and/or b) the feet structures may have been lost in the 
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isolation procedure. 
The electron-opaque contents consist mainly of Ca2+-bind - 

ing protein (9, 22, 25). The latter has been purified and its 
properties characterized. There is evidence that the Ca 2+- 
binding protein changes conformation and aggregates in the 
presence of Ca 2÷ (15, 29). It has been suggested that high salt 
concentrations cause Ca 2+ to be released and may result in 
less aggregated intraluminal contents (3). This is consistent 
with earlier studies showing that the binding of Ca 2÷ to 
purified Ca2+-binding protein is practically eliminated in the 
presence of isotonic salt (26). 

The anchoring of the electron-opaque contents in our ter- 
minal cisternae preparation is in the vicinity of the feet 
structures. Brunschwig et al. (1) previously noted that the 
electron-opaque contents were anchored on the intraluminal 
side of the membrane across from the feet structures and 
from "thickenings" on the extravesicular face. Such thicken- 
ings may be referable to disfigured feet. We observe the 
intraluminal contents to be paracrystalline (Fig. 7, e and f )  
and ropelike (Fig. 7, a-d) and to appear to be anchored to 
the junctional face membrane by ropelike fibers (Figs. 5, e- 
g). When the terminal cisternae vesicles were treated with 
high ionic strength (0.6 M KCI) solutions, the intraluminal 
proteins were no longer paracrystalline or aggregated but were 
more uniformly dispersed (data not shown). The Ca2+-binding 
protein has been shown by analysis of isolated heavy SR (25) 
or terminal cisternae (this study), and by immunocytology 
(17) to be restricted to the terminal cisternae region of the 
SR. The anchoring of the Ca 2+ binding protein near the 
junctional face may explain its localization in this portion of 
the SR. 

Comparison with In Situ Studies 
The membranes within muscle have been extensively stud- 

ied in situ (7, 10, 11, 13, 14, 19, 20, 31). The availability of 
isolated terminal cisternae makes possible a detailed study of 
morphology which cannot be readily observed in situ. Nega- 
tive staining can be applied to the isolated preparation to 
reveal surface structure (see especially Fig. 8 e). Stain penetra- 
tion is also better controlled in isolated preparations. The 
high enrichment of a particular type of membrane prepara- 
tion, in vitro, increases the probability of making important 
observations such as the two-dimensional organization of the 
feet structures at the junctional face (Fig. 8). The important 
features of the terminal cisternae can then be related back to 
the in situ structure (Figs. 4 f and  8). The availability of an 
enriched fraction also permits parallel biochemical and mor- 
phological characterization. 

In summary, the terminal and longitudinal cisternae frac- 
tions described here have enabled us to carry out a detailed 
characterization of the morphology of the SR that correlates 
with in situ morphology. The terminal cisternae consist of 
two distinct types of membranes, the junctional face mem- 
brane and the Ca 2÷ pump-containing membrane. Longitudi- 
nal cisternae of SR consist only of the second type of mem- 
brane. Electron-opaque contents, referable largely to the Ca 2÷- 
binding protein, are present only in the terminal cisternae 
and appear to be anchored by ropelike filaments in the 
junctional face membrane. 
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