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A B S T R A C T   

Background: Hepatocellular carcinoma (HCC) being a complex disease, commonly exhibits 
multifaceted presentations, rendering its treatment challenging and necessitating specific ap-
proaches. The tumor immune microenvironment is crucial in cancer treatment, and cholesterol 
metabolism is a key component that helps cells grow and produce vital metabolites. However, the 
reprogramming of cholesterol metabolism in the tumor microenvironment (TME) can promote 
HCC development, and cancer classifiers relating to cholesterol metabolism are currently limited. 
Despite significant progress, further research is needed to improve early detection, liver function, 
and treatment options to improve patient outcomes. 
Methods: To evaluate the expression abundance of tumor immune microenvironment (TIME) and 
cholesterol metabolism in 8 types of liver cancer cells, we comprehensively evaluated the immune 
cell composition, extracellular matrix alterations, and activity of relevant signaling pathways in 
the TIME through nine liver cancer patients, stromal scoring, immune scoring, tumor purity 
scoring, immune infiltration analysis, and pathway enrichment. Subsequently, we utilized ma-
chine learning techniques to construct prognostic models for both cholesterol metabolism and the 
tumor immune microenvironment, further exploring the tumor mutation burden, immune infil-
tration levels, and drug sensitivity in different subtypes of HCC patients. 
Results: Our study constructed three cancer screening models to identify HCC patients with high 
cholesterol metabolism and low TIME, who have a poorer prognosis. On the contrary, patients 
with low cholesterol metabolism and high TIME often have better prognosis. Furthermore, we 
identified chemical compounds, such as BPD-00008900, ML323, Doramapimod, and AZD2014, 
which display better chemotherapy results for high-risk patients in specific sub-groups.   

1. Introduction 

Liver cancer is a highly lethal malignant tumor in the digestive tract and metabolism, and it is also a significant public health 
problem worldwide [1–4]. Worldwide, approximately 900,000 individuals are newly diagnosed with cancer every year, with 
approximately 88 % of liver cancer patients dying [5]. It is projected that the incidence of new cases of liver cancer will increase by 55 
% by 2040, yielding a possible diagnosis of 1.4 million individuals that year, nearly 1.3 million of whom will subsequently die from 
liver cancer [6]. HCC accounts for the majority of liver cancer, usually with poor prognosis and unsatisfactory therapeutic effects 
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[7–10]. In all cases of liver cancer, >90 % are HCC, drug suppression and immunotherapy are currently the main treatment methods 
for HCC [11]. However, chemotherapy can result in drug resistance and poor drug sensitivity, leading to extremely poor prognosis for 
patients. Therefore, studying the mechanism of HCC occurrence and developing treatment plans is urgent. 

Tumors are complex ecosystems that contain not only malignant cells but also immune components [12–15]. There are many 
studies proving the close relationship between TIME and tumor development, recurrence, and metastasis [16]. As rapidly proliferating 
cells, malignant cells in HCC accelerate cholesterol metabolism to meet the needs of membrane biogenesis and other functions [17]. 
Cholesterol metabolism provides energy for the growth of HCC and promotes cell proliferation, while also providing necessary sub-
strates for the biosynthesis of cell membranes [18–21]. Therefore, blocking cholesterol consumption or transport hampers tumor 
growth and invasion in various cancers [18,22–26]. In the tumor microenvironment, cholesterol metabolism seems to be associated 
with immune function as well [20,27–32]. The biosynthesis of cholesterol is jointly completed by SREBP2 and its regulated genes, 
which are significantly upregulated under lipid or oxygen limiting conditions, promoting tumor growth [32]. Meanwhile, elevated 
cholesterol metabolism can lead to a sharp decrease in CD8+T cells in the tumor microenvironment, while protecting tumor cells from 
lipid peroxidation damage caused by elevated oxidative stress environment [33]. It is noteworthy that cholesterol and its metabolites 
demonstrate contrasting anticancer effects in tumors. In the TME, the high level of the cholesterol oxidized derivative, oxysterol, 
inhibits T cell-mediated antitumor immunity via LXR activation [34–36]. However, in T cells with strong immune capacity and most 
lymphocytes, the upregulation of cholesterol biosynthesis or uptake enhances T cell-mediated antitumor functions. Although there are 
currently some studies on the role of cholesterol and its related product synthesis in diseases, most of them focus on the entire liver 
cancer tissue or liver cancer cells without in-depth quantitative analysis of specific cell types in the TME [37–39]. Additionally, there is 
a lack of literature comparing the immune metabolism levels between different types of liver cancer cell subtypes, which is crucial for 
understanding the occurrence and metastasis of liver cancer. Our study aims to explore the role and relationship of cholesterol 
metabolism in the tumor immune microenvironment of liver cancer by analyzing differences in immune and metabolic levels among 
different types of liver cancer cells. In addition, there are many macrophages in the tumor microenvironment, which not only affect 
immunity but also affect tumor progression [40–43]. Macrophages will choose two completely different ways of differentiation in 
different situations. M1 macrophages have always been considered as anti-tumor, while M2 polarized macrophages, usually consid-
ered as Tumor-associated macrophages, contribute to many tumors promoting cancer results through angiogenesis and Lymphatic 
vessel regulation, immunosuppression, hypoxia induction, tumor cell proliferation, and metastasis [44]. Therefore, it is necessary to 
study TAMs. Targeted TAMs are currently one of the targeted immunotherapy methods, with more advantages compared to direct drug 
therapy and less damage to internal organs and the human body. However, the main drawbacks of this method are still reduced drug 
resistance and chemotherapy sensitivity [45–48], which needs to be addressed in future liver cancer treatments. However, tumor 
heterogeneity, macrophage polarization, and cholesterol metabolism are all important factors contributing to drug resistance in tu-
mors, which is crucial for the treatment of liver cancer patients in the future. 

In this study, we delved into the relationship between the immune microenvironment of liver cancer tumors and cholesterol 
metabolism. We compared the immune levels, cellular communication levels, and differentiation trajectories of eight types of HCC. We 
also compared the tumor mutation burden and drug sensitivity of liver cancer with different levels of cholesterol metabolism and 
immunity, and selected the most sensitive chemotherapy drug to reduce the side effects and tolerance of cancer patients during 
chemotherapy. 

2. Materials and methods 

2.1. Model construction and evaluation 

We utilized previously established computational methods for modeling inflammation in breast cancer to construct tumor immune 
microenvironment models, cholesterol metabolism models, and combined models. We calculated the sum of the products of risk 
coefficients (Supplementary Table 1) and the expression levels of hub genes for tumor immune microenvironment, cholesterol 
metabolism, and the combined model, respectively [49]. 

2.2. Immune infiltration analysis 

We used Cibersort software to evaluate the expression level and abundance of each immune cell throughout the entire patient. 
Then, classify the risk scores based on the integration of the immune microenvironment and cholesterol metabolism, and use the 
Wilcoxon rank sum test for difference analysis and p-value calculation. 

2.3. Data processing 

We selected data from nine HCC patients in GSE125449, analyzed and compared the immune levels of different types of cells using 
ESTIMATE, and displayed the corresponding scores of each type of cell in the form of heat maps. Afterward, we used addModuleScore 
to score various signal pathways and represented their activation status through color depth. Differentially expressed genes for im-
mune scores and cholesterol metabolism in single-cell sequencing data were analyzed using the Seurat R package (Supplementary 
Table 2). The use of the oncoPredict R software package for drug sensitivity screening yielded results, which are provided in Sup-
plementary Table 3. Genes with |log2FoldChange|>1 and p-value <0.05 were selected. The workflow for data analysis is illustrated in 
Fig. 1. 
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3. Results 

3.1. The existence of significant tumor heterogeneity in liver cancer cells 

We are very interested in understanding whether there is tumor heterogeneity in 9 types of HCC tissues, as it is crucial to gain a 
deeper understanding of the causes and mechanisms of HCC occurrence from the perspective of cell composition types. Through 
analyzing single-cell sequencing data from nine liver cancer patients, we discovered the existence of significant tumor heterogeneity in 
liver cancer (Fig. 2A). Specifically, we identified seven types, including immune cells and malignant liver cancer cells, with clear 
boundaries after clustering (Fig. 2B). Therefore, studying the mechanism of TIME in HCC can provide direction and ideas for 
personalized treatment. We utilized the ESTIMATE software, which has many advantages, to score nine cases of liver cancer cells. Our 
results indicated that a higher stromal score is closely related to cancer-associated fibroblasts (CAF) and tumor-associated macro-
phages (TAM) and that this relationship may contribute to higher rates of metastasis and invasion (Fig. 2C). Meanwhile, the tumor 
purity was found to be the highest in Malignant cells, tumor endothelial cells (TEC), and CAF. This finding suggests that the tumor 
purity score can be used to classify and predict malignant tumor cells and immune cells well (Fig. 2D). In contrast, the immune scores 
and ESTIMATE scores were found to be very low in these cell types, indicating a negative correlation between malignancy and im-
mune/ESTIMATE scores (Fig. 2E and F). We found that tumor purity accounted for the highest proportion of Malignant cells and 
immune score accounted for the highest proportion of immune cells. (Fig. 2G). In short, there is a significant tumor heterogeneity in 
liver cancer, and a more in-depth study of their differences has vital importance for the treatment of HCC patients. 

3.2. The cholesterol metabolism signaling pathway is significantly upregulated in HCC malignant cells 

In order to better evaluate the immune infiltration level of each type of cell, we define cells with high immune scores as high 
immune microenvironments and those with low immune scores as low immune microenvironments for differential analysis. We have 
found that many cancer-related signaling pathways, metabolic signaling pathways, and chemical carcinogenesis-related signaling 
pathways are enriched (Fig. 3A). Interestingly, among the enriched signaling pathways, the cholesterol metabolism signaling pathway 
is significantly upregulated in the malignant cells (Fig. 3B and C). Cell communication refers to the process by which cells exchange 
information through various signal transduction mechanisms. These signals can take the form of chemical substances or interactions 
between cell surface receptors, among others. Effective communication between cells is crucial for the normal functioning of biological 
systems, as it regulates essential physiological processes including cell growth, differentiation, secretion, and apoptosis. Cell-to-cell 
communication serves as a vital mechanism in various physiological events such as growth and development, immune response, 
neural signaling, and metabolic regulation. Studying the mechanisms of cell communication can help to better understand the 
mechanisms of liver cancer. We found that there are numerous close contacts among eight types of cells in liver cancer (Fig. 3D left), 
among which the connections between malignant cells and T cells/TAM cells are the closest (Fig. 3D right). It is worth noting that we 
found cell communication only exists between CAF, HPC-like, and Malignant cells with the other seven types of cells among the eight 
types of cells. This indicates that these three types of cells may collaborate to promote cell proliferation and resist other types of 
immune cells during the development of HCC (Fig. 3E). The above results indicate that understanding the mechanism of malignant cell 
hyperactivity in liver cancer is crucial, and cholesterol metabolism may be an important breakthrough. 

3.3. A high tumor immune microenvironment and low cholesterol metabolism are more favorable for the survival of patients 

Given the important role of tumor immune microenvironment and cholesterol metabolism in cancer, we constructed a screening 
classifier for liver cancer based on the immune microenvironment and cholesterol metabolism. The tumor immune microenvironment 

Fig. 1. Workflow.  
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screening classifier contained 11 hub genes, while the cholesterol metabolism screening classifier contained 17 hub genes (Fig. 4A). 
Interestingly, Fig. 4B shows that patients with high tumor immune microenvironment and lower cholesterol metabolism group have 
higher survival rates, while patients with low tumor immune microenvironment and high cholesterol metabolism group have lower 
survival rates. Undoubtedly, higher immunity can inhibit the growth of HCC and significantly increase the survival time of HCC 
patients, as confirmed by our research results (Fig. 4C). The lower survival rate of HCC patients in the high cholesterol metabolism 
group (Fig. 4D) may be due to the use of cholesterol metabolism to provide energy and substances required for tumor growth. In 
addition, the tumor immune microenvironment and cholesterol metabolism screening showed excellent accuracy, with AUC values 
ranging from 0.75 to 0.85 at one, three, and five years (Fig. 4E and F). 

3.4. Immune and cholesterol metabolism-related gene characteristics can evaluate patient survival 

Based on the previous results, we combined the advantages of tumor immune microenvironment and cholesterol metabolism 
classifiers to construct a liver cancer risk assessment model. We define the group with high cholesterol metabolism and low immune 
microenvironment as the high-risk group, and the group with low cholesterol metabolism and high immune microenvironment as the 
low-risk group. The liver cancer risk assessment model exhibited even better performance (Fig. 5A and B). The risk model includes 20 
hub genes, of which eleven genes (HSPA8, S100A16, DNAJB4, CALM1, SPINK1, PGF, IGFBP3, CYB5R3, SPP1, FKBP1A, APOLD1) have 
a relatively high risk and are associated with poor patient prognosis, while nine genes such as CD69, GJA4, RPL18A, MTRNR2L12, 
IL1B, TM4SF1, TINAGL1, SPARCL1, ADAMTS9 have a lower risk (Fig. 5C). We found that HSPA8, S100A16, DNAJB4, CALM1, SPINK1, 
PGF, IGFBP3, CYB5R3, SPP1, FKBP1A and APOLD1 were expressed at higher levels in the high-risk group, while CD69, GJA4, RPL18A, 
MTRNR2L12, IL1B, TM4SF1, TINAGL1, SPARCL1 and ADAMTS9 were expressed at higher levels in the low-risk group (Fig. 5D). 
Meanwhile, when overexpressed in cancer, genes with higher risk ratios have poorer prognosis, while genes with lower risk ratios have 
better prognosis when overexpressed, which is the opposite of the former (Fig. 5E). To ensure the accuracy of the model, we validated it 
separately in independent datasets GSE116174 and GSE14520. The 1-year, 3-year, and 5-year roc curves for GSE116174 were between 
0.65 and 0.75, while the roc curves for GSE14520 ranged from 0.5 to 0.6, indicating that our liver cancer risk model has good per-
formance in liver cancer screening and classification (Fig. 5F and G). 

3.5. HCC patients with high cholesterol metabolism have lower immune levels 

In order to detect the abundance of all immune cells in all HCC patients, we scored and categorized them based on the optimal 
model constructed earlier correlating cholesterol with the tumor immune microenvironment based on clinical data (Fig. 6A). The 
tumor immune microenvironment and cholesterol metabolism model we previously constructed showed good performance. We found 
that the content of T cells and B cells was significantly lower in the high cholesterol metabolism group (low immune microenvironment 
group) compared to the low cholesterol metabolism group (high immune microenvironment group). At the same time, we also found a 
significant increase in M2 type macrophages in the high cholesterol metabolism group (low immune microenvironment group), while 
there were more M1 type macrophages in the low cholesterol metabolism group (high immune microenvironment group) (Fig. 6B). In 
addition, we found that there were more macroscopic and mast cells in the high cholesterol metabolism group (low immune micro-
environment group), and more lymphocytes in the low cholesterol metabolism group (high immune microenvironment group) 
(Fig. 6C). These results strongly indicated that the risk score could classify immune cells and the abundance of immune cells in different 
risk groups. It also indicates that M2-macrophages and T cells are important factors for the poor survival rate in high-risk group 
patients. 

3.6. HCC patients in the high cholesterol group are more prone to mutations 

To further evaluate the efficacy of tumor immunotherapy, we conducted TMB analysis on cancer patients in the high cholesterol 
metabolism group (low tumor immune microenvironment group) and the low cholesterol metabolism group (high tumor immune 
microenvironment group), respectively. Interestingly, we found that 42 % of patients in the high cholesterol metabolism group had a 
P53 mutation, while only 20 % in the low cholesterol metabolism group had this mutation. In addition, we also found that many genes 
in the high cholesterol metabolism group (low tumor immune microenvironment group) and low cholesterol metabolism group (high 
tumor immune microenvironment group) had a higher frequency of mutations and the main type of mutation that occurs is Missense 
Mutation (Fig. 7A, E and H). The frequency of variant alleles refers to the proportion of individuals with one or more variant genotypes 
at a certain gene locus in the total population. It reflects the prevalence of a genetic mutation in a population. Generally, the higher the 
frequency of variant alleles, the more common the mutation is in the population. The frequency of variant alleles is one of the 
important indicators in genetic epidemiology research, which can help us understand the transmission and role of genetic variations in 
human populations. By analyzing the frequency of variant alleles, we found that the high cholesterol metabolism group (low tumor 

Fig. 2. ESTIMATE score of hepatocellular carcinomas. (A). Clustering of single-cell sequencing data from nine cases of hepatocellular carcinomas. 
(B). Dimensionality reduction-based classification and cell annotation of hepatocellular carcinomas from nine cases. (C). Stromal score of hepa-
tocellular carcinomas. (D). Tumor Purity score of hepatocellular carcinomas. (E). Immune score of hepatocellular carcinomas. (F). ESTIMATE score 
of hepatocellular carcinomas. (G). Mountain map of the distribution of Stromal score, Tumor Purity score, Immune score, and ESTIMATE score in 
various cells. 
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Fig. 3. Characteristic analysis of malignant tumor cells in hepatocellular carcinoma. (A). KEGG enrichment map of differential immune score genes 
in hepatocellular carcinoma. (B). Heat map of high expression of cholesterol metabolism in malignant hepatocellular carcinoma. (C). Cholesterol 
metabolism score in hepatocellular carcinoma. (D). The quantity and intensity of communication between eight types of cells. (E). Cellular 
communication network diagram among different types of cells. 
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immune microenvironment group) does indeed have a higher frequency of allelic mutations (Fig. 7B). CTNNB1 is the gene that en-
codes beta-catenin. Beta-catenin is a component of the intracellular adhesion structure and also plays an important role in signal 
transduction. Overactivated beta-catenin is closely related to the occurrence and development of various human cancers. Through 
Mutual exclusive and Co-occurrence analysis, we found there was a significant Mutual exclusive between TP53 and CTNNB1 in the 
high cholesterol metabolism group (low tumor immune microenvironment group), while there was a significant co-occurring between 
TP53 and PCLO as well as OBSCN. Meanwhile, compared to the low cholesterol metabolism group (high tumor immune microenvi-
ronment group), the high cholesterol metabolism group (low tumor immune microenvironment group) has many co-occurring cancer- 
related genes (Fig. 7C). The high cholesterol metabolism group (low tumor immune microenvironment group) mainly affects related 
signaling pathways such as RTK-RAS, Hippo, TP53, and NRF2, while the low cholesterol metabolism group (high tumor immune 
microenvironment group) mainly affects signaling pathways such as RTK-RAS, PI3K, and TGF-Beta (Fig. 7D). In addition, we found 
that the high-risk group has a higher tumor mutation burden (Fig. 7F), and the 20 modeled hub genes also exhibit higher mutations in 

Fig. 4. The prognosis of different subtypes of hepatocellular carcinoma is based on the immune microenvironment and cholesterol metabolism. (A). 
The heatmap of the hub genes of the immune microenvironment and cholesterol metabolism models in different combinations. (B). Survival curves 
of cancer patients grouped by immune microenvironment and cholesterol metabolism. (C). Survival curve of liver cancer patients grouped based on 
the immune microenvironment. (D). Survival curve of liver cancer patients grouped based on cholesterol metabolism. (E). The AUC curve of the 
immune microenvironment model at 1 year, 3 years, and 5 years. (F). The AUC curve of cholesterol metabolism model at 1 year, 3 years, and 
5 years. 
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Fig. 5. Risk model based on immune microenvironment and cholesterol metabolism. (A). Survivorship curve of patients with liver cancer in 
different risk groups. (B). The AUC curve of the risk model at 1 year, 3 years, and 5 years. (C). Multivariate Cox regression analysis of hub genes in 
risk models. (D). The expression levels of risk model hub genes in different risk groups. (E). The survival curve of the risk model hub gene is grouped 
based on the risk score. (F). AUC curves for test set 1 at 1 year, 3 years, and 5 years. (G). AUC curves for test set 2 at 1 year, 3 years, and 5 years. 
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the high cholesterol metabolism group (low tumor immune microenvironment group) (Fig. 7G). In summary, the high burden of tumor 
mutations in high cholesterol metabolism group (low tumor immune microenvironment group) populations is more likely to lead to 
the occurrence and poor prognosis of cancer. 

Fig. 5. (continued). 
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3.7. BPD-00008900 and ML323 have high drug sensitivity in the treatment of patients with high cholesterol metabolism 

Patients with high drug sensitivity often achieve better treatment outcomes after receiving a certain dosage of medication. 
Conversely, low drug sensitivity can lead to poor treatment outcomes or may require higher dosages of medication to achieve the same 
treatment effect. The treatment of liver cancer also faces the challenge of drug resistance. Therefore, it is important to analyze the drug 
sensitivity of different liver cancer patients. Our results indicate that Doramapimod and AZD2014 have a positive correlation with risk 
scores (Fig. 8A–D) and show better treatment outcomes in low cholesterol metabolism group (high tumor immune microenvironment 
group) liver cancer patients. BPD-00008900 and ML323, on the other hand, have a negative correlation with risk scores (Fig. 8E–H) 
and demonstrate better treatment effects in high cholesterol metabolism group (low tumor immune microenvironment group) liver 
cancer patients. 

4. Discussion 

HCC is the most malignant subtype of liver cancer, characterized by poor prognosis [50–52] and significant heterogeneity [53,54]. 
Regardless of the cancer stage, chemotherapy remains the preferred treatment modality [55,56]. However, HCC exhibits high drug 
resistance and recurrence rates [57–59]. The primary reason for this phenomenon is the high tumor heterogeneity observed in HCC [9, 
60,61]. The malignant tumor cells in HCC are the main cause of HCC progression, and it is important to understand the metabolic levels 
and differences in immune levels between them and immune cells and normal cells. In this study, we aim to identify the location of 
malignant tumor cell abnormalities and provide insights into cancer treatment strategies. Through data analysis of nine HCC patients, 
we found significant heterogeneity among the seven cell types in HCC. Among these seven types of cells, malignant tumor cells exhibit 
lower immune levels and higher tumor purity compared to other cells, while immune cells and other cells exhibit higher immune 
levels. Tumor heterogeneity can reshape the tumor microenvironment and subsequently influence drug resistance [62]. Therefore, we 
conducted differential analysis and enrichment analysis on HCC cells with high and low immune scores. Based on the comparison of 
these seven types of cells, we found that the cholesterol metabolism signaling pathway is significantly activated in malignant tumor 
cells. Cholesterol is a necessary lipid for maintaining the homeostasis of mammalian cells in normal environments [17,63,64]. It is 
mainly synthesized in the liver and bound to low-density lipoprotein (LDL), which is transported to various parts of the body through 
blood [65,66]. After being transferred to the target site, LDL enters the cell through endocytosis, is transported to lysosomes through 
endocytosis, and hydrolyzes into free cholesterol molecules [67–69]. These molecules shuttle to the cell membrane and other or-
ganelles bound to the cell membranes, regulating membrane fluidity and stability [70]. Cells typically rely on de novo synthesis of 
acetyl-CoA to meet their cholesterol requirements, with even greater importance for this process during the cancer cell proliferation 
process [71]. Additionally, cholesterol also forms lipid raft structures within cells, playing a role in signal transduction. Abnormal 
cholesterol metabolism promotes tumor growth. Cholesterol activates the Wnt signaling pathway by regulating Fzd5, thus promoting 
the growth of pancreatic ductal adenocarcinoma [72]. Cholesterol-lowering interventions can reduce the mTOR complex 2 signaling 
pathway in prostate cancer, enhancing anti-tumor immunity [73]. In addition, cholesterol homeostasis is disrupted, and excessive 
accumulation of cholesterol can increase the resistance of cancer cells to iron death, leading to the further development and deteri-
oration of liver cancer [64]. In summary, the heterogeneity of malignant tumor cells in HCC and the changes in the tumor immune 
microenvironment due to abnormal cholesterol metabolism are crucial for the treatment of liver cancer. 

Through our comparative analysis, we found that the main reason for poor prognosis in liver cancer patients is a high cholesterol 
metabolism score and low tumor immune microenvironment score. Additionally, in the high-risk group of cancer patients (high 
cholesterol metabolism score and low immune score), M2 macrophages have higher levels and fewer lymphocytes (T cells, B cells) and 
M1 macrophages. The large accumulation of M2 macrophages in cancer not only does not prevent the progression of the tumor but also 
promotes the rapid generation of tumor blood vessels, ultimately leading to the proliferation of tumor cells [41], which is also the 
reason for the poor prognosis of some patients. 

Furthermore, we conducted TMB analysis in both the high cholesterol metabolism (low tumor immune microenvironment or high- 
risk group) and low cholesterol group (high tumor immune microenvironment or low-risk group). We found that multiple tumor 
suppressor genes, including P53, were mutated in the high-risk group. As a tumor suppressor, the P53 protein plays a crucial regulatory 
role in various stages of the cell cycle and helps maintain genomic stability [74]. P53, also known as the “guardian of the genome,” can 
inhibit the formation and progression of cancer. It achieves this by promoting the repair of damaged cells through multiple pathways 
or selectively inducing apoptosis in damaged cells, preventing uncontrolled cell proliferation and mutation [75]. This suggests that the 
mutations in cancer-related genes in the high-risk group may be associated with the occurrence and progression of HCC. 

Finally, based on these results, we proposed treatment strategies. Through drug sensitivity analysis, we found that BPD-00008900 
and ML323 had better chemotherapeutic effects in the high-risk group, while Doramapimod and AZD2014 had better chemothera-
peutic effects in the low-risk group. Although our research has provided valuable insights, it is important to acknowledge certain 
limitations. Specifically, further studies with a larger sample size are necessary to enhance our analysis. 

Fig. 6. Immune infiltration analysis of different risk groups (A). The expression calorimetry of each immune cell was grouped according to clinical 
data and risk score. (B). Wilcoxon rank-sum test accurately compared the difference and indicated that several immune cells conferred significantly 
lower infiltrating density in high-risk groups. *P < 0.05; **P < 0.01; ***P < 0.001, statistically significant. (C). The 20 types of immune cells 
calculated by Cibersort were divided into four major groups and their expression levels were calculated in different risk groups: Total lymphocytes, 
Total dendritic cells, Total macrophage, and Total mast cells. 
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Fig. 7. Somatic cell Mutation Analysis in Different Risk Groups. (A). Waterfall maps of the somatic mutations in different groups. (B). Mutation 
frequency of variant alleles in different risk groups. (C). Exclusive and co-occurrence analysis of different risk groups. (D). Analysis of carcinogenic 
signal pathways in different risk groups. (E). Transition/Ti and transition/TV statistics for different risk groups. (F). Tumor mutation burden in 
different risk groups. (G). Mutation frequency of model genes in different risk groups. (H). Mutant genes with significant differences in different 
risk groups. 
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Abbreviations 

HCC hepatocellular carcinoma 
TIME tumor immune microenvironment 
TME tumor microenvironment 
TAMs tumor-associated macrophages 
GEO gene expression omnibus 
KEGG Kyoto Encyclopedia of Genes and Genomes 
ROC receiver operating characteristic 
AUC area under the curve 

Fig. 8. Drug sensitivity analysis of different risk groups. (A–D). The two groups compared the Doramapimod, AZD2014, BPD− 00008900, and 
ML323 sensitivity (IC50). (E–F) Correlation between Risk Score and Doramapimod, AZD2014, BPD− 00008900, ML323. 
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TCGA the cancer genome atlas 
LIHC liver hepatocellular carcinoma 
CAF cancer-associated fibroblasts 
HPC like hematopoietic progenitor-like cell 
TEC tumor endothelial cell 
TMB tumor mutational burden 
IC50 half-maximal inhibitory concentration 
LDL low-density lipoprotein 
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