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Optimal design for longitudinal studies to estimate pubertal height growth in
individuals
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ABSTRACT

Background: The SITAR model expresses individual pubertal height growth in terms of mean size,
peak height velocity (PHV) and age at PHV.

Aim: To use SITAR to identify the optimal time interval between measurements to summarise individ-
ual pubertal height growth.

Subjects and methods: Heights in 3172 boys aged 9-19years from Christ’'s Hospital School measured
on 128 679 occasions (@ median of 42 heights per boy) were analysed using the SITAR
(Superlmposition by Translation And Rotation) mixed effects growth curve model, which estimates a
mean curve and three subject-specific random effects. Separate models were fitted to sub-sets of the
data with measurement intervals of 2, 3, 4, 6, 12 and 24months, and the different models
were compared.

Results: The models for intervals 2-12 months gave effectively identical results for the residual stand-
ard deviation (0.8cm), mean spline curve (6 degrees of freedom) and random effects (correlations
>0.9), showing there is no benefit in measuring height more often than annually. The model for
2-year intervals fitted slightly less well, but needed just four-to-five measurements per individual.
Conclusions: Height during puberty needs to be measured only annually and, with slightly lower
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precision, just four biennial measurements can be sufficient.

Introduction

Growth in puberty is recognised as an important stage in the
life course, with the pattern of growth at this time impacting
significantly on later health. As a recent example, pubertal
height and weight growth in the British 1946 Birth Cohort
were found to have a clinically important effect on bone
health 50 years later (Cole et al. 2016; Kuh et al. 2016). It was
not only the individual’s size (i.e. mean height and weight) in
puberty that was influential, but also two aspects of their
pubertal growth spurt: its timing and intensity.

The timing of puberty based on height or weight in indi-
viduals is usually defined by the age when they are growing
fastest, their age at peak velocity (Marshall & Tanner 1969,
1970). Equally, the intensity of puberty is summarised by
their peak velocity, which is inversely correlated with their
duration of puberty—the faster they grow, the sooner they
reach adult size. The mean age at peak height velocity (PHV)
is ~13-14years in boys and 2years earlier in girls, while
mean PHV is 8-9cm/year in the two sexes. However, both
timing and intensity vary enormously from one individual to
another; the population standard deviations (SD) of PHV and
age at PHV being ~0.9cm/year and 1 year, respectively (Cole
et al. 2014). Thus, the distribution of age at PHV in the popu-
lation spans more than 4 years in each sex.

In the past, the age at peak velocity in individuals was
estimated by fitting a growth curve to their serial growth
data, e.g. the five-parameter Preece-Baines curve (Preece &
Baines 1978) or a natural cubic smoothing spline curve
(Sandhu et al. 2006). From this their age at peak velocity
could be obtained, either as the solution to a quadratic in
the parameters or from the first derivative of the spline
curve. However, the downside of this approach was the need
to repeat the analysis for each individual.

Now, with the advent of non-linear mixed effects models,
it is possible to estimate puberty timing for individuals by fit-
ting a single model to the entire cohort, and functions of the
subject random effects identify the timings for individuals. A
recent paper by Simpkin et al. (2017) compared three such
methods for estimating age at PHV: a multilevel model using
fractional polynomials (MLM-FP) (Goldstein 1986), superim-
position by translation and rotation (SITAR) (Cole et al. 2010)
and principal analysis by conditional expectation (PACE) (Yao
et al. 2005). Each model was compared with the Preece-
Baines model 1 fitted to individuals (Preece & Baines, 1978)
and the focus was the degree of bias in the estimated mean
age at PHV. The authors concluded that, of the three models,
only SITAR estimated age at PHV, essentially without bias,
and they recommended it and the Preece-Baines model on
this basis.

CONTACT Tim James Cole @ tim.cole@ucl.ac.uk @ Population, Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford

Street, London WCIN 1EH, UK

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.


http://crossmark.crossref.org/dialog/?doi=10.1080/03014460.2018.1453948&domain=pdf
http://orcid.org/0000-0001-5711-8200
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com

The SITAR model (Cole et al. 2010) has a number of
advantages over the Preece-Baines model. It fits all the indi-
viduals in a single model, whereas Preece-Baines fits them
separately. It estimates the age at PHV in individuals as a ran-
dom effect relative to the mean age at PHV, which is simpler
to obtain than calculating it from other parameters. It also
fits the mean curve as a cubic spline, which is more flexible
in shape than the parametric Preece-Baines curve. In add-
ition, SITAR includes two further subject-specific random
effects representing each individual’s relative size and growth
intensity (i.e. PHV), which, together with the timing random
effect, account for most of the variance in pubertal height
growth—SITAR consistently explains over 98% of the cross-
sectional variance (Cole et al. 2010, 2014, 2015; Prentice
et al. 2012).

The analysis by Simpkin et al. (2017) simulated height
growth curves for boys from 10-19.75 years using the Preece-
Baines model 2 (Preece & Baines 1978), while systematically
varying the measurement error, sample size, time interval
between measurements, and measurement balance. It found
that SITAR performed well, irrespective of the selected meas-
urement error, sample size, or time interval, with the excep-
tion of measurements every 24 months when the model
failed to converge or was seriously biased. Simpkin et al.
(2017) also analysed the same four models using real data
for boys from Christ's Hospital School, and found that the
correlations between age at PHV estimated by the different
methods were generally low.

In their analyses Simpkin et al. (2017) varied the frequency
of measurement occasions, but they did not address the spe-
cific design question as to which measurement interval is the
most efficient for estimating pubertal growth, and in previ-
ous cohort studies this interval has varied widely. J. M.
Tanner's Harpenden Growth Study collected measurements
every 3months during puberty (Marshall & Tanner 1969,
1970), while the Edinburgh Growth Study saw subjects every
3 or 6months (Cole et al. 2014), the Wroctaw Growth Study
collected measurements annually (Bielicki & Waliszko 1975),
and the Avon Longitudinal Study of Parents And Children
(ALSPACQ) clinically examined children every 1 or 2years dur-
ing puberty (Boyd et al. 2013). It is evident that more fre-
quent measurements will lead to better estimates, be they of
the timing or the intensity of the growth spurt. However,
there is likely to be an optimal measurement frequency, such
that extra measurements beyond the optimum improve the
estimates only marginally.

This study aims to use the SITAR model to address the
question: what is the optimal time interval between measure-
ments to quantify pubertal height growth in individual boys,
providing adequate accuracy at reasonable cost? In doing so
it will build on and extend the work of Simpkin et al. (2017),
using the same Christ’s Hospital School dataset.

Methods
Data management

The analysis is based on a single dataset of 129 508 height
measurements collected on 3245 boys aged 9-19years from
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Christ’'s Hospital Boys School, Horsham, Sussex, UK, between
1939 and 1968 (heights were not measured in the CH Girls
School). Christ's Hospital is an independent school, estab-
lished in 1552, which has always admitted pupils from a
wide social and geographical background, asking parents to
contribute towards fees according to their means. Virtually all
the boys were born in the UK, so it is likely the vast majority
were of European descent. Simpkin et al. (2017) used broadly
the same dataset, with 126 897 heights from 3123 boys.

Height was measured with an Avery yard-arm platform
scale with height standard attached and recorded to the
nearest 1/8™ inch (3.2mm) (Friend 1935). For analysis, the
heights were expressed in centimetres to two decimal places.
The boys were measured at the start and end of each term,
i.e. six times a year, throughout their time at the school. The
first height per child was at a median age of 10.6 (interquar-
tile range=9.8-11.3) years, the last height was at 17.5
(16.6-18.3) years, and the time interval from first to last
measurement was 6.8 (5.8-7.8) years. The scale of the dataset
makes it suitable to compare the performance of different
sampling designs.

The dataset was first cleaned by excluding measurements
whose residuals after fitting the SITAR model (see next sec-
tion) exceeded 4 residual standard deviations (3.1cm) in
absolute value (n=382 or 0.3%). The same dataset, except
with 952 outlying measurements excluded, was used to val-
idate the SITAR growth curve model, see Figure 3(c) of Cole
et al. (2010).

The ideal dataset to address the research question would
consist of frequent regularly spaced measurements, from
which longer measurement intervals could be obtained by
selecting suitably spaced sub-sets of the data. However, the
school pattern at Christ's Hospital consisted of a shorter
spring term, its length depending on the timing of Easter,
and longer summer and autumn terms, while the holidays
were of 4 or 8 weeks duration. As a result, the distribution of
time intervals between measurements had three distinct
peaks at 5, 9 and 12 weeks. This complicated the selection of
suitable measurements to represent particular time intervals.
In addition, some measurements were inevitably missing, so
it was not realistic to expect every n'" measurement to be
equally spaced in time. Instead, an algorithm was developed
to extract equally spaced measurements, which has been
implemented as the timegap function in the sitar library
(Cole 2016) of the statistical language R version 3.3.2 (R Core
Team 2016). The same library was used to fit the
SITAR models.

Timegap works as follows: (a) a target time interval is
specified (e.g. 6 months); then, for each individual, timegap
(b) calculates the differences in age between all pairs of
measurements; (c) expresses them as multiples of the target
interval; (d) restricts them to those within a tolerance of 10%
of (an integer multiple of) the target interval; and (e) identi-
fies those providing the longest sequence of measurements.
In this way sub-sets of measurements for each individual
were obtained where the time gaps between measurements
were close to one or more target intervals.

The following time intervals were investigated as simple
fractions or multiples of 12months: 2, 3, 4 and 6 months, 1
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Figure 1. Plot of the numbers of measurements per child vs the number of children in each time interval dataset. For example, 1700 children each had four meas-
urements in the 2-year interval dataset (purple), while 428 had 42 measurements in the full dataset (red).

and 2years, and sub-set datasets for each interval were con-
structed using timegap. The 2-year interval was included to
test the findings of Simpkin et al. (2017). Note that the actual
ages of measurement were not constrained. Time intervals of
3, 4 and 5years were also explored, but the SITAR models fit-
ted to them failed to converge and they are not considered
further. Inevitably the numbers of subjects and measure-
ments in each dataset differed, and, to address this, the data
were restricted to the sub-set of individuals with measure-
ments in all six datasets.

Statistical analysis

The purpose of the analysis was to compare the different
time intervals by summarising the data using a separate
SITAR model for each interval; the model based on the
full dataset was also fitted for comparison. SITAR
(Superlmposition by Translation And Rotation) is a shape
invariant growth curve model consisting of a natural cubic B-
spline mean curve and three subject-specific random effects
that have the effect of shifting the mean curve to match the
subjects’ own growth curves (Beath 2007; Cole et al. 2010;
Lindstrom 1995). The three random effects are size, a meas-
ure of relative height in the individual, timing (or tempo), the
relative timing of their age at PHV (APHV), and intensity, their
relative PHV. In geometric terms the three random effects
can be thought of as size shifting the individual curves up/
down, timing shifting them left/right, and intensity stretching/
shrinking the age scale, to alter the average slope. The pur-
pose of these adjustments is to—as closely as possible—
superimpose the individual curves on the mean curve. The

complexity of the mean spline curve’s shape was controlled
by choosing the degrees of freedom to minimise the
Bayesian Information Criterion (BIC).

The SITAR models were fitted, as height vs log age, with
either 5 or 6 degrees of freedom for the mean curve, age
being log-transformed to reflect a multiplicative age effect.
With log age the timing random effect is a difference in log
age, which corresponds to a percentage difference in age
(Cole & Altman 2017). So individuals differ in developmental
age by a few percentage points, which corresponds to the
age scale being stretched or shrunk; this is more valid bio-
logically than a linear age scale being shifted right or left.

The model included both random and fixed effects for
size, timing, and intensity. The size effect was in units of cen-
timetres, while timing and intensity were in fractional units
(i.e. multiplied by 100 to give percentages) relative to APHV
and PHV, respectively. The models were compared on the
basis of mean curve shape, residual standard deviation, mean
APHV (the age when the first derivative of the mean curve,
plotted as height vs age, was maximal), mean PHV (the vel-
ocity at mean APHV) and the random effect standard devia-
tions and their correlations across the models for different
time intervals.

To investigate the 2-year interval in more detail, separate
models were fitted for individuals with two, three, four and
five measurements.

Results

The edited dataset consisted of 3172 individuals and 128 679
measurements (99.4% of the total), age range = 9.0-20.5 years
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Table 1. Summary statistics for datasets and fitted SITAR models for the six time intervals in 3172 boys.

Proportion Residual Mean age at Mean peak Timing Intensity
Number of of time gaps Degrees of  standard Variance  peak height height Size random  random random
Time Number  heights per of one time freedom for  deviation explained velocity velocity effect effect effect
interval of heights child (mode) interval (%) spline curve (cm) (%) (years) (cm/year) SD (cm) SD (%) SD (%)
All 128679 42 — 6 0.74 98.7 14.4 9.6 6.0 6.6 15
2 months 62965 19 41 6 0.76 98.7 14.4 9.5 6.0 6.6 14
3 months 43542 13 22 6 0.77 98.7 14.4 9.5 59 6.5 14
4 months 41074 12 54 6 0.77 98.7 14.4 9.6 6.0 6.6 14
6 months 41504 14 96 6 0.77 98.6 14.4 9.6 59 6.6 14
1 year 22237 7 99.5 6 0.80 98.5 14.4 9.7 58 6.5 14
2 years 12049 4 99.9 5 0.92 98.0 14.2 9.7 57 6.2 14
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Figure 2. Plot of mean height curves (solid lines) and mean height velocity curves (dashed lines) based on SITAR models for the different time intervals. The vertical

dotted lines indicate the age at peak velocity for each model.

(median=14.0, interquartile range=12.2-15.8). Figure 1
shows the numbers of children with specified numbers of
measurements for the different time intervals, e.g. for 2-year
intervals each of the 3172 boys had between two and six
measurements, with a mode of four.

SITAR models were successfully fitted to the whole dataset
and to the sub-sets of data for the six time intervals from
2 months to 2 years. All the models converged with 6 degrees
of freedom, except for the 2-year model, which converged
with 5.

Table 1 compares summary statistics for the data and fit-
ted SITAR models based on all the data and the six time
intervals. The numbers of measurements per dataset corres-
pond to the areas under the corresponding curves in
Figure 1. In theory, the numbers should be inversely related
to the time intervals, with proportionately more measure-
ments for shorter intervals as seen for 6 months, 1 and
2years. However, the intervals for 2, 3 and 4 months were
under-represented due to the non-uniform termly measure-
ment pattern. The modal numbers of measurements per

child and the proportions of measurements spaced the nom-
inal time interval apart (the remainder being two or more
intervals apart) confirm that many of the 2- and 3-month
measurements were actually spaced 4 or 6 months apart.

The last eight columns of Table 1 summarise the SITAR
models. The residual standard deviation rose very slightly with
increasing time interval and the percentage of variance
explained fell slightly, while the mean ages at PHV and mean
PHVs were very similar across models, as were the standard
deviations (SD) of the size, timing and intensity random effects.
Multiplying the timing SDs by median age converts them to
age units of 0.9 years, slightly less than the expected 1year.

Figure 2 shows the fitted mean height and height velocity
curves overall and for the six intervals. The seven curves
were remarkably similar, with those for all, 2, 3 and 4 months
almost completely obscured by the 6-month and 1-year
curves on top of them. As already seen in Table 1, their
mean ages at peak velocity (marked with the vertical dotted
lines) were also virtually identical, averaging 14.4 years with a
range of only 0.03 years (11 days).
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Table 2. Summary statistics for 2-year time intervals: separate SITAR models according to the number of heights per child.

Proportion Residual Mean age at Mean peak Timing Intensity
Number of of time gaps Degrees of  standard Variance  peak height height  Size random  random random
heights Number  Median age of one time freedom for deviation  explained velocity velocity effect effect effect
per child of children (years) interval (%) spline curve (cm) (%) (years) (cm/year) SD (cm) SD (%) SD (%)
2 127 1.7 99.2 4 0.93 98.1 14.5 14.3 5.0 —* 2
3 866 134 99.7 4 0.95 98.0 14.2 83 5.8 10.9 13
4 1700 14.1 100 5 0.89 97.7 14.3 9.4 5.6 6.2 14
5 477 14.0 100 5 0.97 97.6 14.4 9.1 57 6.4 13
6 2 — — — — — — — — — —

*Timing random effect omitted.
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Figure 3. Plot of mean height curves for SITAR models fitted to sub-sets of the 2-year interval dataset, based on the number of measurements per individual. The

vertical dotted lines indicate the age at peak velocity for each model.

The 2-year model differed somewhat from the others,
with a larger RSD, less variance explained, an earlier mean
age at PHV, larger mean PHV, and smaller random effect SDs
(Table 1). However, the differences were not large. Its height
and height velocity curves also differed in shape (Figure 2).

However, the fact that the 2-year model fitted at all was
somewhat surprising, with a median of only four measure-
ments per child (note that Simpkin et al. (2017) also had
trouble fitting the 24-month model). Table 2 compares the 2-
year time interval models restricted to individuals with two,
three, four and five measurements. At first glance they agree
well and even those based on two and three measurements
per child look plausible. However, in detail the 2- and 3-
measurement models were unreliable; the former only fitted
with the timing random effect omitted, and the latter did
not converge, both due at least in part to their young ages
of measurement (see Table 2). Figure 3 shows the separate
mean curves for the four models, which confirms that at least
four measurements were needed to provide reliable mean
curves, corresponding to 6years of follow-up. This latter

group contained 1700 (54%) of the 3172 individuals and a
further 477 (15%) had five measurements, so their curves
were robustly estimated. Note that the overall 2-year curve is
effectively the weighted average of the curves in Figure 3.

Figures 4 and 5 compare the subject random effects as
estimated by the different models, by looking at scatterplot
matrices of the correlations between them. Due to the simi-
larity of the models from 2 months to 6 months, the compari-
son is restricted to intervals of 6, 12 and 24 months. Figure 4
covers size and timing, while Figure 5 deals with intensity.
Each individual graph shows the scatterplot of a pair of indi-
vidual random effects (in grey), with the value of the correl-
ation coefficient superimposed.

The correlations for size and timing between the models
with different time intervals (Figure 4) all exceeded 0.9,
showing good agreement between the models, although
slightly smaller for 2 years. For intensity (Figure 5) the correla-
tions were smaller but still exceeded 0.8. Thus, the models
for the different time intervals all provided reassuringly simi-
lar estimates for the subject random effects, particularly age
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Figure 4. Scatterplot matrix of random effects for size (upper triangle) and tim-
ing (lower triangle) in SITAR models restricted to 6-month, 1-year and 2-year
time intervals. The corresponding correlation coefficients are also shown. To
read off the values for a given pair of time intervals, focus on the rows and col-
umns containing the two names; there are two cells where they intersect, the
one above the diagonal containing the size correlation and the one below the
corresponding timing correlation.
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Figure 5. Scatterplot matrix of random effects for intensity in SITAR models
restricted to 6-month, 1-year and 2-year time intervals. The corresponding cor-
relation coefficients are also shown.

at peak velocity. This in turn confirmed the value of the 1-
and 2-year interval models.

Conclusion

On the evidence presented here, measurements in puberty
taken 1year apart are as informative as measurements taken
2months apart for estimating the timing and intensity of
peak height velocity in individuals. This insight could reduce
the annual number of measurements in future studies from
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six to one, with little loss of precision—clearly a considerable
saving. Extending the time interval to 2years would further
halve the number of measurement occasions, but at a cost
of slightly greater imprecision. Ideally the median age of
measurement (14 years here) should be close to mean APHV.

The fact that the 2-year interval model fitted as well as it
did is instructive. The modal and median number of heights
per boy was four (range is two-to-six), and the total number
of heights only 9% of that for the full model, yet the two
estimated mean ages at PHV differed by only 0.2years and
the two SDs for the timing random effect, at 6.2% and 6.6%,
were also very similar. It seems to be a good example of
‘borrowing strength’, that just a few measurements per child
spread evenly across the age range can accurately estimate
the timing of puberty (Cole et al. 2016).

With Simpkin et al. (2017) the 24-month model failed, fit-
ting poorly for the unbalanced design (each measurement
age within a 3-month window) and failing to fit at all for the
balanced design (all individuals measured at the same ages).
Why this should be is unclear, as Simpkin et al. (2017) gave
no details of the models they fitted, e.g. the number of
spline degrees of freedom. However, Table 1 provides a clue,
at least for the unbalanced case, in that here the 2-year
model fitted with 5 degrees of freedom, but not 6. Simpkin'’s
model might well have fitted had they used fewer degrees
of freedom.

The study by Simpkin et al. (2017) involved both simu-
lated and real data, the simulations testing for bias in APHV
while the Christ’'s data explored model agreement in APHV.
The findings here rely on real data, which were obviously
less tightly controlled than simulated data. However, they
were largely equally spaced in time, thanks to timegap, and
the distribution of measurement ages reflected those likely
to be seen in practice. Thus, the findings have face validity.

It has long been known that estimating the shape of the
mean curve in puberty without adjusting for the pattern of
growth in individuals attenuates the velocity curve and
biases the mean curve (Cole et al. 2008; Merrell 1931). By
adjusting for individual timing and intensity, SITAR provides
an unbiased estimate of the curve, irrespective of the num-
ber of measurements. In this sense, the findings are unsur-
prising, that reducing the number of measurements (and
increasing the time interval between them) hardly affects the
mean curve (and hence APHV), as confirmed by Simpkin
et al. (2017). However, the fact that the residual standard
deviation and the random effects are also largely unaffected
is an unexpected bonus.

How generalisable are the findings? It is impossible to
know without repeating the study in different contexts, but
several previous studies have shown that pubertal height
growth in both sexes is well modelled by SITAR (Cole et al.
2010, 2014, 2015; Prentice et al. 2012). As such, it efficiently
estimates the variability in the age at PHV, so it is well suited
to compare different designs for estimating it. A limitation of
the current dataset is its being restricted to boys, and the
pubertal growth spurt is known to be less intense in girls
(Marshall & Tanner 1969), which might make its timing
harder to estimate. Against that the standard deviation of
APHV is similar in the two sexes (Marshall & Tanner 1969,
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1970; Cole et al. 2014), which suggests that the findings
should generalise. Note that, because girls start puberty
2years earlier than boys on average (Marshall & Tanner,
1969), their measurement ages need to be advanced
correspondingly.

The strengths of the study are the application of SITAR
growth curve analysis to efficiently summarise the informa-
tion available for each measurement interval and the large
number of subjects and measurements over an age range
exceeding 6years, allowing comparison of time intervals
from 2months to 2years. Limitations include the data being
restricted to boys, as discussed above, the ethnicity, and the
data being rather old, dating back 50-80 years. These factors
are likely to affect mean age at PHV to some extent, but not
the paper’s main conclusions. In addition, the non-uniform
measurement pattern through the year has meant that the
shorter time intervals were under-represented compared to
those for 6 months or more.

The topic of optimal design for longitudinal studies as
addressed here has an extensive literature, which has tended
to focus on designed missingness (Helms, 1992; Morara et al.
2007; Verbeke & Lesaffre, 1999). This corresponds to the
mixed longitudinal design, where individuals are recruited
and followed up from different ages, as opposed to the pure
longitudinal design of the present study. However, the ques-
tion addressed here could be extended to include designed
missingness by excluding individuals from further measure-
ment once they have clearly passed their age at peak vel-
ocity. This would reduce the number of measurements
needing to be collected later in puberty, although whether
or not the saving was worthwhile would need further work.

In conclusion, the SITAR analysis has demonstrated that
annual measurements are sufficient to estimate age at peak
height velocity to high precision, and that biennial measure-
ments on as few as four occasions suffer only a slight loss
of precision.
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