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in the midguts of anopheles coluzzi using
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Abstract

Background: Mosquito infection with malaria parasites depends on complex interactions between the mosquito
immune response, the parasite developmental program and the midgut microbiota. Simultaneous monitoring of the
parasite and bacterial dynamics is important when studying these interactions. PCR based methods of genomic DNA
(gDNA) have been widely used, but their inability to discriminate between live and dead cells compromises their
application. The alternative method of quantification of mRNA mainly reports on cell activity rather than density.

Method: Quantitative real-time (qrt) PCR in combination with Propidium Monoazide (PMA) treatment (PMA-qrtPCR)
has been previously used for selectively enumerating viable microbial cells. PMA penetrates damaged cell membranes
and intercalates in the DNA inhibiting its PCR amplification. Here, we tested the potential of PMA-qrtPCR to discriminate
between and quantify live and dead Plasmodium berghei malarial parasites and commensal bacteria in the midgut of
Anopheles coluzzii Coetzee & Wilkerson 2013 (formerly An. gambiae M-form).

Results: By combining microscopic observations with reverse transcriptase PCR (RT-PCR) we reveal that, in addition to
gDNA, mRNA from dead parasites also persists inside the mosquito midgut, therefore its quantification cannot accurately
reflect live-only parasites at the time of monitoring. In contrast, pre-treating the samples with PMA selectively inhibited
qrtPCR amplification of parasite gDNA, with about 15 cycles (Ct-value) difference between PMA-treated and control
samples. The limit of detection corresponds to 10 Plasmodium ookinetes. Finally, we show that the PMA-qrtPCR method
can be used to quantify bacteria that are present in the mosquito midgut.

Conclusion: The PMA-qrtPCR is a suitable method for quantification of viable parasites and bacteria in the midgut of
Anopheles mosquitoes. The method will be valuable when studying the molecular interactions between the mosquito,
the malaria parasite and midgut microbiota.
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Background
The first hours after ingestion of an infectious blood meal
by the mosquito vector are key for sucssesful infection
with malaria parasites. This period of the Plasmodium
lifecycle involves gametogenesis, fusion of the male and
female gametes, zygote development and differentiation to
motile ookinete, ookinete traversal of the peritrophic
membrane and the midgut epithelium and transformation
to oocyst. Importantly, this period is marked by a major

drop of parasite numbers. The rate of parasite losses dur-
ing the ookinete to oocyst transition in An. gambiae is
shown to reach 50, 41 and 69 folds for P. berghei [1],
P. yoelii [2, 3] and P. falciparum [4], respectively.
Inside the mosquito blood bolus, Plasmodium parasites

are found in close proximity with the mosquito midgut
microbiota. The Anopheles mosquito midguts harbour
numerous genera of microbiota, including Pseudomonas,
Aeromonas, Asaia, Comamonas, Elizabethkingia, Entero-
bacter, Klebsiella, Pantoea, Serratia and others [5]. These
microbiota proliferate dramatically and reach a peak at
approximately 24–30 h post blood meal, before falling
back to pre-blood meal levels [6]. The microbiota in the
mosquito midgut play a significant role in malaria
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transmission dynamics. It has been shown that Plasmo-
dium infection intensity is increased when mosquitoes are
treated with antibiotics and this phenotype is reversed
when microbiota are reconstituted (e.g. [7, 8]). Interaction
of the microbiota with Plasmodium development appears
to be exclusive to certain strains of gram-negative bacteria
[9]. Currently, the mechanisms underlying the apparent
bacterial inhibition of Plasmodium development are not
fully elucidated; they are thought to involve parasite killing
both directly and through induction of mosquito immune
responses [9–12]. Induction of immune responses either
through the gut microbiota or through direct parasite
recognition plays a major role in vector competence.
Microscopic examination of mosquito midgut epithe-

lium remains the gold standard for determining Plas-
modium infection intensity. Dissection and microscopic
examination of mosquito midguts is typically performed
5–7 days after infection, in order to allow the blood
meal bolus to clear and the oocyst to increase in size
becoming detectable. However, by this time, the gut
bacterial population and mosquito innate immune activ-
ity have subsided to a normal state. Thus, microscopy
does not allow the simultaneous assessment of the para-
site, bacterial and immune response dynamics. Quantita-
tive real-time PCR (qrtPCR) of genomic DNA (gDNA)
are currently used as a fast, sensitive, and specific mo-
lecular tool for the detection and quantification of path-
ogens, including Plasmodium parasites in the mosquito
[13, 14]. However, false-positive results due to amplifica-
tion of gDNA from dead cells are a major drawback. In
environmental microbiology, an alternative method in-
volves mRNA-based qrtPCR for selective detection of
viable cells [15, 16]. This technique takes advantage of the
rapid mRNA degradation compared to gDNA. However,
mRNA does not accurately represent bacterial cell density
but mostly refers to bacterial cell growth and proliferation.
A diagnostic technique that precludes detection of DNA

from dead cells involves pre-treatment of samples with
propidium monoazide (PMA) and subsequent PCR ana-
lysis of gDNA [17]. This method is referred as viability
PCR (v-PCR). PMA has high affinity to double stranded
DNA and, upon photolysis using bright white light, reacts
strongly with hydrocarbons of the bound DNA inducing
permanent modification and rendering it inaccessible to
DNA polymerase [18]. The technique exploits the fact
that PMA not only binds to free floating DNA but also
the DNA of dead cells as it penetrates the damaged or
permeable membranes of dead cells but not the intact
membranes of viable cells. The PMA-qrtPCR technique
has been increasingly used for the selective detection of
viable bacteria [19, 20], fungi [21] and protozoa [22]. Here,
we evaluated the potential of the PMA-qrtPCR technique
to simultaneously quantify viable Plasmodium parasites
and bacterial microbiota in the mosquito midgut. This

method could be used to investigate the interactions
between the mosquito vector, the gut microbiota and the
Plasmodium parasite during the first critical hours of
mosquito infection.

Methods
Ethics statement
The protocol for infecting mice with P. berghei and P. yoelii
was approved and carried out at the Imperial College
London under the UK Home Office License PPL70/7185
awarded in January 2010.

Mosquito colonies and maintenance
The Anopheles gambiae strain N’gousso M-form (a
laboratory-strain colonized in 2006 from field mosquitoes
collected around Yaoundé, Cameroon), now formally
named as Anopheles coluzzii Coetzee & Wilkerson 2013
[23], were used in these experiments. The mosquitoes
were reared and maintained at 27 °C, 70 % relative humid-
ity, subject to a 12 h light/dark cycle. Adult mosquitoes
were fed on 10 % sucrose cotton pads.

Plasmodium strains and maintenance
Green Florescent Protein (GFP)-Plasmodium berghei
(ANKA 2.34 strain) [24] or GFP-Plasmodium yoelii (17X
strain) [25] parasite lines were used throughout this study.
The parasite lines were maintained by serial passage in
8–12 week-old female TO mice (Harlan, UK).

Mosquito infection with plasmodium
Female mosquitoes, 3–5 days old, were infected with
Plasmodium parasites using two methods: (1) direct
feeding on gametocytemic mice as previously described
[26] or (2) using the membrane feeder system with ooki-
netes. For the ookinete culture, mice were injected with
P. berghei or P. yoelii infected 3 days after phenyl hy-
drazine treatment to encourage reticulocyte formation.
3 days post infection, 1 ml of blood was drawn from the
mice and immediately transferred to a vented tissue
culture flask containing 30 mL 80 % (v/v) complete
ookinete culture medium (RPMI1640 (Sigma)). The cul-
ture was incubated at 21 °C in air for 24 h (48 h for P.
yoelii). The number of mature ookinetes was determined
with a haemocytometer. Blood meal serum, containing
approximately 800 ookinetes/μl, was offered to mosqui-
toes for feeding.

Injection of mosquitoes with ookinetes
Mosquitoes were directly injected with viable or heat
inactivated ookinetes (heated at 42 °C for 15 min) into
their hemolymph. Each mosquito received ~400 ooki-
netes in freshly prepared ookinete culture media. Mos-
quitoes challenged with P. berghei and P. yoelii parasites
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in all the above methods were maintained at 21 °C and
24 °C, respectively.

Dissecting mosquito midgut and harvesting gut content
Midgut contents of infected mosquitoes were dissected
on ice cold PBS + BSA (2 %). For harvesting the gut
contents, a midgut was placed in 20 μl of PBS and a
longitudinal incision was made on the gut to draw out
its contents into the PBS. The resulting sheet of midgut
tissue and the gut contents were used in subsequent
microscopic examination or nucleic acid extraction.

Preparation of samples for microscopic examination
Midgut sheets were immunostained with Pbs28 antibody
conjugated with 13.1-Cy3 dye for 30 min on ice and
then examined under florescent microscopy to detect or
enumerate dead and viable ookinetes. Dead ookinetes
were negative for GFP. Alternatively, midguts were
subjected to dual staining using propidium monoazide
(PMA) and Syber Green (Sb) I dyes. Cells with compro-
mised membranes (considered as inactive) were positive
for red florescence arising from PMA, whereas the viable
cells remained green.

Total RNA (tRNA) extraction
Total RNA was extracted from whole mosquito or mid-
gut content. To extract tRNA from a whole mosquito,
10 mosquitoes were transferred into 2 ml Safe-Lock
RNA/DNA extraction RNase free tube containing 90 μl
lysis buffer (3 mg/ml lysozyme in TE) and ~25 ng acid
washed glass beads. The mixture was then incubated in
a thermostatic mixer for 10 min at 37 °C at 300 rpm,
and for an additional 10 min after adding 10 μl protein-
ase K. Buffer RLT (350 μl) was added to the mixture,
and then homogenised using Precellys® 24 tissue hom-
ogeniser. The homogenate was spiked with 106 copies of
control RNA template transcribed from the plasmid
pAW109 (GeneAmp® RNA kit) as an internal standard.
Total RNA was also extracted from the midgut content
of mosquito. In this case, the midgut was emptied into
20 μl PBS. The gut content together with PBS was trans-
ferred to an RNase free tube containing the lysis buffer
(80 μl). After incubation (see above), the RLT buffer
(350 μl) was added to the mixture and the mixture was
spiked with control RNA template. For all types of
samples in RLT buffer, QIAGEN RNeasy® Mini kit was
used to extract tRNA following the kit protocol.

Sample preparation for treatment with PMA
In vitro ookinete culture, bacterial culture from mosquito
gut content, midgut epithelial tissue of mosquitoes, gut
content and whole mosquitoes samples were prepared for
PMA treatment as follows. The total volume of in vitro
ookinete culture, containing a known number of mature

ookinetes, was adjusted to 500 μl to prepare for PMA
treatment. Bacterial culture was prepared for the PMA
treatment as follows. The midgut bolus was removed from
mosquitoes that had obtained a naive bloodmeal 24 h
before the dissection and was directly inoculated into LB
medium (5 ml) and incubated over night at 37 °C. A
500 μl aliquot of the bacterial culture was removed and
heated at 100 °C for 10 min before PMA treatment. The
control sample was left unheated. Ookinetes embedded in
the midgut epithelia tissues were prepared for PMA treat-
ment. First, midguts were dissected (n = 10) on ice cold
PBS + PMA and were transferred into 500 μl ice cold
PBS-BSA (2 %) after removing blood boluses. The blood-
meal bolus in PBS + BSA was transferred into a separate
tube for PMA treatment. To prepare whole mosquitoes
for PMA treatment, first a longitudinal incision was made
in the abdomen to expose the interior including the mid-
gut that was dissected onto ice cold PBS + BSA. Then an
additional longitudinal incision was made into the midgut.
All the mosquito tissue, including the blood meal bolus,
was transferred to a tube and the volume was adjusted to
500 μl with PBS-BSA. Finally, the sample was placed on a
rocker for 1 h in the cold and the circular sheath was
carefully removed with fine forceps.

PMA treatment and genomic DNA (gDNA) extraction
Procedures for PMA treatment described previously
[19, 27] were used with minor modification. Briefly, PMA
stock solution (20 mM in 20 % dimethyl sulfoxide; Bio-
tium Inc., Hayward, CA) was added at a concentration of
200 mM. The sample-PMA mixture was incubated in the
dark for 20 min. To cross link PMA to DNA molecules,
the samples were placed horizontally on ice on a shaker
and exposed for 5 min to a 650 W halogen lamp at a dis-
tance of 20 cm. Genomic DNA extraction was performed
on the PMA treated samples using a QIAGEN DNeasy®
Blood & Tissue kit. After PMA treatment, the sample was
spun at 3000 rpm for 10 min at a cold temperature, and
the supernatant was replaced by 180 μl of lysis buffer from
the kit. This mixture was incubated for 30 min at room
temperature and then for 30 min at 55 °C after adding
20 μl proteinase K. The mixture was then homogenised
using Precellys® 24 tissue homogeniser. Before proceeding
to the gDNA extraction, the homogenate was spiked with
106 copies of control cDNA synthesised from RNA tem-
plate transcribed from the plasmid pAW109 (GeneAmp®
RNA kit) as an internal standard. The QIAGEN DNeasy®
Blood & Tissue kit protocol was followed to extract
gRNA.

Reverse transcription polymerase chain reaction (RT-PCR)
Expression of Secreted Ookinete Adhesive Protein (SOAP)
gene by Plasmodium ookinetes was assessed using RNA
isolated from the whole mosquito or from the blood meal
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bolus at specified time points. RT-PCR was performed
using the QIAGEN One-step RT-PCR method which en-
sures a high specificity and sensitivity and minimises
sample loss and contamination. Briefly, tRNA samples
(25 μl) were added to an RT-PCR master mix containing
5x OneStep RT-PCR Enzyme Buffer 10 μl, dNTP mix
(10 mM) 2 μl, 5x Q-Solution 10 μl, gene specific primers
(10 μM) 0.5 μl each and One-step RT-PCR Enzyme mix
2 μl to make a final volume of 50 μl. The primers and their
sequences used for amplification of the SOAP gene in
both the parasite species were Forward, TCGAAGGAG
CAAGGAAAAATTCC and Reverse, ATGAACAGCTA
CATTCTTCGGTC. The amplified product was a 438 bp
fragment. Exogenous pAW109 RNA (106), co-extracted
with the sample RNAs, served as an invariant control.
The GeneAmp® RNA kit primers for pAW109 control
RNA were used to amplify a product of 308 bp, primer
DM151, GTCTCTGAATCAGAAATCCTTCTATC and
Primer DM152, ATGTCAAATTTCACTGCTTCATCC
were also used. The reaction mixture was first incubated
at 50 °C for 30 min to reverse transcribe tRNA, followed
by heating at 95 °C for 15 min to activate DNA Polymer-
ase, deactivate Omniscript and Reverse Transcriptase,
and denature the cDNA template. Initial heating was
followed by 30 cycles of 94 °C for 30 s, 56 °C for 30 s and
72 °C for 30 s. The final elongation stage was carried out
at 72 °C for 4 min. RT-PCR products were analysed by
agarose 1 % gel electrophoresis.

Real-time PCR (QRT-PCR)
A series of qrtPCR assays were performed on the gDNA
that was extracted from In vitro ookinete culture, bacter-
ial culture from the mosquito gut content, the midgut
epithelial tissue of mosquitoes, the gut content and the
whole mosquito to determine the relative abundance of
Plasmodium genes or gut bacterial genes. Set primer
pairs used to amplify the SOAP, CTRP or GFP gene
were SOAP Forward CCAAAACAACAGGCCAAGAG
and SOAP Reverse AACATCGGCCAATGGATTAC,
CTRP Forward TGCAATGATGTTTGTGGTGATTT and
CTRP Reverse TGGTGATACATTTCTGGTTCTTATT
CTT, GFP Forward CCTGTCCTTTTACCAGACAACCA
and GFP Reverse GGTCTCTCTTTTCGTTGGGATCT.
Universal 16S bacterial primers sets (357f CTCCTACGG
GAGGCAGCAG and 519r GTTTACCGCGGCAGCTG)
were used to amplify a 162 bp fragment. The PCR reactions
were performed in a total volume of 20 μl, containing 2 μl
gDNA, 10 μl of 2x SYBR®premix Ex Taq (Takara), 0.2 μM
of each forward and reverse primer specific to target genes
or internal standard and 0.4 μl Rox reference dye (50x).
Amplification and detection of the florescence signal was
carried out using an Applied Biosystems 7500 Fast Real-
Time PCR system. The PCR cycling program consisted of
an initial denaturation at 95 °C for 20 s, followed by

40 cycles of 95 °C for 3 s and 60 °C for 30 s. Each target
was quantified in duplicate and the values were normalized
by the data obtained with An. gambiae rRNA gene (AgS7)
as internal standards. The primer sequences for the
internal standard AgS7 gene were: forward, GTGC
GCGAGTTGGAGAAGA and reverse, ATCGGTTTG
GGCAGAATGC.
A standard curve was generated after qrtPCR analysis

on a serial dilution of ookinetes from in vitro culture to
calculate the limit of detection (LoD) and limit of quantifi-
cation (LoQ) for PMA-qrtPCR techniques as described in
a previous study [28].

Results
Microscopic and RT-PCR detection of ookinetes in the
blood bolus
Direct microscopic examination of smears of midgut
contents in P. berghei (Fig. 1a) and P. yoelii (Fig. 1b)
infected A. gambiae mosquitoes confirmed that both
zygotes and mature ookinetes were present in the gut
lumen at 18 h post infection (hpi), while mature ooki-
netes were only observed at 24 hpi. All the ookinetes
were physically cleared from the gut lumen by 48 hpi.
However, RT-PCR performed on total RNA extracted
from the mosquito midgut content showed that tran-
scripts of the ookinete-specific gene SOAP were detect-
able until 48 hpi (Fig. 1c). The physical as well as
molecular detection of P. yoelii ookinetes in the mos-
quito gut content were considerably more transient
compared to P. berghei. This is expected as the P. yoelii
infected mosquitoes were kept at a higher temperature
(24 °C) compared to P. berghei (21 °C). Mature P. yoelii
ookinetes were observed in midgut contents harvested
at 18 hpi, but only ookinete remains were detected at 24
hpi. As with P. berghei, P. yoelii SOAP transcripts were
still detectable at 24 hpi and only cleared by 48 hpi
(Fig. 1d). These data indicate that ookinete-specific tran-
scripts persist in the blood bolus even in the absence of
viable ookinetes.

Persistence of ookinete mRNA in the mosquito midgut
and hemolymph
To determine the persistence of ookinete mRNA in
mosquito tissues, heat-killed (42 °C for 30 min) or live
in vitro cultured ookinetes were either added to mouse
blood and offered to female An. gambiae mosquitoes as
a blood meal via membrane feeding or injected directly
into the mosquito hemolymph. Approximately 800 ooki-
netes were delivered in each mosquito with either of the
two methods. RT-PCR analysis of SOAP transcripts was
performed using total RNA extracted from whole mos-
quitoes at 0, 3, 6, 12, 18, 24 and 48 hpi. The results
showed prolonged persistence of SOAP transcripts from
both heat-killed and live P. berghei ookinetes compared
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to P. yoelii ookinetes (Fig. 2). This difference is attribut-
able to the difference in temperature between these two
infection models and consequently the slower metabolic
rate of mosquitoes at 21 °C (P. berghei) compared to
24 °C (P. yoelii). For heat-killed ookinetes, SOAP tran-
scripts persisted in mosquito tissues up to 24 hpi and
18 hpi for P. berghei and P. yoelii ookinetes, respect-
ively, whereas transcripts from live ookinetes were detect-
able until 48 hpi. The slow mRNA decay rate suggests
that transcript abundances measured by PCR methods are
not fully reflective of viable parasites.

PMA-induced inhibition of DNA amplification from dead
parasites and bacteria
Propidium monoazide (PMA) has been increasingly used
for the treatment of microbiological samples to exclude
PCR signals from non-viable cells, but this has not been
tested to date in investigations involving Plasmodium.
We confirmed that PMA can stain dead P. berghei ooki-
netes prepared from an ookinete culture and heat-killed
at 42 °C for 30 min before incubating them with PMA
(Fig. 3a). Next, we stained ookinetes sampled directly
from an overnight culture that was thought to include

both live and dead cells. The ookinetes were incubated
with a mixture of PMA and SYBR green that also stains
nucleic acids but, unlike PMA, actively enters live cells.
Fluorescent microscopic observations confirmed that
some ookinetes are stained only with PMA, while most
of the ookinetes are stained only with SYBR green
(Fig. 3b). We applied the same protocol to An. gambiae
midguts tissues infected 24 h earlier with P. berghei. The
results showed that SYBR and PMA could be used to
discriminate between live and dead parasites, respect-
ively (Fig. 3c). Bacteria present in the blood meal bolus
were also differentially stained with SYBR and PMA
(Fig. 3d).
We assessed whether incorporation of PMA in nucleic

acids could inhibit the PCR amplification rates of mRNA
transcripts that derived from dead P. berghei parasites.
Genomic DNA (gDNA) was prepared from heat-killed
parasites from an overnight in vitro ookinete culture
treated with PMA or control solution, and the abun-
dances of SOAP, CTRP and GFP (the parasite line used
carried a GFP expression cassette) amplicons were
determined by quantitative real-time PCR (qrtPCR). The
parasite gDNA samples were spiked with equal amounts

Fig. 1 Detection of Plasmodium ookinetes in the mosquito midgut. a and b Representatitve images of smears of midgut contents stained with
Giemsa from An. coluzzii mosquitoes infected with P. berghei (a) and P. yoelii (b). Midguts were dissected at 18, 24 and 48 h post infection (hpi).
Arrowheads show zygotes/ookinetes (black), bacteria (red), remains of dead parasites (white) and blood meal contents (yellow). c and d Agarose
gel images showing SOAP gene transcripts amplified from gut contents of mosquitoes infected with P. berghie (c) or P. yoelii (d). Midguts were
dissected at 0, 6, 18, 24 and 48 hpi. The An. gambiae S7 gene served as a heterologous internal standard. M corresponds to molecular marker
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of An. gambiae gDNA and amplification of the S7 gene
served as a heterologous internal standard. The results
showed that PMA treatment significantly inhibited the
qrtPCR detection of SOAP, CTRP or GFP genes in dead
ookinetes (Fig. 4a). We observed a similar inhibitory

effect of PMA on qrtPCR assays for bacterial 16S rRNA
gene in the gDNA from total culturable bacteria in the
mosquito midgut content (Fig. 4b).
Next, we tested the PMA inhibitory effect on parasite

detection in mosquitoes by comparing the level of

Fig. 2 SOAP mRNA persistence in the An. coluzzii midgut and hemolymph. Agarose gel electrophoresis images of Plasmodium SOAP gene
transcrips in An. coluzzii mosquitoes. Heat-killed or live P. berghei or P. yoelii ookinetes were delivered to mosquitoes either by addition to the
blood meal or injection into the haemolymph. RT-PCR assays were carried our on whole mosquito RNAs prepared at 0, 3, 6, 12, 18, 24 and 48 h
post ookinete ingestion or injection (hpi)

Fig. 3 Differential staining of live and dead ookinetes and bacteria in the mosquito midgut. a Heat killed ookinetes an overnight ookinete culture
stained with a mixture of PMA and SYBR solution. b Live and dead parasites from an overnight ookinete culture stained with a mixture of PMA
and SYBR solution. c Live and dead P. berghei ookinetes in the mosquito midgut epithelium at 48 hpi. d Live and dead bacteria present in
midgut contents. Live cells are stained with SYBR green (white arrowheads), while dead cells are stained with PMA (red arrowheads)
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reduction of qrtPCR signal (increase in Ct-value) in the
midgut contents and midgut epithelial tissues of mos-
quitoes that had been infected 24 h earlier with P. ber-
ghei parasites. The qrtPCR analysis of the PbSOAP gene
showed an increased Ct-value in gut content or gut epi-
thelial tissue samples that were treated with PMA when
compared to controls (Fig. 4c). The Ct-value was higher
for PMA treated samples at 24 h pi compared to 0 h pi,
but there was no further increase from 24 h to 48 h,
suggesting the PMA treatment inhibited DNA amplifica-
tion from dead ookinetes and also from those ookinetes
that were eventually killed.

Detection and quantification of ookinetes using PMA
qrt-PCR
The efficiency of PMA-qrtPCR for detecting and quanti-
fying Plasmodium ookinetes was tested using 10-fold
serial dilutions of P. berghei ookinetes cultured in vitro,
from 2.5×106 to 2.5×10−1. Samples were spiked with
equal volumes of mosquito tissue homogenates before
proceeding to gDNA extraction. In two independent
PMA-qrtPCR experiments, the resulting Ct-values were
standardized to the An. gambiae S7 gene in the corre-
sponding experiment. Averaged Ct-values corresponding

to each dilution were plotted against the ookinete num-
bers in the respective dilution. Standard curves were
linear for the serial dilution range (Fig. 5). The limit of
quantification (LoD) for the PMA-qrtPCR was ~25
ookinetes.

Fig. 4 PMA-qrtPCR investigation of the inhibition of DNA amplification in killed ookinetes or bacteria during PCR. a Average cycle threshold
(ct-value) for PbSOAP PbCTRP and PbGFPCON genes in heat inactivated (KLD) or live (LV) ookinetes from overnight gametocyte culture that
were pre-treated with PMA. Inactivated and live ookinetes without PMA were used as a control. Samples, before DNA extraction, were spiked
with an equal volume of Anopheles coluzzii homogenate with the aim to use the mosquito S7 gene as a heterologous internal standard.
b Average ct-values for the PbGFP gene in the midgut contents or gut epithelium tissue from mossquitoes 24 h pi with P. berghei parasite.
c Average ct-values for bacterial 16S rRNA gene from heat inactivated samples and live bacteria cultured from mosquito midgut contents
(24 h after bloodmeal). Samples without PMA treatment served as a control. d Ct-values for PbGFP genes from gDNA samples that were
extracted from mosquitoes that obtaned P. berghei ookinetes in their bloodmeal. e Ct-values for 16S rRNA genes in gDNA extracted from
mosquitoes that obstained naïve bloodmeal. An. gambiae S7 gene served as a heterologous internal standard for all the PMA-qrtPCR reactions
that were performed using samples that were isolated from mosquito tissues. Error bars represent standard deviation from at least two
independent assays. Each qrPCR experiment repeated three times

Fig. 5 Ookinete detection efficiency using PMA-qrtPCR. Standard
curve for quantifying P. berghei ookinetes using 10-fold serially diluted
parasite cultures. Ookinete numbers are plotted against cycle threshold
(Ct) values. Duplicate samples from two independent experiments
were quantified. The dotted line indicates the limit of detection (LoD)
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Discussion and Conclusions
In this study, we performed a series of experiments aimed
to establish an efficient PCR based method to detect and
quantify the success of Plasmodium parasite infection of
the mosquito midgut. The majority of Plasmodium ooki-
netes are killed during the first 32 h of their life in the
mosquito midgut. Dead parasites limit the use of standard
PCR based methods to quantify live ookinete numbers
during that time due to amplification of nucleic acids from
both dead and viable parasites. An alternative method that
addresses this limitation is quantification of mRNA that is
often used as a viability marker on the basis of its rapid
degradation and therefore considered to be a good indica-
tor of live cells [29–32]. However, our data show that
Plasmodium transcripts exclusively expressed in ookinetes
and required for midgut invasion [33, 34] persist in mos-
quito midguts at least 24 h beyond the termination of
their expression or after ookinete death. Therefore the
detection and quantification of ookinetes transcripts using
qrtPCR cannot exclude dead parasites, and mRNA origin-
ating from non-dead ookinetes in the midgut killed by
multiple factors could lead to an overestimation of the
number of ookinetes. Numerous studies have demon-
strated that RNA can persist for up to a week in dead cells
[35, 36]. Due to indecisiveness of discrimination of viable
cells by this technique, the use of mRNA based qrtPCR is
more adapted for gene expression studies than estimating
of the bacterial abundance [37].
To circumvent the indecisiveness of mRNA-based

techniques, a combination of pretreatment of samples
with PMA and nucleic acid detection methods have
been developed as an alternative strategy [38]. This
tecnique is based on DNA detection of cells with intact
cell/wall membranes, the viability qPCR (v-qPCR). The
PMA selectively enters dead cells and interacts with DNA
preventing its amplification during PCR. Until now, the
PMA-qrtPCR technique has not been tested to date in
investigations involving Plasmodium viability in the mos-
quito vector. We demonstrate that PMA can selectively
enter dead ookinetes both from in vitro cultures and in
vivo, while dual staining of the mosquito midgut contents
with SYBR green I (SGI) and PMA confirmed that PMA
enters exclusively into dead bacterial cells. Subsequent
qrtPCR of PMA treated samples effectively differentiates
viable from non-viable ookinetes, and the same effect is
observed on bacteria isolated from mosquito midguts.
There are several examples of successful application of

the PMA-qrtPCR technique including quantification of
viable oocysts of Cryptosporidium parvum [22] and tro-
phozoites and cysts of Acanthamoeba castellani [39].
The technique has been also successfully used to quantify
viable microorganisms in environmental [40–42], food
[43–45] and pathological samples [46, 47]. It has been
shown that the limit of detection of the PMA-qrtPCR

method was at least equivalent to that obtained by using
CFU values for the gram-negative bacteria Legionella
pneumophila [48]. Here we show that the technique can
detect as few as 10 and accurately quantify as few as 25
ookinetes.
Therefore, the PMA-qrtPCR technique can allow accur-

ate and simultaneous monitoring of viable Plasmodium
ookinetes and midgut microbiota cells during the time of
mosquito midgut invasion. The ookinetes and microbiota
data obtained by this method can be also used to assess
the dynamics and magnitude of mosquito immune re-
sponses at a time of infection.

Abbreviations
PMA: Propidium Monoazide; PCR: Polymerase chain reaction; RT-PCR: Reverse
transcriptase PCR; qrtPCR: Quantitative real-time PCR; DNA: Deoxyribonucleic
acid; RNA: Ribonucleic acid; v-PCR: Viability PCR; SOAP: Secreted ookinete
adhesive protein; PbSOAP: Plasmodium berghei SOAP; CTRP: Circumsporozoite
and TRAP related protein; GFP: Green fluorescent protein; Ct: Threshold cycle;
LoD: Limit of detection.

Competing interest
The authors declare that they have no competing interests.

Authors’ contribution
Conceived and designed the experiments: TH, GKC. Performed the
experiments: TH, ZG. Analyzed the data: TH, GKC. Contributed reagents/
materials/analysis tools: TH, GKC, LD. Wrote the manuscript: TH, ZG, GKC, LD.
All authors read and approved the final manuscript.

Acknowledgments
We thank Katarzyna Sala for technical support and Valerie Ukegbu for supply
of parasite cultures. The work was supported through grants by the
Wellcome Trust, WT093587MA and the BBSRC Project BB/K009338/1.

Author details
1Department of Life Sciences, Imperial College London, London, UK.
2Department of Comparative Physiology and Biometrics, University of Ghent,
Ghent, Belgium. 3Costello Medical Consulting, Cambridge, UK.

Received: 10 August 2015 Accepted: 11 September 2015

References
1. Alavi Y, Arai M, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, et al. The

dynamics of interactions between Plasmodium and the mosquito: a study
of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and
their transmission by Anopheles stephensi, Anopheles gambiae and Aedes
aegypti. Int J Parasitol. 2003;33(9):933–43. Epub 2003/08/09. PubMed.

2. Ghosh A, Edwards MJ, Jacobs-Lorena M. The Journey of the Malaria Parasite
in the Mosquito: Hopes for the New Century. Parasitol Today.
2000;16(5):196–201. doi:10.1016/s0169-4758(99)01626-9.

3. Vaughan JA, Hensley L, Beier JC. Sporogonic development of Plasmodium yoelii
in five anopheline species. J Parasitol. 1994;80(5):674–81. Epub 1994/10/01.
PubMed.

4. Vaughan JA, Noden BH, Beier JC. Population dynamics of Plasmodium
falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol.
1992;78(4):716–24. Epub 1992/08/01. PubMed.

5. Gendrin M, Christophides GK. The Anopheles Mosquito Microbiota and
Their Impact on Pathogen Transmission, Anopheles mosquitoes - New
insights into malaria vectors. Manguin PS, editor. http://www.intechopen.
com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/the-
anopheles-mosquito-microbiota-and-their-impact-on-pathogen-
transmission. 2013.

6. Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A Peroxidase/
Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles
gambiae. Science. 2010;327(5973):1644–8. doi:10.1126/science.1184008.

Habtewold et al. Parasites & Vectors  (2015) 8:455 Page 8 of 10

http://dx.doi.org/10.1016/s0169-4758(99)01626-9
http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/the-anopheles-mosquito-microbiota-and-their-impact-on-pathogen-transmission
http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/the-anopheles-mosquito-microbiota-and-their-impact-on-pathogen-transmission
http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/the-anopheles-mosquito-microbiota-and-their-impact-on-pathogen-transmission
http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/the-anopheles-mosquito-microbiota-and-their-impact-on-pathogen-transmission
http://dx.doi.org/10.1126/science.1184008


7. Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G.
Engineered Anopheles Immunity to Plasmodium Infection. PLoS Pathog.
2011;7(12), e1002458. doi:10.1371/journal.ppat.1002458.

8. Garver LS, Bahia AC, Das S, Souza-Neto JA, Shiao J, Dong Y, et al. Anopheles Imd
pathway factors and effectors in infection intensity-dependent anti-Plasmodium
action. PLoS Pathog. 2012;8(6):e1002737. doi:10.1371/journal.ppat.1002737.
Epub 2012/06/12. PubMed PMID: 22685401; PubMed Central PMCID:
PMCPMC3369948.

9. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M,
et al. Natural Microbe-Mediated Refractoriness to Plasmodium Infection in
Anopheles gambiae. Science. 2011;332(6031):855–8. doi:10.1126/science.1201618.

10. Luckhart S, Vodovotz Y, Cui L, Rosenberg R. The mosquito Anopheles
stephensi limits malaria parasite development with inducible synthesis of
nitric oxide. Proc Natl Acad Sci U S A. 1998;95(10):5700–5.

11. Molina-Cruz A, DeJong RJ, Charles B, Gupta L, Kumar S, Jaramillo-Gutierrez
G, et al. Reactive oxygen species modulate Anopheles gambiae immunity
against bacteria and Plasmodium. J Biol Chem. 2008;283(6):3217–23.
doi:10.1074/jbc.M705873200. Epub 2007/12/11. PubMed.

12. Weiss B, Aksoy S. Microbiome influences on insect host vector competence.
Trends Parasitol. 2011;27(11):514–22. doi:10.1016/j.pt.2011.05.001.

13. Bourgeois N, Boutet A, Bousquet PJ, Basset D, Douard-Enault C, Charachon
S, et al. Comparison of three real-time PCR methods with blood smears and
rapid diagnostic test in Plasmodium sp. infection. Clin Microbiol Infect.
2010;16(8):1305–11. doi:10.1111/j.1469-0691.2009.02933.x.

14. Farcas GA, Soeller R, Zhong K, Zahirieh A, Kain KC. Real-Time Polymerase
Chain Reaction Assay for the Rapid Detection and Characterization of
Chloroquine-Resistant Plasmodium falciparum Malaria in Returned Travelers.
Clin Infect Dis. 2006;42(5):622–7. doi:10.1086/500134.

15. Hellyer TJ, DesJardin LE, Hehman GL, Cave MD, Eisenach KD.
Quantitative analysis of mRNA as a marker for viability of Mycobacterium
tuberculosis. J Clin Microbiol. 1999;37(2):290–5. Epub 1999/01/16.
PubMed PMID: 9889206; PubMed Central PMCID: PMCPMC84288.

16. Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD.
Detection of viable Mycobacterium tuberculosis by reverse transcriptase-
strand displacement amplification of mRNA. J Clin Microbiol.
1999;37(3):518–23. Epub 1999/02/13. PubMed PMID: 9986805; PubMed
Central PMCID: PMCPMC84447.

17. Cenciarini-Borde C, Courtois S, La Scola B. Nucleic acids as viability markers for
bacteria detection using molecular tools. Future Microbiol. 2009;4(1):45–64.
doi:10.2217/17460913.4.1.45. Epub 2009/02/12. PubMed.

18. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium
monoazide for live/dead distinction in microbial ecology. Appl Environ
Microbiol. 2007;73(16):5111–7. doi:10.1128/aem.02987-06. Epub 2007/06/26.
PubMed PMID: 17586667; PubMed Central PMCID: PMCPMC1951001.

19. Nocker A, Cheung CY, Camper AK. Comparison of propidium monoazide
with ethidium monoazide for differentiation of live vs. dead bacteria by
selective removal of DNA from dead cells. J Microbiol Methods.
2006;67(2):310–20. doi:10.1016/j.mimet.2006.04.015. Epub 2006/06/07.
PubMed.

20. Pan Y, Breidt Jr F. Enumeration of viable Listeria monocytogenes cells by
real-time PCR with propidium monoazide and ethidium monoazide in the
presence of dead cells. Appl Environ Microbiol. 2007;73(24):8028–31.
doi:10.1128/aem.01198-07. Epub 2007/10/16. PubMed PMID: 17933922;
PubMed Central PMCID: PMCPMC2168130.

21. Vesper S, McKinstry C, Hartmann C, Neace M, Yoder S, Vesper A. Quantifying
fungal viability in air and water samples using quantitative PCR after
treatment with propidium monoazide (PMA). J Microbiol Methods.
2008;72(2):180–4. doi:10.1016/j.mimet.2007.11.017. Epub 2007/12/28.
PubMed.

22. Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN.
Cryptosporidium propidium monoazide-PCR, a molecular biology-based
technique for genotyping of viable Cryptosporidium oocysts. Appl Environ
Microbiol. 2009;75(21):6856–63. doi:10.1128/aem.00540-09. Epub 2009/09/
15. PubMed PMID: 19749067; PubMed Central PMCID: PMCPMC2772443.

23. Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ.
Anopheles coluzzii and Anopheles amharicus, new members of the
Anopheles gambiae complex. Zootaxa. 2013;3619:246–74. Epub 2013/01/01.
PubMed.

24. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der Keur M, van der
Linden R, et al. A Plasmodium berghei reference line that constitutively expresses
GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol.

2004;137(1):23–33. doi:10.1016/j.molbiopara.2004.04.007. Epub 2004/07/29.
PubMed.

25. Ono T, Tadakuma T, Rodriguez A. Plasmodium yoelii yoelii 17XNL
constitutively expressing GFP throughout the life cycle. Exp Parasitol.
2007;115(3):310–3. doi:10.1016/j.exppara.2006.09.008. Epub 2006/10/20.
PubMed PMID: 17049517; PubMed Central PMCID: PMC1779952.

26. Habtewold T, Povelones M, Blagborough AM, Christophides GK.
Transmission blocking immunity in the malaria non-vector mosquito
Anopheles quadriannulatus species A. PLoS Pathog. 2008;4(5):e1000070.
doi:10.1371/journal.ppat.1000070. Epub 2008/05/24. PubMed PMID:
18497855; PubMed Central PMCID: PMCPMC2374904.

27. Alvarez G, Gonzalez M, Isabal S, Blanc V, Leon R. Method to quantify live
and dead cells in multi-species oral biofilm by real-time PCR with
propidium monoazide. AMB Express. 2013;3(1):1. doi:10.1186/2191-0855-3-1.
Epub 2013/01/08. PubMed PMID: 23289803; PubMed Central PMCID:
PMCPMC3549832.

28. Saadati N, Abdullah MP, Zakaria Z, Sany SB, Rezayi M, Hassonizadeh H. Limit
of detection and limit of quantification development procedures for
organochlorine pesticides analysis in water and sediment matrices. Chem
Cent J. 2013;7(1):63. doi:10.1186/1752-153x-7-63. Epub 2013/04/09. PubMed
PMID: 23561579; PubMed Central PMCID: PMCPMC3630005.

29. Alifano P, Bruni C, Carlomagno M. Control of mRNA processing and decay
in prokaryotes. Genetica. 1994;94(2–3):157–72. doi:10.1007/BF01443430.

30. Mendum TA, Sockett RE, Hirsch PR. The detection of Gram-negative
bacterial mRNA from soil by RT-PCR. FEMS Microbiology Lett.
1998;164(2):369–73. http://femsle.oxfordjournals.org/content/164/2/369.

31. Uyttendaele M, van Boxstael S, Debevere J. PCR assay for detection of the
E. coli O157:H7 eae-gene and effect of the sample preparation method
on PCR detection of heat-killed E. coli O157:H7 in ground beef. Int J Food
Microbiol. 1999;52(1–2):85–95. Epub 1999/11/26. PubMed.

32. Vettraino AM, Sukno S, Vannini A, Garbelotto M. Diagnostic sensitivity and
specificity of different methods used by two laboratories for the detection
of Phytophthora ramorum on multiple natural hosts. Plant Pathol.
2010;59(2):289–300. doi:10.1111/j.1365-3059.2009.02209.x.

33. Dessens JT, Siden-Kiamos I, Mendoza J, Mahairaki V, Khater E, Vlachou D,
et al. SOAP, a novel malaria ookinete protein involved in mosquito midgut
invasion and oocyst development. Mol Microbiol. 2003;49(2):319–29.
Epub 2003/06/28. PubMed.

34. Oakley MS, Kumar S, Anantharaman V, Zheng H, Mahajan B, Haynes JD, et
al. Molecular factors and biochemical pathways induced by febrile
temperature in intraerythrocytic Plasmodium falciparum parasites. Infect
Immun. 2007;75(4):2012–25. doi:10.1128/iai.01236-06. Epub 2007/02/07.
PubMed PMID: 17283083; PubMed Central PMCID: PMCPMC1865691.

35. Chimento A, Cacciola SO, Garbelotto M. Detection of mRNA by reverse-
transcription PCR as an indicator of viability in Phytophthora ramorum.
Forest Pathol. 2012;42(1):14–21. doi:10.1111/j.1439-0329.2011.00717.x.

36. Sheridan GEC, Masters CI, Shallcross JA, Mackey BM. Detection of mRNA
by Reverse Transcription-PCR as an Indicator of Viability in Escherichia coli
Cells. Appl Environ Microbiol. 1998;64(4):1313–8. PubMed.

37. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D. Recent advances in
quantitative PCR (qPCR) applications in food microbiology. Food Microbiol.
2011;28(5):848–61. doi:10.1016/j.fm.2011.02.008. Epub 2011/05/17. PubMed.

38. Wagner AO, Malin C, Knapp BA, Illmer P. Removal of Free Extracellular DNA from
Environmental Samples by Ethidium Monoazide and Propidium Monoazide.
Appl Environ Microbiol. 2008;74(8):2537–9. doi:10.1128/aem.02288-07.

39. Fittipaldi M, Pino Rodriguez NJ, Adrados B, AgustÍ G, PeÑUela G, MoratÓ J,
et al. Discrimination of Viable Acanthamoeba castellani Trophozoites and
Cysts by Propidium Monoazide Real-Time Polymerase Chain Reaction. J
Eukaryot Microbiol. 2011;58(4):359–64. doi:10.1111/j.1550-7408.2011.00557.x.

40. Nocker A, Richter-Heitmann T, Montijn R, Schuren F, Kort R. Discrimination
between live and dead cellsin bacterial communities from environmental
water samples analyzed by 454 pyrosequencing. Int Microbiol.
2010;13(2):59–65. Epub 2010/10/05. PubMed.

41. Wagner AO, Malin C, Knapp BA, Illmer P. Removal of free extracellular DNA from
environmental samples by ethidium monoazide and propidium monoazide.
Appl Environ Microbiol. 2008;74(8):2537–9. doi:10.1128/aem.02288-07.
Epub 2008/02/26. PubMed PMID: 18296534; PubMed Central PMCID:
PMCPMC2293149.

42. Taskin B, Gozen AG, Duran M. Selective quantification of viable
Escherichia coli bacteria in biosolids by quantitative PCR with propidium
monoazide modification. Appl Environ Microbiol. 2011;77(13):4329–35.

Habtewold et al. Parasites & Vectors  (2015) 8:455 Page 9 of 10

http://dx.doi.org/10.1371/journal.ppat.1002458
http://dx.doi.org/10.1371/journal.ppat.1002737
http://dx.doi.org/10.1126/science.1201618
http://dx.doi.org/10.1074/jbc.M705873200
http://dx.doi.org/10.1016/j.pt.2011.05.001
http://dx.doi.org/10.1111/j.1469-0691.2009.02933.x
http://dx.doi.org/10.1086/500134
http://dx.doi.org/10.2217/17460913.4.1.45
http://dx.doi.org/10.1128/aem.02987-06
http://dx.doi.org/10.1016/j.mimet.2006.04.015
http://dx.doi.org/10.1128/aem.01198-07
http://dx.doi.org/10.1016/j.mimet.2007.11.017
http://dx.doi.org/10.1128/aem.00540-09
http://dx.doi.org/10.1016/j.molbiopara.2004.04.007
http://dx.doi.org/10.1016/j.exppara.2006.09.008
http://dx.doi.org/10.1371/journal.ppat.1000070
http://dx.doi.org/10.1186/2191-0855-3-1
http://dx.doi.org/10.1186/1752-153x-7-63
http://dx.doi.org/10.1007/BF01443430
http://femsle.oxfordjournals.org/content/164/2/369
http://dx.doi.org/10.1111/j.1365-3059.2009.02209.x
http://dx.doi.org/10.1128/iai.01236-06
http://dx.doi.org/10.1111/j.1439-0329.2011.00717.x
http://dx.doi.org/10.1016/j.fm.2011.02.008
http://dx.doi.org/10.1128/aem.02288-07
http://dx.doi.org/10.1111/j.1550-7408.2011.00557.x
http://dx.doi.org/10.1128/aem.02288-07


doi:10.1128/aem.02895-10. Epub 2011/05/24. PubMed PMID: 21602375;
PubMed Central PMCID: PMCPMC3127682.

43. Li B, Chen JQ. Development of a sensitive and specific qPCR assay in conjunction
with propidium monoazide for enhanced detection of live Salmonella spp.
in food. BMC Microbiol. 2013;13:273. doi:10.1186/1471-2180-13-273.
Epub 2013/12/03. PubMed.

44. Liang N, Dong J, Luo L, Li Y. Detection of viable Salmonella in lettuce by
propidium monoazide real-time PCR. J Food Sci. 2011;76(4):M234–7.
doi:10.1111/j.1750-3841.2011.02123.x. Epub 2012/03/16. PubMed.

45. Banihashemi A, Van Dyke MI, Huck PM. Long-amplicon propidium monoazide-
PCR enumeration assay to detect viable Campylobacter and Salmonella. J Appl
Microbiol. 2012;113(4):863–73. doi:10.1111/j.1365-2672.2012.05382.x.
Epub 2012/07/04. PubMed.

46. Yasunaga A, Yoshida A, Morikawa K, Maki K, Nakamura S, Soh I, et al.
Monitoring the prevalence of viable and dead cariogenic bacteria in oral
specimens and in vitro biofilms by qPCR combined with propidium
monoazide. BMC Microbiol. 2013;13:157. doi:10.1186/1471-2180-13-157.
Epub 2013/07/16. PubMed PMID: 23848601; PubMed Central PMCID:
PMCPMC3717283.

47. Rogers GB, Cuthbertson L, Hoffman LR, Wing PA, Pope C, Hooftman DA, et
al. Reducing bias in bacterial community analysis of lower respiratory
infections. ISME J. 2013;7(4):697–706. doi:10.1038/ismej.2012.145. Epub 2012/
11/30. PubMed PMID: 23190732; PubMed Central PMCID: PMCPMC3603400.

48. Chang B, Taguri T, Sugiyama K, Amemura-Maekawa J, Kura F, Watanabe H.
Comparison of ethidium monoazide and propidium monoazide for the
selective detection of viable Legionella cells. Jpn J Infect Dis. 2010;63(2):119–23.
Epub 2010/03/25. PubMed.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Habtewold et al. Parasites & Vectors  (2015) 8:455 Page 10 of 10

http://dx.doi.org/10.1128/aem.02895-10
http://dx.doi.org/10.1186/1471-2180-13-273
http://dx.doi.org/10.1111/j.1750-3841.2011.02123.x
http://dx.doi.org/10.1111/j.1365-2672.2012.05382.x
http://dx.doi.org/10.1186/1471-2180-13-157
http://dx.doi.org/10.1038/ismej.2012.145

	Abstract
	Background
	Method
	Results
	Conclusion

	Background
	Methods
	Ethics statement
	Mosquito colonies and maintenance
	Plasmodium strains and maintenance
	Mosquito infection with plasmodium
	Injection of mosquitoes with ookinetes
	Dissecting mosquito midgut and harvesting gut content
	Preparation of samples for microscopic examination
	Total RNA (tRNA) extraction
	Sample preparation for treatment with PMA
	PMA treatment and genomic DNA (gDNA) extraction
	Reverse transcription polymerase chain reaction (RT-PCR)
	Real-time PCR (QRT-PCR)

	Results
	Microscopic and RT-PCR detection of ookinetes in the blood bolus
	Persistence of ookinete mRNA in the mosquito midgut and hemolymph
	PMA-induced inhibition of DNA amplification from dead parasites and bacteria
	Detection and quantification of ookinetes using PMA �qrt-PCR

	Discussion and Conclusions
	Abbreviations
	Competing interest
	Authors’ contribution
	Acknowledgments
	Author details
	References



