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ABSTRACT: Paper-based analytical devices (PADs) employing
colorimetric detection and smartphone images have gained wider
acceptance in a variety of measurement applications. PADs are
primarily meant to be used in field settings where assay and
imaging conditions greatly vary, resulting in less accurate results.
Recently, machine-learning (ML)-assisted models have been used
in image analysis. We evaluated a combination of four ML
modelslogistic regression, support vector machine (SVM),
random forest, and artificial neural network (ANN)as well as
three image color spaces, RGB, HSV, and LAB, for their ability to
accurately predict analyte concentrations. We used images of PADs
taken at varying lighting conditions, with different cameras and
users for food color and enzyme inhibition assays to create training
and test datasets. The prediction accuracy was higher for food color than enzyme inhibition assays in most of the ML models and
color space combinations. All models better predicted coarse-level classifications than fine-grained concentration classes. ML models
using the sample color along with a reference color increased the models’ ability to predict the result in which the reference color
may have partially factored out the variation in ambient assay and imaging conditions. The best concentration class prediction
accuracy obtained for food color was 0.966 when using the ANN model and LAB color space. The accuracy for enzyme inhibition
assay was 0.908 when using the SVM model and LAB color space. Appropriate models and color space combinations can be useful
to analyze large numbers of samples on PADs as a powerful low-cost quick field-testing tool.

■ INTRODUCTION
Paper-based analytical devices (PADs) have gained wider
acceptance in clinical diagnosis, environmental pollution, food
quality monitoring, and pharmaceutical quality screening
among many other applications. Assays involving PADs are
less costly, easy to use, and are considered as point-of-need
assays.1−5 Electrochemical and optical detection methods are
primarily used to record the assay signal on PADs.6 Because of
the proliferation of digital cameras, particularly smartphone
cameras, the digital image-based colorimetric detection
method is one of the widely used methods where color
information encoded in the digital image is used for the
analysis of assay results.3 Smartphone image-based colorimetric
detection has been considered as a cost-effective and an
attractive field-based alternative to conventional techniques
such as spectrophotometry, colorimetry, and fluorometry.7,8

Digital cameras use multiple charge-coupled devices (CCD)
or complementary metal-oxide semiconductor (CMOS)
sensors to capture the light intensity signal separately from
red (R), green (G), and blue (B) using a mosaic-patterned
filter array. The signals are then combined using demosaicing,
resulting in three color values R, G, and B at each pixel of the
digital image.9 The image formation process in digital cameras
is nonlinear. The raw signal or the intensity value at each pixel

of the imaged area depends on the lighting condition, sensor
sensitivity, distance between the object and camera, and
reflectance property of the object being imaged.10,11 Some of
these variations such as the lighting condition and object-
camera distance can be minimized using a controlled
environment that is only possible in laboratory settings.12−15

However, PADs are ultimately meant to be used in field
settings by a minimally trained user, during which the criteria
of controlled assay and imaging conditions may not be
achieved, resulting in less accurate results.
Constant illumination may be possible to maintain while

imaging the assay signal by attaching an extra device on
smartphones with added cost. The extra device may not be
applicable in all types of smartphones having diverse shapes
and sizes.16 Another approach uses a blank or reference assay
along with the sample assay simultaneously to factor out the
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impact of illumination and camera quality changes.10,17

Because the raw signals captured by the camera sensors
process nonlinearly during image acquisition before saving to
the memory, the abovementioned approaches only partially
address the problem. Furthermore, image autocorrection
options such as automatic exposure correction, color
correction based on ambient light selection, white balancing,
and contrast enhancement can highly influence the overall
color calibration.16,18 Thus, the estimation of the analyte
concentration from the color intensity in PADs is an inverse
problem where any estimation models will have explicit or
implicit assumptions on the image formation process. The
nonlinear factors need to be accounted for to make a robust
and reliable low-cost model applicable in diverse point-of-need
settings.
Traditional computer vision and ML models have been used

for image processing to enhance the robustness of the PAD
assay. Traditional computer vision-based algorithms try to be
invariant to illumination, scale, and camera.10 Most of these
algorithms use color spaces including the red, green, and blue
(RGB); hue, saturation, and value (HSV); hue, saturation, and
lightness (HSL); and luminance, a (green to red), and b (blue
to yellow) (CIE L*a*b* or LAB).10,16,18 Each particular
application usually requires careful selection of the color space
model based on preliminary data and experiments. Similarly,
other corrections such as white balance correction, contrast
transfer, and gamma correction have been used. These
corrections are specific for individual cameras. The camera-
specific corrections are not practical when the goal is to enable
low-cost colorimetry to the large variety of consumer cameras.
In recent years, data-driven ML algorithms are becoming

increasingly common for colorimetric detection.19,20 ML has
the potential to be robust against unwanted variations. It does
not need an explicitly designed algorithm to extract

information. The model learns from data to work in diverse
environmental settings.21 Bao et al. trained support vector
machines (SVM) on RGB color channels in multiple indoor
settings using a single camera.22 Similarly, Solmaz et al. used
least-squares SVM (LS-SVM) and a multiclass random forest
(RF) classifier to predict the peroxide content on colorimetric
test strips and reported over 90% accuracy for six classes with
interphone repeatability under variable illumination.23 Kim et
al. applied linear discriminant analysis (LDA), SVM, and
artificial neural network (ANN) for the colorimetric analysis of
saliva−alcohol concentrations, with average cross-validation
accuracy rates of 100 and 80% for five standard and nine
increased concentrations.19 Even though a few studies have
reported the use of ML in image-based colorimetric detection,
they lack insights into the relative efficacy of ML algorithms
and their generalization capabilities. Generalization is an
important issue in ML, where a model’s high performance in
training and validation data degrades in test data with different
distributions. As reported by Morbioli et al.,24 source codes
and data used in most of the proposed ML models for
colorimetric detection with PADs are not publicly available,
making it difficult to reproduce results and perform benchmark
comparisons.
In this work, we designed a set of comprehensive

experiments to analyze the performance and utility of ML
for colorimetric image analysis of PADs using two different
data sets, food color and enzyme inhibition assays, for pesticide
residue determination. We assessed four different ML
modelslogistic regression (LR), SVM, RF, and ANNand
three image color spacesRGB, HSV, and LABto predict
the target analyte concentration using images of PADs taken at
varying lighting conditions, with different cameras and users.
The colorimetric assays involved in our approach included
both samples and reference assay zones on the paper device in

Figure 1. Cross-validation accuracy results obtained for both food color prediction (left panel) and pesticide assay (right panel). Each box describes
the full range of variation (whisker’s height), the likely range of variation (box height), and the median (horizontal line within the box) in the
classification accuracy score of five cross-validation folds. All results in this figure were obtained using the mean of each color channel value of
sample assays without (top) and with (bottom) reference assay test zones.
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contrast to most of the previous studies that captured only the
target sample assay zone. In this setting, we obtained the
concentration class prediction accuracy of 0.966 and 0.908 for
food color and pesticide residue analysis datasets, respectively,
in independently created test datasets. We also highlight the
limitations of all ML models when there is a domain shift in
test data and their inability to predict with the same accuracy at
all concentration levels. We have made our source code and
data publicly available to contribute to the reproducibility
issues in this rapidly progressing field.

■ RESULTS AND DISCUSSION
We established a baseline result using the mean color intensity
as the input feature to ML models. Cross-validation results for
various color spaces and ML models using mean pixel values of
the ROIs as input features to classify into 10 concentration
classes are shown in Figure 1. At first, we tested the models
using test zones of samples only. In general, the RF model
yielded higher accuracy in all three-color spaces in the case of
food color experiments. In this case, the HSV color space had a
higher (0.691) value than LAB (0.669) and RGB (0.588). The
LR and SVM models exhibited lower accuracy compared to
the RF model. In both LR and SVM models, all three-color
spaces had similar values compared to RF. We also looked at
the ANN model’s ability to predict correct assay values. It gave
comparable values with the LR and SVM models, but the

values for three different color spaces exhibited some
variations. In the case of pesticide assay, the accuracy was
less than that seen in food color experiments for all
combinations of models and color spaces, as shown in Figure
1. However, the trend of accuracy results was similar to that of
food color assay.

Combining the Sample and Reference Assay Color.
To improve the prediction accuracy, we took into consid-
eration both the sample and reference assay colors. In these
experiments, we investigated if imaging both the reference or
control assay and sample assay at the same time could improve
the prediction accuracy by ML models. The latter approach
showed an improvement in the prediction accuracy of all the
ML models when the mean color intensity from the reference
region was included as the feature (Figure 2). Figure 2 suggests
that the ML model was able to use information from the
reference sample region to partially factor out the variations
due to ambient lighting conditions and camera parameters and
the image acquisition setup, improving the concentration
prediction results when using the reference and sample
compared to using only the target sample. Using a printed
reference color instead of a reference assay performed on the
same paper device may not correct the variation resulting from
the assay procedure. The relationship between the reference
and sample color could be a simple difference or an n-degree
polynomial.

Figure 2. Confusion matrix (of the test accuracy of LR) for the food color and pesticide assay when RGB, LAB, and HSV color models are used.
The confusion matrix of other models also shows similar patterns.
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The cross-validation accuracy using the RGB color space for
the food color assay was found to be higher in LR, SVM, and
ANN models, while it was lower in the RF model when
compared to the LAB and HSV color spaces. The HSV color
space in RF and the RGB color space in ANN models showed
higher accuracy. However, we did not find any specific trends
among color spaces and models used. Similar results were
observed for the pesticide assay dataset. It is interesting to note
that the HSV color space using RF showed the highest average
accuracy in comparison to other color models (i.e., 0.804 in
the food color assay and 0.596 in the pesticide assay). In LR,
the highest average accuracy was observed in the RGB color
model (0.684 in the food color assay and 0.406 in the pesticide
assay). Similarly, in SVM, the highest average accuracy was in
LAB with 0.68 for the food color assay and 0.42 for the
pesticide assay. For ANN, the highest average cross validation
(CV) accuracy was in RGB, that is, 0.721 for the food color
assay and 0.401 for the pesticide assay.
Along with cross-validation experiments, we also evaluated

all the models and color spaces in a separate test dataset, the
details of which are provided in Table S1. As shown in Table
S1, the highest test accuracy was 0.67 with the HSV color
space in SVM for the food color assay and 0.34 with the HSV
color space in ANN for the pesticide assay (in ANN with
HSV). The results, as expected, showed that test results did not
necessarily agree with the cross-validation accuracy. A large
drop in test accuracy was observed across all the models
compared to the cross-validation results (Tables S1 and S2).
Here, the HSV color model showed good results in both sets
of assays. Our results highlight that reporting only cross-
validation scores or scores in test data that are very similar to
the training set can overestimate ML model’s performance. ML
models’ performance can severely degrade when the statistical
distribution of the test data is different from that of the training
set. This is closer to the real-world scenario we wanted to
emulate to further assess the efficacy and applicability of ML
systems when test images are captured in different field
settings. When comparing the results across food color and
pesticide assays, we observed that the accuracy in the pesticide
assay is relatively lower than that of the food color assay for all
the models. We attribute this observation to the chemistry of
the pesticide assay. Unlike the food color assay, the final color
in the pesticide assay is obtained by an enzyme inhibition
reaction. The enzyme reaction varies with ambient environ-
mental conditions. Such variation in assay temperature and

moisture can result in inconsistent color development on the
surface of paper devices.
The confusion matrix shown in Figure 2 shows that the food

color assay has its values clustered near the diagonal line,
except for classes 8, 9, and 10. These classes correspond to low
concentration values with faint colors (best viewed in the color
image). For the pesticide assay, the values in the initial classes
(1, 2, 3, and 4) and final classes (8, 9, and 10) are misclassified
in large numbers. The matrix fields in the middle, although not
accurate, show a diagonal pattern. This result seems to follow a
typical S-shaped enzyme assay curve.25

In such cases, the ML models can utilize information from
the reference region to partially factor out the variations of
ambient lighting conditions and the image acquisition setup
and learn to estimate the concentration level by looking at the
differences in the signal color of the two regions. Using a
printed reference color instead of a reference assay performed
on the same paper device may not correct the variation
resulting from the assay procedure. The relationship between
the reference and sample color could be a simple difference or
an n-degree polynomial.

Input Feature Vectors from the Downsampled
Image. Figure 3 shows the CV accuracy using all the pixels
of downsampled ROIs as a feature vector for ML models.
Because images containing both sample and reference colors
provided better accuracy than using the sample color only, we
used the former approach in this experiment. CV accuracy is
generally higher when using all pixels from a downsampled
image as input features compared to when using color channel
means. The improvement in the accuracy was observed in
most of the models and color spaces. However, the extent of
improvement varied with the models and color spaces tested. A
similar trend was observed both in the food color assay and
pesticide assay. LR and SVM models with RGB and LAB color
spaces resulted in the highest accuracies. For LR, CV
accuracies were 0.975 and 0.977 when using RGB and LAB,
respectively. Likewise, for SVM, the CV accuracy was 0.971
when using RGB or LAB. When the test dataset was evaluated,
the test accuracy was lower in both food color and pesticide
assays. However, the gap between cross-validation and test
accuracy in pesticide is higher for the pesticide assay in all the
color channels and models (Table S1).

Classification into High, Medium, and Low. The results
in the previous section show that accurately and robustly
estimating fine-grained concentration classes is difficult even
with powerful ML models using 10 concentration classes.

Figure 3. Cross-validation accuracy using all the pixel values from 16 × 16 downsampled images of reference and sample as the input features. Each
box describes the full range of variation (whisker’s height), the likely range of variation (box height), and the median (horizontal line within the
box) in the accuracy score of five cross-validation folds. LR, SVM, RF, and ANN are implemented in three color models: RGB, LAB, and HSV.
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Therefore, we merged 10 concentration classes into three
distinct classes: high, medium, and low for semiquantitative
prediction of both the food dye and pesticide samples. Classes
1, 2, and 3 shown in Figure 4C were merged into the high
category, 4, 5, 6, and 7 were merged into the medium category,
and 8, 9, and 10 were merged into the low category in the case
of the food color assay. In the case of the pesticide assay,
classes 1, 2, 3, and 4 in Figure 4C were merged into high, 5 and
6 into medium, and 7, 8, 9, and 10 into low categories.
Figure 5 shows the overall CV accuracy in food dye and

pesticide datasets when they were reduced into three classes of
high, medium, and low. We found that the food color dataset
when individual means of three-color channels were used as
input features showed similar accuracy values with all four
models and all three-color spaces. CV accuracy values for
pesticide assay with mean input features produced similar
results as with the food color assay but slightly lower values.
Most of the models and color spaces in both food color and
pesticide assays produced better accuracies when using all the
pixels from the downsampled image as input features.

To emulate a realistic setting and test generalization
capability, we evaluated all the models using the test dataset.
We reported the test accuracies for the case of three classes, as
shown in Table 1. Similar to the CV accuracies for 10 classes,
the test accuracies for 10 classes are poor compared to three
classes (see Table S1). Table 1 shows the average test
accuracies, where we see that, in general, the food color dye
dataset exhibited higher classification accuracy compared to
the pesticide dataset. For the food color assay, we observe the
highest accuracy of 0.966 in ANN with the LAB color space
and input feature from all color pixels of the downsampled
image. However, the models for pesticide concentration
prediction did not benefit much by using all the pixels as
input features. For the pesticide assay, the highest accuracy of
0.908 was obtained in SVM with the LAB color space and the
input feature from the individual means of each color channel.
The obtained results show that accurate semiquantitative
prediction of concentration from PAD images is possible even
in an uncontrolled setup with enough data and a suitable ML
model.

Figure 4. (A) Fabrication of the paper device. Solid wax was printed on Whatman filter paper, which penetrated through the paper after heating
(see inset illustrations). (B) General procedure for paper-based pesticide assay. (C) Representative images of paper device test zones after assays
were performed. Ten different dilutions of the food color and 10 different concentrations of the pesticide were used. Because the pesticide assay
followed enzyme inhibition reaction, the concentrations and color intensity are inversely correlated. (D) Automatic color pixel extraction procedure
from the PADs: left to right represent binary thresholding, mask generation, and masked region of interest (ROI).
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■ CONCLUSIONS
We evaluated four ML models for their ability to accurately
predict the concentration of target analytes on the paper device
platform. We found that the ML models that used the sample
color along with a reference color increased the models’ ability
in predicting the result. The reference assay color may provide
a one-point calibration to estimate or predict the concentration
of analytes in the given sample. In general, we found that the
accuracy of the food color assay was higher than the accuracy
of the pesticide assay in most of the combinations. Our results
show that ML models may provide only limited accuracy when
using fine-grained estimation of concentration classes but
provide high accuracy when using them for a coarse-level
classification such as low, medium, and high. The ability of ML
models to accurately classify the pesticide concentration to
such three classes even in difficult real-life test images shows

the potential of using ML-powered PADs as a low-cost quick
field-testing method.
Smartphone cameras allow for postprocessing even before

we save or see images. Because it is very hard to understand
and identify these individual preprocessing steps, letting the
ML models learn from the data instead of trying to build
inverse models to revert the camera post-processing is a more
promising approach. Convolutional neural networks (CNNs)
have seen tremendous success in the last few years in the
computer vision field. Because the colorimetric assays on paper
devices do not provide variations in texture and shape, the
neural networks have limited to no benefit compared to other
ML models such as RF. We might be able to leverage the
power of CNNs and build more accurate analyte concentration
estimation methods if we can develop novel PADs that express
shape and texture variation, depending on the target
concentration analyte.
Finally, robust ML models can be useful in analyzing large

numbers of samples in applications such as environmental
monitoring and clinical diagnosis during emergencies for assays
involving colorimetric paper devices. Appropriate ML models
integrated in smartphones that can read assay results
performed on the PAD platform by taking images process or
analyze the signal to accurately predict assay results and report
or store the results locally or on cloud, which could be
powerful tools in several measurement applications. Our future
work will investigate the images from real samples that have a
complex matrix and mixture of different colors instead of single
color to understand how interferents play roles.

■ EXPERIMENTAL SECTION

Fabrication of PADs. We designed a layout of circular
patterns in a computer and printed on Whatman No 1 grade
filter paper using a Xerox ColorQube 8580 solid wax printer.26

The wax printed paper was heated from the backside by
pressing with a dry clothing iron on its surface. The backside of

Figure 5. Cross-validation accuracy for three reduced classes of high, medium, low. Results of both the mean color and 16 × 16 downscaled RGB
pixels are presented for food color (left panel) and pesticide assays (right panel).

Table 1. Average Test Accuracy Using Three Concentration
Classes (High, Medium, and Low)a

(A) 16 × 16 image as the input feature

food dye pesticide

RGB HSV LAB RGB HSV LAB
LR 0.940 0.921 0.946 0.753 0.637 0.743
SVM 0.936 0.926 0.938 0.738 0.674 0.774
RF 0.901 0.933 0.940 0.865 0.875 0.870
ANN 0.960 0.946 0.966 0.851 0.8336 0.778
(B) means of individual R, G, and B channels as the input feature
LR 0.933 0.936 0.928 0.900 0.873 0.895
SVM 0.936 0.941 0.936 0.903 0.883 0.908
RF 0.898 0.915 0.928 0.837 0.855 0.852
ANN 0.893 0.868 0.926 0.866 0.868 0.901

a(A) All color pixels from the three channels of downsampled 16 ×
16 image as the input feature and (B) individual mean of each color
channel (3 means) as the input feature. All images included sample
and reference assays.
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the PADs was laminated to prevent the leakage of reagents to
the other side of the paper. Finally, the paper sheet was cut in
such a way that each PAD contained two circular assay regions
as reference and sample zones (Figure 4A).
Classification Datasets. We prepared datasets for two

different assays: the first one using the food color assay and the
second one using the pesticide assay. Each dataset used four
different smartphones (Huawei SCC-U21, iPhone 6, Honor
8C, and Samsung Galaxy J7 Max) for image acquisition at
different lighting conditions, camera to PAD distances, and
capture angles. The lighting conditions included outdoor
sunlight, indoor daylight, fluorescent light, incandescent light,
and a combination of them. A general procedure of the assay
on a paper device is given in Figure 4B.
The food color data sets were obtained by loading 10

different dilutions of yellow food color (Foster Clark Product
Ltd.) onto the PADs. We chose yellow dye to closely match
the color produced in pesticide experiments so that our
analysis remains consistent. We captured 2400 images in total
under various conditions. Images that were unclear or blurred
were removed, and 2353 images were used for training ML
models. The images were labeled from class 1 to 10. One for
the highest concentration and 10 for the lowest concentration
of the food color. The dataset contained an approximately
equal number of images per class. A new set of 600 images of
the same food color concentrations was obtained and was used
as the test data set. These images were taken on a different
dayvarying the illumination, randomly changing the camera,
and camera−PAD distanceto create different test datasets
from the training datasets. Representative images are shown in
Figure 4C.
The second dataset was prepared for a more realistic

application, which included enzyme inhibition assay for the
pesticide residue measurement based on the Ellman method.27

This assay is based on the inhibition of acetylcholinesterase
enzyme activity in the presence of pesticides. In this assay, the
acetylcholinesterase enzyme (Sigma-Aldrich) breaks down the
acetylthiocholine chloride (AtCh) substrate (Sigma-Aldrich)
into thiocholine and acetic acid. The thiocholine molecules
react with Ellman’s reagent (dithiobisnitrobenzoic acid;
DTNB) (Sigma-Aldrich) to give a yellow product of
thionitrobenzoic acid.27 To run the assay, we first loaded the
test and reference zones on PADs with the acetylcholinesterase
enzyme. Then, the sample containing the pesticide was added
to the test zone, while a blank solution with no pesticides was
added in the reference zone. After 5 min, an enzyme substrate
acetylthiocholine chloride was added to both zones. In the
reference zone, the enzyme remains active. In the test zone, its
activity is compromised due to the presence of organo-
phosphate and the carbamate group of pesticides, which inhibit
the enzyme activity by binding to it. Based on the extent of
inhibition, the amount of pesticide on the sample is estimated.
Finally, Ellman’s reagent (DTNB) was added, which reacted
with the thiocholine molecules produced by the enzyme
reaction to give a characteristic yellow product of thioni-
trobenzoic acid. In the reference zone, a very vibrant yellow
color develops because of the retention of full enzyme activity,
whereas the color intensity is inversely proportional to the
concentration of the pesticide present in the sample in the test
zone.1,28 The images of PADs were captured at 10 min of the
enzyme reaction using a smartphone for further analysis (see
Figure 4B for a general outline). Considering the short stability

of the enzyme and enzyme substrate, we used a freshly
prepared enzyme and enzyme substrate during the assay.
We collected 1872 images for training data sets by repeating

the same experiment in multiple days and different lighting
conditions using four different smartphones. Each image was
categorized into a class from 1 to 10 like food color assay
images. Class 1 represents a pesticide (Paraoxon, Sigma-
Aldrich) concentration of 100 ppm. The same pesticide
solution was serially diluted half in the remaining assays. New
experiments at different lighting conditions were performed to
obtain 601 new images as test datasets. See Figure 4C for the
representative images of the pesticide assay.

Extraction of Pixel Values from Assay Images. The
preprocessing of a PAD image is outlined in Figure 4D. The
leftmost image in panel 4D is a typical image of the PAD
captured using a camera. The two regions encircled by black
rings are the ROIs that contain the color information of the
reference and target samples. We developed an automatic
threshold-based segmentation algorithm to extract all the pixels
lying in these two regions. RGB images were converted to
grayscale images which were then converted to a binary image
by applying a threshold T = 0.8 · Im + 30, where Im is the mean
intensity of an image converted to grayscale, and 0.8 and 30 are
empirically chosen values after visual inspection across multiple
images. The binary images provide us with the masks that were
used to extract the pixel values lying in the two ROIs of the
corresponding original images, as shown in the rightmost
image of Figure 4D.

Evaluation of Multiclass Classification Models. We
used average classification accuracy (ACA), which is a
commonly used metric for multiclass classification problems.
ACA is a ratio of the total number of correct predictions to the

total number of predictions ACA = total no correct predictions
total no of predictions

. In

addition, we visualized the results using confusion matrices
that provide information on how many samples of a particular
class are misclassified to another class. We used a fivefold
cross-validation where the training dataset was randomly split
into five subsets (folds), and the model was trained five times
such that each time a unique fold was selected for validation
and the remaining four for training. The mean ACA and its
standard deviation were reported for the cross-validation
experiments. To evaluate the robustness of ML models and
their generalization ability, we also evaluated the models with a
separate test set under different conditions trying to emulate
actual real-life testing scenarios.
We used various approaches to extract features and feed

them as input to the ML models. We compare these
approaches using the following two experimental setups: (a)
color spaces: RGB vs HSV vs LAB color representation; (b)
mean pixel value of ROIs for each channel vs using all the pixel
values of the downsampled ROIs. Similarly, we assessed the
impact of the reference test region using the third setup; and
(c) using only target sample vs using both the reference and
target sample.
After extracting the mean color intensity of the sample and

reference assay zones, we obtained 2 × 3 = 6 unique values for
each assay (two circular zones and three-color channels). This
can be fed as a six-dimensional feature vector to ML
classification models. The mean values from the ROI do not
capture the variation of pixel values within the ROI. However,
using all the pixels of the ROIs as the input features to train
ML models dramatically increases the feature dimension,
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which computationally affects the training of some ML
algorithms such as SVM. As most of the PAD colorimetry
images only have color information without texture and shape
information, as a compromise, we downsampled the cropped
image into a size of 16 × 16 and converted it to a one-
dimensional (1D) vector of dimension 16 × 16 × 3 = 768 (for
three-color channels) for each reference and targe ROIs,
resulting in two 1D vectors.
We compared the following four most widely used

supervised ML models for colorimetry with PADs: LR,29

SVM,30 RF,31 and ANN.32 We used Python-based ML library,
Scikit-learn,33 to build LR, SVM, and RF models. For ANN, we
adopted a popular Python-based framework, Keras.34 The
details of the implementation configuration are given in Table
2.
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