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A B S T R A C T

In understanding the mechanisms of cholesterol in the pathogenesis of atherosclerosis, previous studies from
other laboratories have demonstrated that cholesterol crystals (CC) induce scavenger receptor CD36 expression
and NLRP3-mediated inflammasome formation. In elucidating the mechanisms by which CC could enhance
CD36 expression and foam cell formation, here we report that CC via NADPH and xanthine oxidases-mediated
ROS production activates BTK, a non-receptor tyrosine kinase. In addition, CC induce p300 tyrosine
phosphorylation and activation in a BTK-dependent manner, which in turn, leads to STAT1 acetylation and
its interaction with PPARγ in CD36 expression, oxLDL uptake and foam cell formation. Furthermore, p300,
STAT1 and PPARγ bound to a STAT binding site at −107 nt in CD36 promoter and enhanced its activity in ROS
and BTK-dependent manner. Disruption of this STAT binding site by site-directed mutagenesis abolished CC-
induced CD36 promoter activity. Together these results reveal for the first time that CC via producing ROS and
activating BTK causes p300-mediated STAT1 acetylation and its interaction with PPARγ in CD36 expression,
oxLDL uptake and foam cell formation.

1. Introduction

Atherosclerosis is a chronic inflammatory disease of the arterial wall
and is one of the leading causes of death worldwide [1,2]. Atherosclerosis is
characterized by accumulation of lipid-laden foam cells in the subendothe-
lial space and calcification of the plaque [2,3]. Scavenger receptors play an
important role in foam cell formation because of their ability to bind to and
internalize oxidized (ox)-LDL [1–4]. In humans, two major classes of
scavenger receptors have been identified and designated as type A and type
B receptors [5]. CD36, a cell surface glycoprotein is a member of the
scavenger receptor type B family, which also includes SR-B1 and HDL
receptor [6]. CD36 is expressed in various cell types including monocytes
[7,8], endothelial cells [9], platelets [10] and adipocytes [11]. CD36
recognizes a variety of ligands including oxLDL [7], anionic-phospholipids
[6] and collagen [10].

Cholesterol in the form of cholesterol crystals (CC) plays an
important role in the atherosclerotic lesion formation, for which reason,
it is classified as a prognostic marker for atherosclerosis [12]. Several
studies have reported that CC are present at the sites of plaque rupture,
suggesting an important link between plasma cholesterol levels and the
pathogenesis of atherosclerosis [13–15]. Many studies have also re-
ported the involvement of CC in the early atherosclerotic lesion
formation [12]. The role of CC in the pathogenesis of atherosclerosis

can also be eluded by the finding that CC induce NALP3-mediated
inflammasome formation [12]. In addition, the role of CC in comple-
ment-dependent reactive oxygen species and proinflammatory cytokine
production has been reported [16] and there is a large body of evidence
that connects oxidant stress to the pathogenesis of a variety of diseases
including cardiovascular diseases [17]. Furthermore, several studies
have demonstrated that cholesterol enhances CD36 expression support-
ing its role in foam cell formation [18,19]. However, the mechanisms by
which cellular cholesterol induces CD36 expression were not explored.
In this context, we have studied the mechanisms by which CC could
induce CD36 expression, oxLDL uptake and foam cell formation. In this
study, we report that CC induce CD36 expression, oxLDL uptake and
foam cell formation via STAT1 acetylation and its interaction with
PPARγ. We also show that STAT1 acetylation requires ROS-dependent
BTK-mediated p300 tyrosine phosphorylation and activation.

2. Materials and methods

2.1. Reagents

LDH cytotoxicity assay kit (601170) and MTT cell proliferation
assay kit (10009365) were purchased from Cayman chemical (Ann
Arbor, MI). Anti-phosphoserine/threonine (ab17464) and anti-Pyk2
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(ab32571) antibodies were obtained from Abcam (Cambridge, MA).
Anti-pBTK (5082), anti-pPyk2 (3291), anti-pSrc (2101), anti-pSTAT1
(9177), anti-pSTAT2 (4441), anti-pSTAT3 (9133), anti-pSTAT4
(5267), anti-pSTAT5 (9351), anti-pSTAT6 (9364), and anti-pSyk
(2715) antibodies were bought from Cell Signaling Technology
(Beverly, MA). Anti-acetyl lysine (SC-32268), anti-BTK (SC-1696),
anti-CD36 (SC-9154), anti-CBP (SC-369), anti-p300 (SC-584), anti-
PPARα (SC-9000), anti-PPARβ (SC-7197), anti-PPARγ (SC-7196),
anti-p47Phox (SC14015), anti-SR-A1 (SC-9104), anti-SR-B1 (SC-
67098), anti-STAT1 (SC-464), anti-STAT2 (SC-476), anti-STAT3 (SC-
482), anti-STAT4 (SC-486), anti-STAT5 (SC-835), anti-STAT6 (SC-
981), anti-Syk (SC-573), anti-β-tubulin (SC-9104) and anti-xanthine
oxidase (SC-20991) antibodies as well as normal mouse serum (SC-
45051) and normal rabbit serum (SC-3888) were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Anti-PPARδ antibodies
(NBP1-39684) were obtained from Novus Biologicals (Littleton, CO).
Anti-phsophotyrosine antibodies (05−777) and p300 immunoprecipi-
tation-HAT assay kit (17−284) were procured from Millipore
Corporation (Temecula, CA). Diphenyleneiodonium chloride (BML-
CN240) was bought from Enzo Life Science (Farmingdale, NY). Acetyl
coenzyme A (A2056), Apocyanin (A10809), Allopurinol (A8003),
Cholesterol (C8667) and Oil red O (234117) were purchased from
Sigma-Aldrich Chemicals (St. Louis, MO). Amplex Red hydrogen
peroxide/peroxidase assay kit (A22188), CM-H2DCFDA [5-(and 6)-
chloromethyl-2′, 7′-dichlorodihydrofluorescein diacetate acetyl ester]
(C6827), GW9662 (1508) and Lipofectin transfection reagent
(15596018) were obtained from Invitrogen (Grand Island, NY). pGL3
basic vector and luciferase assay system (E4530) were bought from
Promega (Madison, WI). Dil-oxLDL (BT-920) and oxLDL (BT-910)
were obtained from Biomedical Technologies (Stoughton, MA). Biotin
3′ End DNA labeling Kit (89818) and Lightshift Chemiluminescent
EMSA Kit (20148) were procured from Pierce Biotechnology
(Rockford, IL). The enhanced chemiluminescence (ECL) Western
blotting detection reagents (RPN2106) were obtained from GE
Healthcare. [3H]-Acetyl CoA (S.A. 8.6 Ci/mmole) was purchased from
Perkin Elmer (Waltham, MA). All the phosphorothioate-modified
antisense oligonucleotides (ASOs) and primers were synthesized by
IDT (Coralville, IA). The phosphorothioate-modified ASOs used in this
study are as follows: hControl ASO, 5′-GGGGGUTCTCTGCGTAC-
GGTGCUAGU-3′; hCBP (NM_001020603) ASO, 5′-GCGUUAGGGTC-
TCAGCCAGC-3′; hCD36 (NM_000072) ASO, 5′-CCACAGTTC
CGGTCACAGCC-3′; hp47Phox (NM_000265) ASO, 5′-GUUGGGC-
TCAGGGTCTTCCGUCUC-3′; hPyk2 (NM_173175) ASO, 5′-
CCUGUGTCCATAGCCCAGAGUACC-3′; hp300 (NM_004380) ASO,
5′-UGUGUUGTTGGTGGTGTAGGUGU-3′; and hXO (NM_000379)
ASO, 5′-GCCUCCTCCCATTCTCTTCACUCG-3′.

2.2. Cell culture

THP1 cells, a human leukemic monocyte cell line, were purchased
from American Type Culture Collection (Manassas, VA) and cultured in
RPMI-1640 medium supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 50 U/ml penicillin, 50 μg/ml streptomycin and
50 μM β-mercaptoethanol. To perform the experiments, cells were
growth-arrested in serum-free RPMI-1640 medium containing the
antibiotics and β-mercaptoethanol overnight. Cultures were main-
tained in a humidified 95% air and 5% CO2 atmosphere at 37 °C.

2.3. Preparation of cholesterol crystals

Cholesterol crystals were prepared according to the method of
Flynn et al. [20]. Briefly, cholesterol was dissolved in 95% ethanol
(12.5 g/l), heated at 60 °C for 2 h, filtered through Whatman filter
paper and left at room temperature for crystallization. Crystals were
collected by filtering, grinded with autoclaved mortar and pestle to
yield 1–10 µm in size, and stored at −20 °C.

2.4. Mouse primary peritoneal macrophage isolation

Mouse primary peritoneal macrophages were isolated as described
by us previously [21].

2.5. Cell cytotoxicity

Cell cytotoxicity was measured by LDH release using a kit and
following the manufacturer's protocol.

2.6. Cell proliferation assay

Cell proliferation was measured by MTT assay following the
manufacturer's protocol.

2.7. RT-PCR

Total cellular RNA was extracted from THP1 cells using TRIzol
reagent according to the manufacturer׳s protocol. Reverse transcription
was performed with a high capacity cDNA reverse transcription kit
(Applied Biosystems). Complementary DNA (cDNA) was then used as a
template for amplification using the following primers: human SR-A1
(NM_002445), forward, 5′-CCTCGTGTTTGCAGTTCTCA-3′ and
reverse, 5′-CCATGTTGCTCATGTGTTCC-3′; human SR-B1 (NM_
001082959), forward, 5′-CTGTGGGTGAGATCATGTGG-3′ and reverse,
5′-GCCCTTCCTTTGGAGTAACC-3′; human CD36 (NM_000072),
forward, 5′-ACAGATGCAGCCTCATTTCC-3′ and reverse, 5′-
GCCTTGGATGGAAGAACAAA-3′; human β-actin (NM_001101),
forward, 5′- AGCCATGTACGTTGCTAT-3′ and reverse, 5′-
GATGTCCACGTCACACTTCA-3′. The amplification was performed
using Gene AMP PCR system 2400 (Applied Biosystems). The
amplified PCR products were separated on 1.5% agarose gels, stained
with ethidium bromide and the images were captured using a Kodak In
Vivo Imaging System.

2.8. Western blotting

Cell extracts containing an equal amount of protein from control
and the indicated treatments were resolved by electrophoresis on 0.1%
(W/V) SDS and 10% (W/V) polyacrylamide gels. The proteins were
transferred electrophoretically to a nitrocellulose membrane. After
blocking in either 5% (W/V) nonfat dry milk or 5% (W/V) BSA, the
membrane was probed with appropriate primary antibodies followed
by incubation with Horseradish Peroxidase-conjugated secondary
antibodies. The antigen-antibody complexes were detected using en-
hanced chemiluminescence detection reagent kit (GE Health Care).

2.9. Acetyl transferase assay

The acetyl transferase activity of p300 was measured using a kit as
per the supplier's protocol.

2.10. ROS

Intracellular ROS production was measured using membrane
permeable CM-H2DCFDA as well as Amplex Red Hydrogen
Peroxide/Peroxidae Assay Kit as described previously [21,22].

2.11. Transfections

Transfections were performed as described previously [23]. Briefly,
cells were transfected with the indicated ASOs at 100 nM concentration
using Lipofectin transfection reagent for 6 h following the manufac-
turer's instructions. After transfection, cells were maintained in
complete RPMI-1640 medium for 36 h followed by growth arresting
in serum-free medium overnight before using for experiments.
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2.12. Cloning and mutagenesis

Human CD36 promoter cloning and its site-directed mutagenesis of
STAT1 K410R/K413R were described previously [23].

2.13. EMSA

Nuclear extracts of THP1 cells with and without appropriate
treatments were prepared as described previously [23]. The protein
content of the nuclear extracts was determined using a micro-BCA
method (Pierce Biotechnology). Biotin-labeled double-stranded oligo-
nucleotides encompassing STAT-binding element at −107 nt forward
(5′- ATTTTTTTTTTCTTTC AATTTCTCTAGGA AACAAACC-
ACACACTG-3′), reverse (5′- CAGTGTGTGGTTTGTTTC CTAGA
GAAATTGAAAGAAAAAAAAAAT-3′) were used as a probe. Briefly,
5 μg of nuclear extract was incubated in a binding buffer (10 mM Tris-
HCl, pH 7.9, 50 mM KCl, 1 mM DTT, 15% glycerol) with 2.5 nM of
biotin-labeled probe and 2 μg of poly dI: dC for 30 min at room
temperature in a total volume of 20 μl on ice and the DNA-protein
complexes were analyzed by electrophoresis on 6% polyacrylamide gels
and visualized by chemiluminescence imaging. To perform a supershift
EMSA, the complete reaction mix was incubated with 2 μg of the
indicated antibody for 1 h on ice before separating it by electrophor-
esis. Normal serum was used as a negative control.

2.14. Luciferase assay

THP1 cells were co-transfected with pGL3 empty vector, pGL3-hCD36
or pGL3-hCD36m promoter along with the indicated plasmids using
Lipofectamine transfection reagent. After growth arresting in serum-free
medium for 12 h, cells were treated with and without 40 μg CC for 6 h,
washed with cold PBS and lysed in 200 μl of lysis buffer. The cell extracts
were cleared by centrifugation at 12,000 rpm for 2 min at 4 °C. The
supernatants were assayed for luciferase activity using luciferase assay
system (Promega) and a single tube luminometer (TD20/20; Turner
Designs, Sunnyvale, CA) and expressed as relative luciferase units (RLU).

2.15. Chromatin immunoprecipitation (ChIP) and Re-ChIP assays

ChIP assay was performed on THP1 cells with and without the
indicated treatments using a kit and following the supplier's protocol
(Upstate Biotechnology Inc., Lake Placid, NY). STAT1, PPARγ and
p300-DNA complexes were immunoprecipitated using anti-STAT1,
anti-PPARγ and anti-p300 antibodies, respectively. Pre-immune
mouse serum or rabbit serum were used as negative controls. For
chromatin re-immunoprecipitation (re-ChIP) assay, the chromatin
complexes were eluted from the first ChIP with 10 mM DTT at 37 °C
for 30 min and diluted 20 times with ChIP dilution buffer (1% Triton
X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1 and 150 mM NaCl) and
immunoprecipitated with the indicated antibodies. In the case of Re-
ChIP, chromatin was immunoprecipitated in a sequential manner with
the indicated antibodies. The immunoprecipitated DNA was uncross-
linked, subjected to Proteinase K digestion, purified using QIAquick
columns (Cat. No. 28104, Qiagen, Valenica, CA). The ChIP and re-ChIP
samples were analyzed by PCR by using the following primers: forward,
5′-GGGGAAACTCAGCAAGTCAG-3′ and reverse, 5′-AGTGTCAGAT-
CCCAGTGG-3′ that would amplify 228 bp fragment encompassing
the STAT-binding site at −107 nt. The resulting PCR products were
resolved on 1.8% agarose gels, stained with ethidium bromide and the
images were captured using Kodak In Vivo Imaging System.

2.16. Dil-oxLDL uptake assay

Dil-oxLDL uptake was measured according to the method of
McLaren et al. [24]. Briefly, THP1 cells with and without the indicated
treatments were incubated with Dil-oxLDL (10 μg/ml) for 6 h at 37 °C.

After incubation with Dil-oxLDL, cells were washed with PBS, re-
suspended in PBS and analyzed by FACSCalibur flow cytometer (BD
Biosciences, San Jose, CA) with an acquired capacity of 10,000 cells.
The data were analyzed using cellquest software and Dil-oxLDL uptake
is presented as a percentage of the total cells.

2.17. Foam cell assay

Foam cell formation was performed as per the method of McLaren
et al. [24]. Briefly, THP1 cells that were treated with and without the
indicated treatments were incubated with oxLDL (10 μg/ml) for 6 h at
37 °C. Cells were then fixed with 4% paraformaldehyde for 30 min,
stained with Oil red O for 10 min and counterstained with hematoxylin.
Cell staining was observed under a Nikon Eclipse 50i microscope with
40X/0.65 magnification and the images were captured with a Nikon
Digital Slight DS-L1 camera. After capturing the images, the Oil red O
stain was eluted by incubating the slides with isopropanol for 15 min at
room temperature and the optical density was measured at 500 nm in a
SpectraMax 190 spectrophotometer (Molecular Devices).

2.18. Statistics

All the experiments were repeated three times and the data are
presented as Mean ± S.D. The treatment effects were analyzed by
Student t-test, and the p values < 0.05 were considered statistically
significant. In the case of EMSA, supershift EMSA and Western
blotting, one representative set of data is shown.

3. Results

3.1. Role of STAT1 acetylation in CC-induced CD36 expression,
oxLDL uptake and foam cell formation

CD36 plays a crucial role in foam cell formation, one of the
underlying factors in atherogenesis [25,26]. The presence of CC in
the advanced athreosclerotic lesions of human and animal models and
its effects on CD36 expression suggest a role for cholesterol in
atherogenesis [13–15]. To understand the mechanisms by which CC
regulate foam cell formation, we have studied its effects on scavenger
receptor expression in human monocytic THP1 cells. CC while having
no effect on SR-A1 and SR-B1 expression, induced the expression of
CD36 at both protein and mRNA levels in a time dependent manner
with maximum effects at 4 h and 2 h, respectively (Fig. 1A). CC neither
exhibited cytotoxic effects in THP1 cells nor influenced their prolifera-
tion (Fig. 1B). Since, CC-induced CD36 expression, we have studied its
role in oxLDL uptake and foam cell formation. Anti-sense oligonucleo-
tide (ASO)-mediated downregulation of CD36 levels attenuated CC-
induced oxLDL uptake and foam cell formation (Fig. 1C). These results
suggest that CC induce oxLDL uptake and foam cell formation via
CD36 expression. Studies from others as well as our laboratories have
shown a role for STAT1 in CD36 expression [27,28]. To test the role of
STATs in CC-induced CD36 expression, oxLDL uptake and foam cell
formation, we have studied the effects of CC on STAT1, STAT2, STAT3,
STAT4, STAT5 and STAT6 activation. CC while having no major effect
on STAT2, STAT3, STAT4, STAT5 and STAT6 tyrosine phosphoryla-
tion induced STAT1 tyrosine phosphorylation (Fig. 1D). This finding
suggests that CC activate STAT1. However, blockade of STAT1 tyrosine
phosphorylation using its dominant negative tyrosine mutant PFS1YF
[29] had no effect on CC-induced CD36 expression, oxLDL uptake and
foam cell formation (Fig. 1E). These findings indicate that tyrosine
phosphorylation of STAT1 had no influence on CC-induced CD36
expression, oxLDL uptake and foam cell formation. However, ASO-
mediated depletion of STAT1 levels attenuated CC-induced CD36
expression, oxLDL uptake and foam cell formation (Fig. 1F). Many
studies have shown that besides phosphorylation, acetylation
plays a role in the activation of STATs, particularly STAT1 and
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STAT3 [30–32]. Based on this information, we have tested the effect of
CC on STAT1 acetylation. CC induced STAT1 acetylation in a time
dependent manner (Fig. 1F). STAT1 gets acetylated at K410/K413

residues [29]. To identify the potential lysine residue(s) of STAT1 that
are acetylated by CC, we tested the effect of K410R/K413R mutant on
CC-induced STAT1 acetylation. Transfection of cells with K410R/
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K413R mutant blocked CC-induced STAT1 acetylation (Fig. 1G),
suggesting that STAT1 is acetylated at K410/K413 residues in response
to CC. To find whether STAT1 acetylation has any role in STAT1
tyrosine phosphorylation, we tested the effect of K410R/K413R mutant
on CC-induced STAT1 tyrosine phosphorylation. STAT1 K410R/
K413R mutant had no effect on CC-induced STAT1 tyrosine phosphor-
ylation (Fig. 1G). To find whether there is any link between STAT1
tyrosine phosphorylation and its acetylation, we next tested the effect
of its tyrosine dominant negative mutant PFS1YF. PFS1YF had no
effect on CC-induced STAT1 acetylation (Fig. 1G). These findings
indicate that STAT1 tyrosine phosphorylation and acetylation are
triggered independent of each other by CC. To find whether STAT1
acetylation has any role in CC-induced CD36 expression, oxLDL uptake
and foam cell formation, we tested the effect of K410R/K413R mutant.
Transfection of cells with K410R/K413R mutant blocked CC-induced
CD36 expression, oxLDL uptake and foam cell formation (Fig. 1H).

3.2. Role of STAT1 acetylation in the recruitment of PPARγ in CC-
induced CD36 expression, oxLDL uptake and foam cell formation

A large body of evidence suggests that PPARγ mediates CD36
expression in response to its ligands, including 15(S)-HETE [33–35].
To find the role of PPARγ in CC-induced CD36 expression, we tested
the effect of PPARγ antagonist GW9662 [33]. GW9662 inhibited CC-
induced CD36 expression, oxLDL uptake and foam cell formation
(Fig. 2A). Since both STAT1 acetylation and PPARγ activation are
involved in CC-induced CD36 expression, oxLDL uptake and foam cell
formation, we wanted to explore whether PPARγ activation is required
for CC-induced STAT1 acetylation. However, blockade of PPARγ
activation by GW9662 had no effect on CC-induced STAT1 acetylation
(Fig. 2B). To understand how CC induced CD36 expression by
recruiting two different transcriptional factors, we asked the question
whether there is any interaction between these transcriptional factors.
Co-immunoprecipitation experiment revealed that STAT1 exists in
complex with PPARα, PPARβ and PPARδ constitutively and in
response to CC its association with PPARγ increases in a time
dependent manner with maximum effect at 1 h (Fig. 2B). Conversely,
PPARγ formed a complex with STAT2, STAT4, and STAT6 constitu-
tively and in response to CC its association with STAT1 increases in a
time dependent manner (Fig. 2B). In order to test the role of STAT1
tyrosine phosphorylation and acetylation on its interaction with
PPARγ, we tested the effect of its tyrosine and acetyl mutants,
PFS1YF and K410R/K413R, respectively. PFS1YF mutant had no
effect on CC-induced STAT1 association with PPARγ (Fig. 2C). On
the other hand, K410R/K413R mutant blocked CC-induced STAT1
association with PPARγ (Fig. 2C). These findings indicate that STAT1

acetylation but not tyrosine phosphorylation is required for its inter-
action with PPARγ.

3.3. Role of p300 in CC-induced STAT1 acetylation and its interaction
with PPARγ in CD36 expression, oxLDL uptake and foam cell
formation

Previously, we have demonstrated a role for p300 in 15(S)-HETE-
induced STAT1 acetylation and its interaction with PPARγ in CD36
expression, oxLDL uptake and foam cell formation [23]. Therefore, to
understand the mechanisms by which CC regulate STAT1 acetylation, we
have studied the role of p300. Co-immunoprecipitation experiments
showed that while p300 exists in complex with both STAT3 and STAT5
basally its association with STAT1 increases in a time dependent manner in
response to CC (Fig. 3A). No significant changes were noted between
STAT3 or STAT5 interaction with p300 in response to treatment with CC
(Fig. 3A). Furthermore, downregulation of p300 using its ASO inhibited
CC-induced STAT1 acetylation and its interaction with PPARγ (Fig. 3B). In
addition, p300 downregulation inhibited CC-induced CD36 expression,
oxLDL uptake and foam cell formation (Fig. 3C). To confirm the role of
p300 acetyltransferase activity in STAT1 acetylation and its interaction with
PPARγ in CD36 expression, oxLDL uptake and foam cell formation, we
tested the effect of p300ΔHAT mutant that lacks acetyltransferase activity
[36]. While transfection of cells with p300 WT increased CC-induced
STAT1 acetylation and its interaction with p300 leading to enhanced CD36
expression, oxLDL uptake and foam cell formation, transfection of cells
with p300ΔHATmutant prevented these effects (Fig. 3D and E). To test the
specificity of p300 in CC-induced STAT1 acetyalation and its interaction
with PPARγ in CD36 expression and oxLDL uptake, we next studied the
role of its homologue CBP. ASO-mediated downregulation of CBP levels
had no effect on CC-induced STAT1 acetyalation, its interaction with
PPARγ, CD36 expression and oxLDL uptake (Fig. 3F and G).

3.4. Role of BTK in CC-induced p300 tyrosine phosphorylation,
STAT1 acetylation and its interaction with PPARγ in CD36
expression, oxLDL uptake and foam cell formation

To decipher the mechanism(s) by which CC modulate p300 activa-
tion, we studied its effects on p300 phosphorylation. CC while having
no effect on p300 serine/threonine phosphorylation induced its
tyrosine phosphorylation in a time dependent manner (Fig. 4A).
Previously, we have shown that non-receptor tyrosine kinases
(NRTKs) Syk and Pyk2 were involved in 15(S)-HETE-induced p300
tyrosine phosphorylation and its activation leading to STAT1 acetyla-
tion and its interaction with PPARγ in CD36 expression, oxLDL uptake
and foam cell formation [27]. To identify NRTK that mediates

Fig. 1. CC-induced CD36 expression, oxLDL uptake and foam cell formation require STAT1 acetylation. A. Quiescent cells were treated with vehicle or CC (40 µg/ml) for the indicated
time periods and either protein extracts were prepared or RNA was isolated. The protein extracts and RNA were analyzed by Western blotting and RT-PCR for the indicated scavenger
receptors expression and normalized to β-tubulin protein and β-actin mRNA levels, respectively. B. Cells were treated with vehicle or CC (40 µg/ml) for 6 h and tested for their
cytotoxicity and proliferation by LDH release and MTT assays, respectively. C. Upper panel: Cells were transfected with the indicated ASO, quiesced, treated with vehicle or CC for 4 h
and analyzed by Western blotting for CD36 levels and the blot was reprobed for β-tubulin to show the effects of the ASO on its target and off target molecules levels. Middle and bottom
panels: All the conditions were the same as in the upper panel except that cells were subjected to CC-induced oxLDL uptake (middle panel) or foam cell formation (bottom panel) assays.
D. Equal amounts of protein from control and various time periods of CC-treated cells were analyzed by Western blotting for pSTAT1, pSTAT2, pSTAT3, pSTAT4, pSTAT5 and pSTAT6
levels and normalized to their total levels. E. Upper panel: Cells were transfected with vector or PFS1YF, quiesced, treated with and without CC for 1 h or 4 h, cell extracts were prepared
and analyzed by Western blotting for pSTAT1 (1 h samples) and CD36 levels (4 h samples) and the blots were reprobed for STAT1 over expression and β-tubulin normalization. Middle
and bottom panels: All the conditions were the same as in the upper panel except that after quiescence cells were subjected to CC-induced oxLDL uptake (middle panel) and foam cell
formation (bottom panel) assays. F. Cells were transfected with control or STAT1 ASO, quiesced, treated with and without CC and analyzed for CD36 expression, oxLDL uptake or foam
cell formation as described in panel C. The CD36 blot was reprobed for STAT1 and β-tubulin to show the effect of the ASO on its target and off target molecules levels. G. Upper panel:
Equal amounts of proteins from control and the indicated time periods of CC-treated cells were immunoprecipitated with anti-STAT1 antibodies or IgG and the immunocomplexes were
analyzed by Western blotting using anti-acetyl lysine (Ac-Lys) antibodies followed by normalization to STAT1. Lower panels: Cells were transfected with vector, K410R/K413R or
PFS1YF, quiesced, treated with and without CC for 1 h and analyzed for STAT1 acetylation and phosphorylation as described in the upper panel and panel C, respectively and the blots
were reprobed for STAT1 levels. H. Cells were transfected with vector or K410R/K413R, quiesced, treated with and without CC and analyzed for CD36 expression, oxLDL uptake or foam
cell formation as described in panel C. The bar graphs represent Mean ± S.D. values of three experiments. *p < 0.01 vs vehicle control or vector control or control ASO; **p < 0.01 vs CC
or control ASO+CC or vector control+CC.
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CC-induced p300 tyrosine phosphorylation, we first studied the time
course effect of CC on tyrosine phosphorylation and activation of
various NRTKs. CC while having little or no effect on Src and Syk
tyrosine phosphorylation stimulated the tyrosine phosphorylation of
BTK and Pyk2 in a time dependent manner (Fig. 4B). Based on these
results we examined the role of BTK and Pyk2 in CC-induced p300
tyrosine phosphorylation, its association with STAT1, STAT1 acetyla-
tion and its interaction with PPARγ in CD36 expression, oxLDL uptake
and foam cell formation. Despite the robust activation of both BTK and
Pyk2 by CC, downregulation of only BTK but not Pyk2 blunted CC-
induced CD36 expression, oxLDL uptake and foam cell formation
(Fig. 4C). In accordance with these observations, ASO-mediated
depletion of BTK levels also blocked CC-induced p300 tyrosine
phosphorylation, its association with STAT1, STAT1 acetylation and
its interaction with PPARγ (Fig. 4D). Furthermore, downregulation of
BTK by its ASO inhibited p300 acetyltransferase activity (Fig. 4D).

3.5. Role of ROS in CC-induced BTK activation, p300 tyrosine
phosphorylation, STAT1 acetylation and its interaction with PPARγ in
mediating CD36 expression, oxLDL uptake and foam cell formation

Previously, we have reported that ROS are involved in the activation of
Syk and Pyk2 in 15(S)-HETE-induced p300 tyrosine phosphorylation,
STAT1 acetylation and its interaction with PPARγ in CD36 expression,
oxLDL uptake and foam cell formation [27]. Therefore, we tested the role of
ROS in CC-induced BTK activation, p300 tyrosine phosphorylation, STAT1
acetylation and its interaction with PPARγ in CD36 expression, oxLDL
uptake and foam cell formation. As measured by both CM-H2DCFDA and
Amplex Red hydrogen peroxide/peroxidase assay kit methods, CC induced
ROS production in a time dependent manner with a maximum fourfold
increase at 30 min (Fig. 5A). NADPH and xanthine oxidases are the major
sources of ROS production in many cell types [37,38]. Therefore, to find the
source of CC-induced ROS production, we tested the role of NADPH
oxidase and xanthine oxidase. We found that apocyanin and DPI, potent
inhibitors of NADPH oxidase [37], and allopurinol, potent inhibitor of
xanthine oxidase [37], substantially reduced CC-induced ROS production
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(Fig. 5A). These observations infer that both NADPH oxidase and xanthine
oxidase are involved in CC-induced ROS production. Consistent with these
observations, ASO-mediated downregulation of p47Phox (a NADPH
oxidase component) or xanthine oxidase levels suppressed CC-induced

CD36 expression, oxLDL uptake and foam cell formation (Fig. 5B). In line
with the above findings, depletion of p47Phox or xanthine oxidase levels
inhibited CC-induced BTK and p300 tyrosine phosphorylation, STAT1
acetylation and its interaction with PPARγ (Fig. 5C). ASO-mediated
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depletion of p47Phox or xanthine oxidase levels also inhibited p300
acetyltransferase activity (Fig. 5C).

3.6. STAT1, PPARγ and p300 mediate CC-induced CD36 promoter
activity

We have previously shown that STAT1, PPARγ and p300 bind to a
STAT-binding site in CD36 promoter and enhance its activity in
response to a lipid hydroperoxide, 15(S)-HETE [27]. In lieu of these
observations, we asked the question whether these transcriptional
factors and coactivator have any role in CC-induced CD36 promoter
activity. EMSA and supershift EMSA revealed that STAT1, PPARγ and
p300 bind to an oligonucleotide probe harboring the STAT-binding site
at −107 nt in the CD36 promoter (Fig. 6A). In addition, ChIP and re-
ChIP assays were conducted to determine the binding of STAT1,
PPARγ and p300 to the STAT-binding site at −107 nt in the CD36
promoter in intact cells. ChIP assay results showed that STAT1, PPARγ
and p300 bind to the same CD36 promoter region (Fig. 6B). Re-ChIP
analysis of anti-STAT1 chromatin immunocomplexes further showed
that PPARγ and p300 bind to the CD36 promoter along with STAT1
(Fig. 6B). Conversely, re-ChIP analysis of anti-PPARγ chromatin
immunocomplexes revealed that STAT1 and p300 bind to CD36
promoter along with PPARγ (Fig. 6B). Likewise, re-ChIP analysis of
anti-p300 chromatin immunocomplexes showed that STAT1 and
PPARγ bind to the CD36 promoter along with p300 (Fig. 6B). In
addition, while STAT1 tyrosine mutant PFS1YF had no effect, its acetyl
mutant K410R/K413R blocked the recruitment of STAT1, PPARγ and
p300 to the CD36 promoter in response to CC (Fig. 6C). Similarly,
p300ΔHAT that lacks the acetyltransferase activity prevented CC-
induced binding of STAT1, PPARγ and p300 to the CD36 promoter
(Fig. 6D). GW9662, the antagonist of PPARγ, however while blocking
CC-induced PPARγ binding to the CD36 promoter had no effect on
STAT1 or p300 binding (Fig. 6E). Depletion of BTK, p47Phox or
xanthine oxidase levels also prevented CC-induced binding of STAT1,
PPARγ and p300 to the CD36 promoter (Fig. 6F and G). To confirm
these results, we have transfected THP1 cells with pGL3 vector or pGL3
harboring ~800 bp CD36 promoter-luciferase reporter gene and stu-
died their response to CC. CC induced CD36 promoter-luciferase
reporter gene activity by 8-fold (Fig. 7A). In addition, site-directed
mutagenesis of STAT-binding site at −107 nt blocked CC-induced
CD36 promoter-luciferase reporter gene activity (Fig. 7A).
Furthermore, CC-induced CD36 promoter-luciferase reporter gene
activity was found to be sensitive to inhibition of NADPH oxidase,
xanthine oxidase, BTK activation, STAT1 acetylation, PPARγ activation
and p300 HAT activity (Fig. 7B–F).

3.7. CC induces ROS production, BTK activation, p300-STAT1-PPARγ
interactions, CD36 expression and foam cell formation in mouse
primary peritoneal macrophages

In order to validate the observations obtained in THP1 cells, we
also studied the effects of CC on ROS production, BTK activation, p300
phosphorylation, STAT1 acetylation and its interactions with p300 and

PPARγ, CD36 expression, oxLDL uptake and foam cell formation in
mouse primary peritoneal macrophages. It is indeed exciting to find
that CC induced ROS production, BTK and p300 tyrosine phosphor-
ylation, p300 association with STAT1, STAT1 acetylation and its
interaction with PPARγ, CD36 expression, oxLDL uptake and foam
cell formation in mouse primary peritoneal macrophages (Fig. 8A–E).

4. Discussion

Although scavenger receptor genes, particularly types A and B do
not contain sterol regulatory elements, their expression is induced in
response to high free and esterified intracellular cholesterol levels [39].
Because of this correlation between scavenger receptor expression and
cellular cholesterol levels, these receptors are likely to play an
important role in the uptake of oxLDL by macrophages during
atherogenesis. Several studies have shown that in patients with high
circulating levels of LDL-cholesterol, sub endothelial retention of LDL
increases and creates a microenvironment in which it becomes
oxidized, which is no longer recognized by the LDL-receptor, but
rather becomes a ligand for scavenger receptors [40]. Therefore,
scavenger receptor expression is likely a determinant factor for
oxLDL uptake by cells such as macrophages. In this context, among
the many scavenger receptors, CD36 has been shown to be a major
mediator of oxLDL uptake and foam cell formation [25,27,41]. Despite
the advancement in our understating between cellular cholesterol
levels and scavenger receptor expression, the underlying mechanisms
of their induction were not clear. In the present study, we report that
CC stimulates CD36 expression leading to oxLDL uptake and foam cell
formation. Previous work from others as well as our laboratory has
shown that STAT1 plays a role in CD36 expression and foam cell
formation [27,28]. Based on these observations, we hypothesized that
STAT1 might be playing a role in CC-induced CD36 expression and
foam cell formation. Indeed, our findings reveal that CC stimulates
STAT1 tyrosine phosphorylation and acetylation in THP1 cells.
However, despite the capacity of CC in the stimulation of both tyrosine
phosphorylation and acetylation of STAT1 CC-induced CD36 expres-
sion, oxLDL uptake and foam cell formation showed a requirement
only for STAT1 acetylation but not tyrosine phosphorylation. These
observations are consistent with our previous findings on the role of
STAT1 acetylation in lipid hydroperoxide 15(S)-HETE-induced CD36
expression, oxLDL uptake and foam cell formation.

Many studies have demonstrated that PPARγ plays a role in CD36
expression and foam cell formation [33,34]. In addition, we have
reported that 15(S)-HETE induces CD36 expression, oxLDL uptake
and foam cell formation and these events require STAT1 acetylation
and its interaction with PPARγ [27]. In the present study, we also
found that CC-induced CD36 expression, oxLDL uptake and foam cell
formation require PPARγ activation. Furthermore, our results show
that acetylation-mediated STAT1 interaction with PPARγ is needed for
CC-induced CD36 expression, oxLDL uptake and foam cell formation.
Since no interactions were observed between STAT3 or STAT5 with
PPARγ and CC had no influence on the interactions between STAT2,
STAT4 or STAT6 with PPARγ, it is unlikely that these STATs are

Fig. 3. CC-induced STAT1 acetylation requires p300 acetyltransferase activity. A. Equal amounts of protein from control and the indicated time periods of CC (40 μg/ml)-treated cells
were immunoprecipitated with anti-p300 antibodies or IgG and the immunocomplexes were analyzed by Western blotting for STAT1, STAT3, or STAT5 levels and normalized for p300.
B. Quiescent cells were transfected with control or p300 ASO, quiesced, treated with and without CC for 1 h, cell extracts were prepared and equal amounts proteins from each condition
were immunoprecipitated with anti-STAT1 antibodies and the immunocomplexes were analyzed by Western blotting for STAT1 acetylation and its association with PPARγ as described
in Fig. 1, panel F and Fig. 2, panel C, respectively. C. All the conditions were same as in panel B except that cells were treated with vehicle or CC and analyzed for CD36 expression,
oxLDL uptake or foam cell formation as described in Fig. 1, panel C. The blot was reprobed for p300 and β-tubulin to show the effect of the ASO on its target and off target molecules
levels. D and E. Cells were transfected with p300WT or p300ΔHAT, quiesced, treated with and without CC and analyzed for STAT1 acetylation, its association with PPARγ, CD36
expression, oxLDL uptake or foam cell formation as described above in panels B and C, respectively. The blots were reprobed for STAT1 or β-tubulin for normalization. F and G. Cells
were transfected with control or CBP ASO, quiesced, treated with and without CC and analyzed for STAT1 acetylation and its association with PPARγ, CD36 expression and oxLDL
uptake as described above in panels B and C, respectively. The blots were reprobed for CBP, STAT1 or β-tubulin to show the effect of the ASO on its target and off target molecules levels.
The bar graphs represent Mean ± S.D. values of three experiments. *p < 0.01 vs control ASO or p300WT; **p < 0.01 versus control ASO+CC or p300WT+CC.

S. Kotla et al. Redox Biology 11 (2017) 350–364

357



involved in CC-induced CD36 expression, oxLDL uptake and foam cell
formation. Similarly, because STAT1 tyrosine phosphorylation was not
required for CC-induced CD36 expression, a slight increase in STAT2,
STAT3 or STAT6 tyrosine phosphorylation by CC may also be not
linked to this scavenger receptor expression by CC. Many studies have
shown that p300 mediates acetylation of STATs, particularly STAT1
and STAT3 [30–32]. While exploring the mechanisms of STAT1
acetylation by CC, we observed that CC stimulates tyrosine phosphor-
ylation and activation of p300, which in turn, mediates STAT1
acetylation and its interaction with PPARγ. Several reports showed
that p300 activation depends on its Ser/Thr phosphorylation [42].
However, our findings reveal that CC stimulates p300 tyrosine phos-
phorylation rather than Ser/Thr phosphorylation leading to its activa-
tion. Previously, we have reported that Syk and Pyk2 mediate 15(S)-
HETE-induced tyrosine phosphorylation of p300 leading to its activa-
tion and its role in STAT1 acetylation and its interaction with PPARγ in
CD36 expression, oxLDL uptake and foam cell formation. In contrast to

these observations, the present findings show that CC while having
little or no effect on Src and Syk activation stimulate BTK and Pyk2
tyrosine phosphorylation. Interestingly, while Pyk2 depletion had no
effect, down regulation of BTK levels attenuated CC-induced p300
tyrosine phosphorylation, STAT1 acetylation and its interaction with
PPARγ resulting in reduced CD36 expression, oxLDL uptake and foam
cell formation. BTK is a member of the Tec family of non-receptor
tyrosine kinases and plays an important role in B-lymphocyte differ-
entiation and signaling [43]. It has also been demonstrated that BTK-
deficient mice display a reduced leukocyte recruitment and inflamma-
tory response in various disease models [44]. Furthermore, the absence
of functional BTK increases the tendency of macrophages to undergo
apoptosis and as a result diminishes their proinflammatory functions
[45]. Despite the large number of studies on the role of BTK in cancer
and inflammatory diseases [46,47], very little is known on its role in
vascular diseases. Toward this end, the present findings reveal that
BTK via tyrosine phosphorylation and activation of p300 and thereby
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facilitating STAT1 acetylation and its interaction with PPARγ plays an
important role in CC-induced CD36 expression, oxLDL uptake and
foam cell formation. Based on these observations a role for BTK in the

pathogenesis of atherosclerosis may also be suggested. In this context,
it is worth pointing that a recent study has shown that BTK mediates
NLRP3-dependent inflammasome formation [47]. Since CC also trigger
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NLRP3-mediated inflammasome formation [12], it is quite possible
that BTK besides its role in CC-induced CD36 expression and foam cell
formation may also be involved in CC-induced inflammasome forma-
tion in the pathogenesis of atherosclerosis.

A large body of data suggests that oxidative stress plays a notable
role in atherogenesis [48,49]. It has been demonstrated that macro-
phages from hypercholesterolemic patients show enhanced ROS pro-
duction and proinflammatory cytokine expression as compared to
control macrophages [50,51]. In this aspect, the present findings
demonstrate that CC induces ROS production leading to activation of
BTK. These observations also infer that CC via ROS production and
activation of BTK stimulates a transcriptional machinery involving
p300-STAT1-PPARγ in inducing proatherogenic genes such as CD36
expression. The EMSA, supershift EMSA, ChIP, re-ChIP and promoter-
reporter gene analysis further support these conclusions. The re-ChIP
analysis of anti-PPARγ chromatin immunoprecipitates revealed that
activation of PPARγ is not required for the binding of STAT1 or p300 to
the CD36 promoter. These results suggest that p300-mediated STAT1
acetylation rather than PPARγ activation is crucial for the binding of
STAT1-PPARγ complexes to the CD36 promoter. Because PPARγ
antagonist inhibits the PPARγ binding to the CD36 promoter and
attenuates the promoter activity partially, it is quite possible that in
addition to its involvement in STAT1-mediated promoter activity,
PPARγ alone might be involved in the regulation of CD36 promoter
activity and its expression at least partially. It is worth to note that both

XO and NADPH oxidase were involved in CC-induced ROS production
in the modulation of CD36 expression and foam cell formation.
Previously, we have reported that an interaction between XO and
NADPH oxidase is required for 15(S)-HETE-induced ROS production
and IL17A expression in mediating monocyte migration and its
adhesion to endothelial cells [21]. Based on these observations, it
may be suggested that an interdependent activation of XO and NADPH
oxidase is involved in CC-induced ROS production leading to CD36
expression and foam cell formation. Although the present results do
not address the role of mitochondrial ROS in CC-induced CD36
expression and foam cell formation, it is possible that XO and
NADPH oxidase-mediated ROS production could trigger mitochondrial
ROS production in this scavenger receptor expression and foam cell
formation by CC, which remains to be explored.

As ubiquitous component of cell membranes, cholesterol plays an
important role in the maintenance of membrane structure and func-
tion, particularly membrane fluidity and cell signaling [52]. Previous
studies have suggested that endogenous molecules trigger inflamma-
tion driving the atherosclerotic lesion development and one of those
suspects is cholesterol [14–16]. Cholesterol is known to accumulate in
atherosclerotic plaques in the form of cholesterol crystals in foam cells
[14,15]. In addition to this information, the present results as
summarized in Fig. 9 reveal that CC via XO and NADPH oxidase-
dependent ROS production and BTK activation leads to p300 tyrosine
phosphorylation and activation, which in turn, by acetylating STAT1
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facilitates STAT1 interaction with PPARγ in mediating CD36 expres-
sion, oxLDL uptake and foam cell formation.
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