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Abstract: Despite the substantial interest in C-glycosyl heterocycles as mimetics of biologically active
native glycans, the appearance of C-glycopyranosyl derivatives of six-membered heterocycles, both
in synthetic and biological contexts, is rather scarce. As part of our ongoing research program
aimed at preparing hitherto barely known 2-C-glycopyranosyl pyrimidines, the goal of the present
study was to synthesize new 5-mono- and multiply substituted derivatives of this compound
class. Thus, 2-C-(β-D-glucopyranosyl)-5,6-disubstituted-pyrimidin-4(3H)-ones and 4-amino-2-C-(β-D-
glucopyranosyl)-5,6-disubstituted-pyrimidines were prepared by base-mediated cyclocondensations
of O-perbenzylated and O-unprotected C-(β-D-glucopyranosyl) formamidine hydrochlorides with
methylenemalonic acid derivatives. The 2-C-(β-D-glucopyranosyl)-5-substituted-pyrimidines were
obtained from the same amidine precursors upon treatment with vinamidinium salts. The deprotected
derivatives of these pyrimidines were tested as inhibitors of some glycoenzymes. None of them
showed inhibitory activity towards glycogen phosphorylase and α- and β-glucosidase enzymes, but
some members of the sets exhibited moderate inhibition against bovine liver β-galactosidase.
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1. Introduction

C-Glycopyranosyl heterocycles [1] are among the widely investigated groups of sugar-based
small molecules. The intense interest in such compounds is primarily due to their possible use as
glycomimetics [1–3]. The hydrolitically stable C-C linkage between the glycon and the heterocyclic
aglycon part, and the ability of the heteroaromatic moiety to strengthen the binding by diverse
interactions (e.g., hydrogen bonds, van der Waals interactions, π-π stackings, and coordination to
metal ions) to target biomolecules, along with some general advantages derived from the presence of
the sugar component (e.g., enhancement of the solubility, the possibility of targeting carbohydrate
binding proteins), make these compounds very attractive in drug design [4].

Within this compound class, the most commonly represented ones are C-glycopyranosyl
derivatives of five-membered heterocycles, possessing a large variety of biological effects [1]. On
the other hand, six-membered C-glycopyranosyl heterocycles have received much less attention [1].
This appears to be surprising given that their C-glycofuranosyl variants, as analogues of nucleosides,
belong to an intensively studied class of sugar conjugates [5]. This general tendency also applies to
C-glycosyl pyrimidines: while a great number of C-glycofuranosyl pyrimidines are known [6–11],
C-glycopyranosyl analogues are scarcely found in the literature.
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For the formation of 2-C-glycopyranosyl pyrimidines, only one example was described [12],
wherein a Minisci type radical glycosylation of a protonated pyrimidine resulted in a
2-(3′,4′-di-O-benzoyl-2′-deoxy-β-D-ribopyranosyl)-pyrimidine together with the corresponding
4-C-glycopyranosylated isomer in 3:7 ratio. Some 5-C-glycopyranosyl pyrimidines were produced
by ring-closures of C-glycopyranosylated enaminoketones with guanidine or acetamidine [13,14].
In addition, series of 4-C-, 6-C-, and 4,6-bis-C-glycosyl dihydropyrimidines were obtained from
C-glycopyranosyl formaldehydes or β-ketoesters by three-component Biginelli-type cyclisations [15,16].

Recently, as part of a systematic study on the syntheses of 2-C-glycopyranosyl pyrimidines (e.g., I
and II in Figure 1), we published their first general synthesis from the corresponding O-perbenzylated (1)
or O-unprotected C-glucopyranosyl formamidines (2) as well as in a one-pot three-step transformation
of O-peracylated glycopyranosyl cyanides [17]. Some members of I and II exhibited moderate inhibition
of some glycosidase enzymes [17], however, each proved inactive against glycogen phosphorylase [17].
Although these biological effects are not outstanding, these are the first investigations to reveal potential
utilities of this novel compound class.

As a continuation of these studies, in this paper, we disclose the preparation of 4,5,6-tri- and
5-monosubstituted 2-C-glucopyranosyl pyrimidines (III, IV and V, respectively) by the reaction of
amidines 1 and 2 with methylenemalonic acid derivatives and vinamidinium salts, respectively, and
the evaluation of the resulting heterocycles as inhibitors of glycoenzymes.
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and the target compounds of this study.

2. Results and Discussion

2.1. Syntheses

For the synthesis of the target trisubstituted 2-C-glucopyranosyl pyrimidines, the ring-closures of
amidine hydrochloride 1 [18,19] with methylenemalonic acid derivatives 3–7 were investigated
first (Table 1). Treatment of 1 with compounds 3–7 in the presence of NaOMe in MeOH at
0 ◦C gave the desired pyrimidines 10a–f, respectively, in good yields. In the reaction of 1



Molecules 2020, 25, 701 3 of 18

with ethyl 2-cyano-3-ethoxyacrylate 4, the nucleophilic amidine attacked both the cyano and the
ester groups of the reagent. Thus, this cyclocondensation led to the formation of a mixture of
ethyl 4-amino-pyrimidine-5-carboxylate 10b and 6-oxo-1,6-dihydropyrimidine-5-carbonitrile 10c.
Surprisingly, the same reaction of 1 with ethyl 2-cyano-2-phenylacrylate 7 afforded only one product
11f, derived from a ring-closure involving the ester group of the reagent.

Table 1. Ring-closure of C-(β-D-glucopyranosyl)formamidines with methylenemalonic acid derivatives.
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For the O-debenzylation of the new 2-glucosyl pyrimidines 10a–f, catalytic hydrogenolysis in an
acidified EtOAc-EtOH solvent mixture at ambient temperature was attempted. Under the applied
reductive conditions, the deprotection of compounds 10b and 10d was smoothly affected to get the test
compounds 11b and 11d, respectively, in acceptable yields. Unfortunately, pyrimidines 10a,c,e,f with
a 5-CN substituent remained intact under the same conditions. This might be due to a poisoning of the
catalyst, caused by the coordination of the cyano group to the palladium.

In order to avoid the critical deprotection in the last step of the synthesis, the preparation of the
unprotected pyrimidines 11 was also examined in a reversed sequence, wherein the formamidine
salt 2, obtained from 1 by hydrogenolytic O-debenzylation [17], was cyclized with the corresponding
methylenemalonic acid derivatives 3–7 (Table 1). The ring-closure of 2 with compounds 3–7 proceeded
similarly to that of amidine salt 1, providing each target test compound 11a–f in moderate to good yields.

The cyclocondensations of amidine salts 1 and 2 with dialkyl benzylidenemalonates 8 and 9,
under the same ring-closing conditions used for compounds 3–7, did not directly provide the expected
pyrimidinone derivatives 10g,h and 11g,h (Table 1). Similarly to a literature example [20], compounds
8 and 9, when cyclized with 2, furnished 6-oxo-1,4,5,6-tetrahydropyrimidines 12 (Scheme 1). Our
attempts to achieve the spontaneous oxidation of compounds 12g,h to get 10g,h by using prolonged
reaction times or higher temperatures, were unsuccessful. Finally, the transformation of 12g,h into
10g,h was carried out by applying DDQ as an oxidant in an additional step. The removal of the
O-benzyl protecting groups of 12g,h was then performed by hydrogenolysis over Pd(OH)2 to get the
final products 11g,h in good yields.
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The formation of 2-C-glucopyranosyl-5-substituted-pyrimidines was also envisaged starting from
the same carbohydrate precursors 1 and 2. To this end, NaOMe-mediated cyclisations of compounds 1
and 2 with vinamidinium salts 13–16 were accomplished to get the desired 2,5-disubstituted heterocycles
17 and 18, respectively, in good to high yields (Table 2). Compound 18a was prepared both by the
ring-closure of 1 with 13, followed by a BCl3-mediated O-debenzylation of the resulting pyrimidine
17a, and by a reversed debenzylation-cyclisation sequence 1→2→18a. In terms of the overall yields
of 18a, the latter route proved to be more efficient (51% for 1→17a→18a vs. 80% for 1→2→18a). By
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applying this second synthetic pathway, high-yielding preparation of the test compounds 18b and 18c
was also smoothly achieved (Table 2).

Table 2. Ring-closure of C-(β-D-glucopyranosyl)formamidines with vinamidinium salts.
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16 CH=NMe2

+ 2 ClO4 d CHO 86 ni ni

*ni: not investigated.

In addition, further transformations of compounds 17c and 17d were carried out to get additional
2-C-glucopyranosyl-5-substituted-pyrimidines (Scheme 2). A Pd(PPh3)2Cl2-catalyzed cross-coupling
of 5-bromopyrimidine 17c with phenylboronic acid furnished 5-phenylpyrimidine 17e in excellent
yield, while the oxidation of 5-formylpyrimidine 17d with NIS in the presence of K2CO3 and MeOH
resulted in methyl pyrimidine-5-carboxylate 17f in good yield. Finally, the cleavage of the O-benzyl
protecting groups of 17e,f was performed with BCl3 to obtain the test compounds 18e,f in high yields.
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2.2. Enzyme Inhibition Studies

The new unprotected compounds 11 and 18 were tested as inhibitors of some glycoenzymes.
Similarly to the previously tested 2-C-glucopyranosyl pyrimidines (I and II in Figure 1) [17], none
of them exhibited inhibition against rabbit muscle glycogen phosphorylase b (rmGPb) and almond
β-glucosidase.

While 2-(β-D-glucopyranosyl)-6-phenylpyrimidin-4(3H)-one 19 was earlier shown to be a
submillimolar inhibitor of yeast α-glucosidase (IC50 = 0.7 mM) [17], the new analogs 11 had negligible
effects against this enzyme.

Table 3. Inhibition of bovine liver β-galactosidase by the new 2-C-(β-D-glucopyranosyl)-pyrimidines.

Compound Inh. Compound Inh.

11a
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and the data were calculated as an average of three parallel measurements. NMR spectra were 
recorded with Bruker DRX360 (360/90 MHz for 1H/13C) and Bruker DRX400 (400/100 MHz for 1H/13C) 
spectrometers. Chemical shifts are referenced to Me4Si (1H) or to the residual solvent signals (13C). MS 
spectra were obtained by a Bruker Micro TOF-Q (ESI-MS) or a Bruker maXis II (ESI-HRMS) 
spectrometer. For TLC analysis, DC Alurolle Kieselgel 60 F254 plates (Merck) were used and the spots 
were visualized under UV light and by gentle heating. For column chromatographic purification, 
Kieselgel 60 silica gel (Molar Chemicals, particle size 63–200 µm) was used. Anhydrous MeOH was 
dried by distillation over Mg turnings and iodine. Anhydrous EtOH was purchased from Molar 
Chemicals and used as received. 2-(Ethoxymethylene)malononitrile (3), ethyl 2-cyano-3-
ethoxyacrylate (4), and diethyl 2-(ethoxymethylene)malonate (5) were commercially available 
chemicals (Merck). C-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)formamidine hydrochloride (1) 
[18,19], C-(β-D-glucopyranosyl)formamidine hydrochloride (2) [17], 2-benzylidenemalononitrile (6) 
[21], 2-cyano-3-phenylacrylate (7) [22], dimethyl and diethyl benzylidenemalonate (8 and 9 [22,23], 
respectively), 1,3-bis(dimethylamino)trimethinium perchlorate (13) [24], 2-chloro-1,3-
bis(dimethylamino)trimethinium hexafluorophosphate (14) [25], and 2-dimethylaminomethylene-
1,3-bis(dimethylimonio)propane diperchlorate (16) [26] were prepared according to published 
procedures. 
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Depending on the substitution pattern of the pyrimidine ring, varied inhibitory potencies of
compounds 11 and 19 were observed towards bovine liver β-galactosidase (Table 3). The enzyme
kinetic data of the comparable pairs 11a and 11e, 11c and 11f, and 11d and 11h clearly indicated the
beneficial effect of the presence of a phenyl substituent at the C-6 position of the pyrimidine ring: while
compounds 11a, 11c, and 11d did not inhibit the β-galactosidase, their phenyl-substituted counterparts
11e, 11f, and 11h, respectively, displayed a weak but noticeable inhibition in similar mM concentration
ranges. The inhibitory activity of 11f-h in comparison to that of 19 showed that the introduction of a
cyano group into the C-5 position of the heterocycle did not cause any significant effect on the potency
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(19 vs. 11f), but switching to the ester groups resulted in some strengthening of the inhibition (19 vs.
11g and 11h). A similar slight improvement was also observed in the pair 11a and 11b. Compound
11h, bearing both the phenyl and the ester substituent, proved to be the best inhibitor of the series,
displaying submillimolar inhibitory effect against this β-galactosidase enzyme.

Among the 2-(β-D-glucopyranosyl)-5-substituted-pyrimidines, the unsubstituted 18a and the
5-halogen-substituted heterocycles 18b,c proved to be inactive, while pyrimidines, having the phenyl
(18e) and the methyl ester (18f) group, showed weak inhibition against the β-galactosidase enzyme
(Table 3). Although compounds 18e and 18f had no significant effects against this enzyme, their
moderate activities indicated that the introduction of these substituents, not only at position 6 but also
at 5 of the pyrimidine ring could also be advantageous.

3. Experimental

3.1. Syntheses

3.1.1. General Methods

Optical rotations were measured on a Jasco P-2000 polarimeter (Jasco, Easton, MD, USA) at
rt, and the data were calculated as an average of three parallel measurements. NMR spectra
were recorded with Bruker DRX360 (360/90 MHz for 1H/13C) and Bruker DRX400 (400/100 MHz
for 1H/13C) spectrometers. Chemical shifts are referenced to Me4Si (1H) or to the residual solvent
signals (13C). MS spectra were obtained by a Bruker Micro TOF-Q (ESI-MS) or a Bruker maXis
II (ESI-HRMS) spectrometer. For TLC analysis, DC Alurolle Kieselgel 60 F254 plates (Merck)
were used and the spots were visualized under UV light and by gentle heating. For column
chromatographic purification, Kieselgel 60 silica gel (Molar Chemicals, particle size 63–200 µm) was
used. Anhydrous MeOH was dried by distillation over Mg turnings and iodine. Anhydrous EtOH
was purchased from Molar Chemicals and used as received. 2-(Ethoxymethylene)malononitrile (3),
ethyl 2-cyano-3-ethoxyacrylate (4), and diethyl 2-(ethoxymethylene)malonate (5) were commercially
available chemicals (Merck). C-(2,3,4,6-Tetra-O-benzyl-β-D-glucopyranosyl)formamidine hydrochloride
(1) [18,19], C-(β-D-glucopyranosyl)formamidine hydrochloride (2) [17], 2-benzylidenemalononitrile (6) [21],
2-cyano-3-phenylacrylate (7) [22], dimethyl and diethyl benzylidenemalonate (8 and 9 [22,23], respectively),
1,3-bis(dimethylamino)trimethinium perchlorate (13) [24], 2-chloro-1,3-bis(dimethylamino)trimethinium
hexafluorophosphate (14) [25], and 2-dimethylaminomethylene-1,3-bis(dimethylimonio)propane
diperchlorate (16) [26] were prepared according to published procedures.

3.1.2. General Procedure 1 for the Synthesis of 2-(β-D-Glucopyranosyl)-pyrimidines (10 or 11) by
Cyclisation of C-β-D-Glucopyranosyl Formamidines (1 or 2) with Substituted Methylenemalonic
Acid Derivatives

To a solution of the corresponding C-(β-D-glucopyranosyl)formamidine hydrochloride (1 or
2) in dry MeOH (2 mL/100 mg amidine), ~1M solution of NaOMe in dry MeOH (3 equiv.) was
added at 0 ◦C. After stirring the reaction mixture at this temperature for 10 min, the appropriate
methylenemalonic acid derivative (2 equiv.) was added. The completion of the reaction was monitored
by TLC (CHCl3-MeOH = 9:1 and EtOAc-hexane = 1:1 in the case of O-perbenzylated derivatives and
CHCl3-MeOH = 7:3 in the case of unprotected derivatives). After the disappearance of the starting
amidine (1 or 2), the reaction mixture was neutralized with glacial acid, the solvent was evaporated
under reduced pressure, and the residue was purified by column chromatography.

3.1.3. General Procedure 2 for the Synthesis of Alkyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyra-nosyl)-
4-phenyl-6-oxo-1,4,5,6-tetrahydropyrimidine-5-carboxylates (12) by Cyclisation of C-β-D-
Glucopyranosyl Formamidine (1) with Benzylidenemalonate Derivatives

To a solution of amidine hydrochloride 1 (400 mg, 0.66 mmol) in dry MeOH or EtOH (2.5 mL/100 mg
substrate), ~1M solution of sodium alkoxide in MeOH or EtOH (2 equiv.) was added and the mixture
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was stirred at rt for 10 min. To this mixture, the corresponding 2-benzylidenemalonate derivative (2
equiv.) was added and stirred at rt until the TLC (EtOAc-hexane = 1:2 and CHCl3-MeOH = 9:1) showed
the complete conversion of 1 (~6 h). The reaction mixture was then neutralized with glacial acid,
concentrated under diminished pressure, and the residue was purified by column chromatography.

3.1.4. General Procedure 3 for the Oxidation of 1,4,5,6-Tetrahydropyrimidine Derivatives (12) by DDQ

A 1,4,5,6-tetrahydropyrimidine derivative (12) was dissolved in dry MeOH (2 mL/100 mg
substrate), and DDQ (1 equiv.) was added. The reaction mixture was stirred at rt and monitored
by TLC (EtOAc-hexane = 1:2). After the total consumption of the starting material (6 h), the solvent
was removed in vacuo. The resulting oil was dissolved in EtOAc (30 mL) and extracted with 10% aq.
solution of NaOH (5 × 10 mL). The organic phase was dried over MgSO4, filtered, and the solvent was
evaporated under reduced pressure. The residue was purified by column chromatography.

3.1.5. General Procedure 4 for the Synthesis of 2-(β-D-Glucopyranosyl)-pyrimidines (17 or 18) by
Cyclisation of C-β-D-Glucopyranosyl Formamidine Hydrochlorides (1 or 2) and Vinamidinium Salts

To a solution of C-(β-D-glucopyranosyl)formamidine hydrochloride (1 or 2) in dry MeOH
(2 mL/100 mg amidine), ~1M solution of NaOMe in dry MeOH (2.1 equiv.) was added. The reaction
mixture was stirred at rt for 10 min, then the corresponding vinamidinium salt (1.1 equiv.) was added
and the stirring was continued at rt. After completion of the reaction judged by TLC (CHCl3-MeOH
= 9:1 and EtOAc-hexane = 1:2 for benzylated compounds and CHCl3-MeOH = 7:3 for unprotected
derivatives), the mixture was neutralized with glacial acetic acid, then the solvent was removed under
diminished pressure. The residue was purified by column chromatography.

3.1.6. Synthesis and Characterization of the New Compounds

4-Amino-2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidine-5-carbonitrile (10a). Prepared from
compound 1 (400 mg, 0.66 mmol) and 2-(ethoxymethylene)malononitrile 3 (162 mg, 1.33 mmol)
according to genereal procedure 1. Reaction time: 30 min. The title compound precipitated from the
reaction mixture as a pale yellow amorphous solid. Yield: 325 mg (76%). Rf = 0.55 (EtOAc-hexane =

1:1); [α]D = -1 (c 0.20, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.87 (2H, br s, NH2), 8.33 (1H, s,
H-6), 7.40–6.99 (20H, m, aromatics), 4.93, 4.89 (2 × 1H, 2d, J = 11.0 Hz in each, PhCH2), 4.92, 4.69 (2
× 1H, 2d, J = 10.8 Hz in each, PhCH2), 4.82, 4.74 (2 × 1H, 2d, J = 12.2 Hz in each, PhCH2), 4.65, 4.22
(2 × 1H, 2d, J = 11.3 Hz in each, PhCH2), 4.38 (1H, d, J = 9.5 Hz, H-1′), 3.94 (1H, pt, J = 9.5, 9.2 Hz,
H-3′ or H-4′), 3.85 (1H, pt, J = 9.4, 9.3 Hz, H-2′ or H-3′ or H-4′), 3.84 (1H, pt, J = 9.5, 9.3 Hz, H-2′ or
H-3′ or H-4′), 3.79 (1H, dd, J = 11.9, 5.2 Hz, H-6′a), 3.64 (1H, dd, J = 11.9, 1.9 Hz, H-6′b), 3.52-3.49 (1H,
m, H-5′); 13C NMR (100 MHz, CDCl3) δ (ppm): 168.8, 163.3 (C-2, C-4), 160.5 (C-6), 138.3, 138.1, 137.7,
136.9, 129.0–127.9 (aromatics), 114.8 (CN), 91.0 (C-5), 87.0, 83.2, 82.2, 79.0, 77.5 (C-1′–C-5′), 76.2, 75.5,
75.0, 73.8 (4 × PhCH2), 67.8 (C-6′). ESI-MS positive mode (m/z): Calcd for C39H39N4O5

+ [M + H]+

643.3. Found: 643.5.

Ethyl 4-amino-2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidine-5-carboxylate (10b) and
2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (10c). The title
compounds were prepared from compound 1 (400 mg, 0.66 mmol) and ethyl 2-cyano-3-ethoxyacrylate
4 (224 mg, 1.33 mmol) according to general procedure 1. Reaction time: 1 h. Purification by column
chromatography (EtOAc-hexane = 1:3) yielded 10b as the first and 10c as the second fraction. 10b:
Yield: 167 mg (37%), colourless syrup. Rf = 0.25 (EtOAc-hexane = 1:2); [α]D = +54 (c 0.20, CH2Cl2); 1H
NMR (400 MHz, CDCl3) δ (ppm): 8.81 (1H, s, H-6), 7.84 (1H, br s, NH2), 7.31–6.97 (20H, m, aromatics),
6.38 (1H, br s, NH2), 4.93, 4.89 (2 × 1H, 2d, J = 11.2 Hz in each, PhCH2), 4.84, 4.57 (2 × 1H, 2d, J =

10.7 Hz in each, PhCH2), 4.60, 4.27 (2 × 1H, 2d, J = 11.4 Hz in each, PhCH2), 4.60, 4.27 (2 × 1H, 2d, J =

12.2 Hz in each, PhCH2), 4.36 (2H, q, i = 7.2 Hz, CH2CH3), 4.36 (1H, d, J = 9.6 Hz, H-1′), 4.03 (1H, pt,
J = 9.6, 9.0 Hz, H-2′), 3.84 (1H, pt, J = 9.2, 9.0 Hz, H-3′), 3.76–3.3.71 (3H, m, H-4′, H-6′a, H-6′b), 3.65 (1H,
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ddd, J = 9.5, 4.5, 2.2 Hz, H-5′), 1.40 (3H, t, J = 7.2 Hz, CH2CH3); 13C NMR (100 MHz, CDCl3) δ (ppm):
168.9, 166.0, 162.8 (C-2, C-4, COOEt), 159.6 (C-6), 138.8, 138.2, 138.2, 138.1, 128.5–127.5 (aromatics),
104.3 (C-5), 87.1, 82.9, 81.3, 79.8, 77.3 (C-1′–C-5′), 75.7, 75.2, 74.8, 73.5 (4 × PhCH2), 69.1 (C-6′), 61.3
(CH2CH3), 14.4 (CH2CH3). ESI-MS positive mode (m/z): Calcd for C41H44N3O7

+ [M + H]+ 690.3.
Found: 690.5. 10c: Yield: 128 mg (30%), colourless syrup. Rf = 0.23 (EtOAc-hexane = 1:2); [α]D = -12 (c
0.22, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 12.52 (1H, br s, NH), 8.15 (1H, s, H-4), 7.33-7.09
(20H, m, aromatics), 4.91, 4.88 (2 × 1H, 2d, J = 11.3 Hz in each, PhCH2), 4.86, 4.60 (2 × 1H, 2d, J = 10.8
Hz in each, PhCH2), 4.71, 4.46 (2 × 1H, 2d, J = 11.5 Hz in each, PhCH2), 4.54, 4.48 (2 × 1H, 2d, J = 12.0
Hz in each, PhCH2), 4.37 (1H, d, J = 9.5 Hz, H-1′), 3.86-3.70 (6H, m, H-2′–H-6′a,b); 13C NMR (100 MHz,
CDCl3) δ (ppm): 162.9, 160.0 (C-2, C-6), 161.1 (C-4), 138.1, 137.9, 137.6, 137.1, 128.7–127.9 (aromatics),
113.3 (CN), 103.2 (C-5), 85.8, 79.2, 78.9, 78.2, 77.7 (C-1′–C-5′), 75.6, 75.2, 74.6, 73.4 (4 × PhCH2), 69.0
(C-6′). ESI-MS positive mode (m/z): Calcd for C39H38N3O6

+ [M + H]+ 644.3. Found: 644.5.

Ethyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-6-oxo-1,6-dihydropyrimidine-5-carboxylate (10d).
Prepared from compound 1 (400 mg, 0.66 mmol) and diethyl 2-(ethoxymethylene)malonate 5 (265 µL,
1.33 mmol) according to general procedure 1. Reaction time: 1 h. Purified by column chromatography
(EtOAc-hexane 1:1) to give 367 mg (80%) colourless syrup. Rf = 0.21 (EtOAc-hexane = 1:1); [α]D =

+9 (c 0.50, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 11.35 (1H, br s, NH), 8.55 (1H, s, H-4),
7.32–7.11 (20H, m, aromatics), 4.88, 4.84 (2 × 1H, 2d, J = 11.2 Hz in each, PhCH2), 4.82, 4.55 (2 × 1H, 2d,
J = 10.9 Hz in each, PhCH2), 4.66, 4.45 (2 × 1H, 2d, J = 11.4 Hz in each, PhCH2), 4.55, 4.48 (2 × 1H, 2d,
J = 12.1 Hz in each, PhCH2), 4.37 (2H, q, J = 7.2 Hz, CH2CH3), 4.37 (1H, d, J = 9.5 Hz, H-1′), 3.86–3.65
(6H, m, H-2′–H-6′a,b), 1.38 (3H, t, J = 7.2 Hz, CH2CH3); 13C NMR (90 MHz, CDCl3) δ (ppm): 163.2,
162.6, 160.0 (C-2, C-6, COOEt), 159.2 (C-4), 138.2, 138.0, 137.6, 137.2, 128.5–127.8 (aromatics), 116.7 (C-5),
86.1, 79.4, 78.9, 78.4, 77.4 (C-1′–C-5′), 75.5, 75.0, 74.6, 73.4 (4 × PhCH2), 68.8 (C-6′), 61.3 (CH2CH3), 14.4
(CH2CH3). ESI-MS positive mode (m/z): Calcd for C41H43N2O8

+ [M + H]+ 691.3. Found: 691.4.

4-Amino-2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-6-phenylpyrimidine-5-carbonitrile (10e).
Prepared from compound 1 (400 mg, 0.66 mmol) and 2-benzylidenemalononitrile 6 (204 mg, 1.33 mmol)
according to general procedure 1. Reaction time: 1 h. The title compound precipitated from the
reaction mixture was a pale yellow amorphous solid. Yield: 373 mg (78%). Rf = 0.41 (EtOAc-hexane =

2:3); [α]D = -12 (c 0.27, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 9.00 (2H, br s, NH2), 7.96–6.97
(25H, m, aromatics), 4.96–4.69 (6H, m, PhCH2), 4.73, 4.27 (2 × 1H, 2d, J = 11.3 Hz in each, PhCH2), 4.50
(1H, d, J = 9.6 Hz, H-1′), 4.03 (1H, pt, J = 9.5, 9.2 Hz, H-4′), 3.98 (1H, pt, J = 9.6, 9.1 Hz, H-2′), 3.85 (1H,
pt, J = 9.2, 9.1 Hz, H-3′), 3.82 (1H, dd, J = 11.8, 3.8 Hz, H-6′a), 3.66 (1H, dd, J = 11.8, 1.9 Hz, H-6′b), 3.52
(1H, ddd, J = 9.5, 3.8, 1.9 Hz, H-5′); 13C NMR (100 MHz, CDCl3) δ (ppm): 168.3, 167.9, 165.4 (C-2, C-4,
C-6), 138.5, 138.2, 137.8, 137.1, 136.0, 131.4, 129.0–127.9 (aromatics), 116.0 (CN), 87.4 (C-5), 87.1, 83.5,
82.5, 79.0, 77.7 (C-1′–C-5′), 76.2, 75.6, 75.3, 73.9 (4 × PhCH2), 67.9 (C-6′). ESI-MS positive mode (m/z):
Calcd for C45H43N4O5

+ [M + H]+ 719.3. Found: 791.6.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (10f).
Prepared from compound 1 (400 mg, 0.66 mmol) and ethyl 2-cyano-3-phenylacrylate 7 (267 mg,
1.33 mmol) according to general procedure 1. Reaction time: 1 h. Purified by column chromatography
(EtOAc-hexane = 2:3) to give 334 mg (70%) colourless syrup. Rf = 0.51 (EtOAc-hexane = 1:1); [α]D =

+11 (c 0.25, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.07–7.02 (25H, m, aromaics), 4.98, 4.93 (2 ×
1H, 2d, J = 11.2 Hz in each, PhCH2), 4.93, 4.72 (2 × 1H, 2d, J = 10.7 Hz in each, PhCH2), 4.77, 4.47 (2 ×
1H, 2d, J = 11.3 Hz in each, PhCH2), 4.61, 4.53 (2 × 1H, 2d, J = 12.3 Hz in each, PhCH2), 4.52 (1H, d, J =

9.5 Hz, H-1′), 3.97-3.84 (6H, m, H-2′–H-6′a,b); 13C NMR (100 MHz, CDCl3) δ (ppm): 168.7, 162.8, 160.6
(C-2, C-4, C-6), 138.2, 138.1, 137.8, 137.1, 134.6, 132.3, 129.3-127.6 (aromatics), 114.8 (CN), 97.7 (C-5),
86.1, 79.7, 79.2, 78.7, 78.1 (C-1′–C-5′), 75.6, 75.4, 74.7, 73.3 (4 × PhCH2), 69.4 (C-6′). ESI-MS positive
mode (m/z): Calcd for C45H42N3O6

+ [M + H]+ 720.3. Found: 720.6.
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Methyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylate
(10g). Prepared from compound 12g (300 mg, 0.40 mmol) and DDQ (90 mg, 0.40 mmol) according to
general procedure 3. Purified by column chromatography (EtOAc-hexane = 2:3) to give 177 mg (59%)
pale yellow syrup. Rf = 0.48 (EtOAc-hexane = 1:1); [α]D = +10 (c 0.40, CH2Cl2); 1H NMR (360 MHz,
CDCl3) δ (ppm): 12.40 (1H, br s, NH), 7.65–7.01 (25H, m, aromatics), 4.93, 4.90 (2 × 1H, 2d, J = 11.5 Hz,
PhCH2), 4.88, 4.64 (2 × 1H, 2d, J = 10.8 Hz, PhCH2), 4.73, 4.47 (2 × 1H, 2d, J = 11.0 Hz, PhCH2), 4.58,
4.54 (2 × 1H, 2d, J = 12.1 Hz, PhCH2), 4.42 (1H, d, J = 9.4 Hz, H-1′), 3.94 (1H, pt, J = 9.2, 9.0 Hz, H-2′or
H-3′ or H-4′), 3.86–3.72 (5H, m, H-2′ and/or H-3′ and/or H-4′, H-5′–H-6′), 3.64 (3H, s, OCH3); 13C
NMR (90 MHz, CDCl3) δ (ppm): 166.0, 161.3 (2), 157.9 (C-2, C-4, C-6, COOMe), 138.3, 138.0, 137.9,
137.2, 136.8, 130.5, 128.5-127.8 (aromatics), 118.4 (C-5), 86.3, 79.2, 79.2, 78.8, 77.8 (C-1′–C-5′), 75.7, 75.3,
74.7, 73.4 (4 × PhCH2), 69.0 (C-6′), 52.6 (OCH3). ESI-MS positive mode (m/z): Calcd for C46H45N2O8

+

[M + H]+ 753.3. Found: 753.6.

Ethyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylate
(10h). Prepared from compound 12h (300 mg, 0.40 mmol) and DDQ (90 mg, 0.40 mmol) according
to general procedure 3. Purified by column chromatography (EtOAc-hexane = 2:3) to give 159 mg
(53%) pale yellow syrup. Rf = 0.50 (EtOAc-hexane = 1 : 1); [α]D = +62 (c 0.23, CH2Cl2); 1H NMR
(360 MHz, CDCl3) δ (ppm): 12.67 (1H, br s, NH), 7.66–7.02 (25H, m, aromatics), 4.94, 4.91 (2 × 1H,
2d, J = 11.2 Hz in each, PhCH2), 4.89, 4.64 (2 × 1H, 2d, J = 10.8 Hz in each, PhCH2), 4.74, 4.49 (2 ×
1H, 2d, J = 11.2 Hz in each, PhCH2), 4.58, 4.52 (2 × 1H, 2d, J = 12.2 Hz in each, PhCH2), 4.43 (1H, d,
J = 9.5 Hz, H-1′), 4.14 (2H, q, J = 7.1 Hz, CH2CH3), 3.97 (1H, pt, J = 9.2, 9.0 Hz, H-2′ or H-3′ or H-4′),
3.87–3.70 (5H, m, H-2′ and/or H-3′ and/or H-4′, H-5′–H-6′a,b), 1.00 (3H, t, J = 7.1 Hz, CH2CH3); 13C
NMR (90 MHz, CDCl3) δ (ppm): 165.3, 161.4, 161.3, 157.9 (C-2, C-4, C-6, COOEt), 138.4, 138.1, 137.8,
137.2, 136.9, 130.3, 128.5-127.7 (aromatics), 118.7 (C-5), 86.4, 79.2 (2), 78.9, 77.8 (C-1′–C-5′), 75.7, 75.2,
74.7, 73.4 (4 × PhCH2), 69.0 (C-6′), 61.6 (CH2CH3), 13.8 (CH2CH3). ESI-MS positive mode (m/z): Calcd
for C47H47N2O8

+ [M + H]+ 767.3. Found: 767.6.

4-Amino-2-(β-D-glucopyranosyl)-pyrimidine-5-carbonitrile (11a). Prepared from compound 2 (100 mg,
0.41 mmol) and 2-(ethoxymethylene)malononitrile 3 (101 mg, 0.82 mmol) according to general procedure
1. Reaction time: 30 min. Purified by column chromatography (CHCl3-MeOH = 5:1) to give 85 mg
(73%) pale yellow syrup. Rf = 0.31 (CHCl3-MeOH = 3:1); [α]D = +42 (c 0.16, MeOH); 1H NMR
(400 MHz, CD3OD) δ (ppm): 8.56 (1H, s, H-6), 4.18 (1H, d, J = 9.5 Hz, H-1′), 3.85 (1H, dd, J = 12.2,
1.9 Hz, H-6′a), 3.70 (1H, dd, J = 12.2, 4.9 Hz, H-6′b), 3.67 (1H, pt, J = 9.5, 9.0 Hz, H-2′), 3.50 (1H, pt,
J = 9.1, 9.0 Hz, H-3′), 3.44 (1H, pt, J = 9.4, 9.1 Hz, H-4′), 3.39 (1H, ddd, J = 9.4, 4.9, 1.9 Hz, H-5′); 13C
NMR (100 MHz, CD3OD) δ (ppm): 170.2, 164.4 (C-2, C-4), 161.8 (C-6), 115.4 (CN), 90.8 (C-5), 83.5, 82.3,
79.2, 74.4, 71.1 (C-1′–C-5′), 62.7 (C-6′). ESI-HRMS positive mode (m/z): calcd for C11H15N4O5

+ [M +

H]+ 283.1037; C11H14N4NaO5
+ [M + Na]+ 305.0856. Found: [M + H]+ 283.1034; [M + Na]+ 305.0852.

Ethyl 4-amino-2-(β-D-glucopyranosyl)-pirimidine-5-carboxylate (11b) and 2-(β-D-glucopyranosyl)-6-oxo-1,6-
dihydropyrimidine-5-carbonitrile (11c). Method A: The Pd-catalyst (35 mg, 20% Pd(OH)2/C) was
suspended in an anhydrous EtOAc-EtOH solvent mixture (10 mL in 1:5 ratio) under Ar and the
suspension was saturatated with H2 (3×). To this heterogenous mixture, a solution of compound 10b
(70 mg, 0.10 mmol) in EtOAc (1 mL) and one drop of ccHCl were added. The reaction mixture was
stirred under H2 at rt for two days, and the transformation was monitored by TLC (EtOAc-hexane 1:1
and CHCl3-MeOH 7:3). After complete conversion of the starting material, the mixture was neutralized
with NaHCO3. The catalyst and insoluble inorganic salts were filtered off through a pad of Celite and
washed three times with MeOH (3 × 3 mL). The resulting combined solution was concentrated under
diminished pressure and the residue was purified by column chromatography (CHCl3-MeOH = 5:1).
Yield of compound 11b: 17 mg (51%) colourless syrup. Rf = 0.55 (CHCl3-MeOH = 7:3); [α]D = -62 (c
0.15, MeOH); 1H NMR (400 MHz, D2O) δ (ppm): 8.82 (1H, s, H-6), 4.37 (2H, q, J = 7.1 Hz, CH2CH3),
4.28 (1H, d, J = 9.4 Hz, H-1′), 3.93 (1H, dd, J = 12.2, 1.9 Hz, H-6′a), 3.81 (1H, dd, J = 12.2, 4.5 Hz, H-6′b),
3.73 (1H, pt, J = 9.4, 9.0 Hz, H-2′), 3.69–3.54 (3H, m, H-3′, H-4′, H-5′), 1.38 (3H, t, J = 7.1 Hz, CH2CH3);
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13C NMR (90 MHz, CD3OD) δ (ppm): 170.4, 166.9, 164.0, 159.7 (C-2, C-4, C-6, COOEt), 105.2 (C-5), 83.0,
82.3, 79.3, 74.5, 71.2 (C-1′–C-5′), 62.9 (C-6′), 62.4 (CH2CH3), 14.5 (CH2CH3). ESI-HRMS positive mode
(m/z): calcd for C13H20N3O7

+ [M + H]+ 330.1296; C13H19N3NaO7
+ [M + Na]+ 352.1115. Found: [M +

H]+ 330.1294; [M + Na]+ 352.1114. Method B: The title compounds 11b and 11c were prepared from
compound 2 (200 mg, 0.82 mmol) and ethyl 2-cyano-3-ethoxyacrylate 4 (279 mg, 1.65 mmol) according
to general procedure 1. Reaction time: 1 h. Purification by column chromatography (CHCl3-MeOH =

5:1→ 3:1) yielded 11b (55 mg, 20 %) as the first and 11c 105 mg (45%) as the second fraction. Compound
11c: colourless syrup. Rf = 0.39 (CHCl3-MeOH 1:1); [α]D = -66 (c 0.16, MeOH); 1H NMR (400 MHz,
CD3OD) δ (ppm): 8.33 (1H, s, H-4), 4.11 (1H, d, J = 9.4 Hz, H-1′), 3.88 (1H, dd, J = 12.0, 1.8 Hz, H-6′a),
3.71 (1H, dd, J = 12.0, 4.8 Hz, H-6′b), 3.58 (1H, pt, J = 9.3, 9.2 Hz, H-2′ or H-3′ or H-4′), 3.53–3.41 (3H,
m, H-2′ and/or H-3′ and/or H-4′, H-5′); 13C NMR (100 MHz, CD3OD) δ (ppm): 173.1, 171.1 (C-2, C-6),
161.4 (C-4), 118.1 (CN), 97.6 (C-5), 81.8, 81.4, 79.1, 74.6, 71.0 (C-1′–C-5′), 62.5 (C-6′). ESI-HRMS positive
mode (m/z): Calcd. for C11H13NaN3O6

+ [M + Na]+ 306.0697. Found: 306.0696.

Ethyl 2-(β-D-glucopyranosyl)-6-oxo-1,6-dihydropyrimidine-5-carboxylate (11d). Method A: The Pd-catalyst
(150 mg, 20% Pd(OH)2/C) was suspended in an anhydrous EtOAc-EtOH solvent mixture (30 mL in 1:5
ratio) under Ar. This degased suspension was saturatated with H2 (3×). To this heterogenous mixture,
a solution of compound 10d (335 mg, 0.48 mmol) in EtOAc (3 mL) and three drops of ccHCl were added.
The reaction mixture was stirred under H2 at rt for two days, and the transformation was monitored by
TLC (EtOAc-hexane 1:1 and CHCl3-MeOH 7:3). After the complete conversion of the starting material,
the mixture was neutralized with NaHCO3. The catalyst and the insoluble inorganic salts were filtered
off through a pad of Celite and washed three times with MeOH (3 × 10 mL). The resulting solution
was concentrated under reduced pressure and the residue was purified by column chromatography
(CHCl3-MeOH = 3:1). Yield: 107 mg (67%), colourless syrup. Method B: Prepared from compound 2
(100 mg, 0.41 mmol) and diethyl 2-(ethoxymethylene)malonate 5 (165 µL, 0.82 mmol) according to
general procedure 1. Reaction time: 1 h. Purified by column chromatography (CHCl3-MeOH = 3:1) to
give 70 mg (51%) colourless syrup. Rf = 0.38 (CHCl3-MeOH = 1:1); [α]D = +75 (c 0.15, MeOH); 1H
NMR (360 MHz, D2O) δ (ppm): 8.70 (1H, s, H-4), 4.39–4.32 (3H, m, H-1′, CH2CH3), 3.94 (1H, dd, J
= 12.2, 2.4 Hz, H-6′a), 3.82 (1H, dd, J = 12.2, 4.0 Hz, H-6′b), 3.72–3.60 (4H, m, H-2′–H-5′), 1.36 (3H,
t, J = 6.9 Hz, CH2CH3); 13C NMR (90 MHz, D2O) δ (ppm): 167.2, 166.7, 164.9, 157.3 (C-2, C-4, C-6,
COOEt), 114.2 (C-5), 80.4, 79.7, 77.3, 73.0, 69.7 (C-1′–C-5′), 62.8 (C-6′), 61.2 (CH2CH3), 14.0 (CH2CH3).
ESI-HRMS positive mode (m/z): calcd for C13H19N2O8

+ [M + H]+ 331.1136; C13H18N2NaO8
+ [M +

Na]+ 353.0955. Found: [M + H]+ 331.1140; [M + Na]+ 353.0953.

4-Amino-2-(β-D-glucopyranosyl)-6-phenyl-pirimidine-5-carbonitrile (11e). Prepared from compound 2
(50 mg, 0.21 mmol) and 2-benzylidenemalononitrile 6 (64 mg, 0.41 mmol) according to general
procedure 1. Reaction time: 1 h. Purified by column chromatography (CHCl3-MeOH = 3:1) to give
63 mg (85%) pale yellow syrup. Rf = 0.49 (CHCl3-MeOH 7:3); [α]D = +34 (c 0.17, MeOH); 1H NMR
(400 MHz, CD3OD) δ (ppm): 7.89-7.87 (2H, d, J = 7.9 Hz, Ph), 7.57–7.50 (3H, m, Ph ), 4.29 (1H, d, J =

9.6 Hz, H-1′), 3.86 (1H, dd, J = 12.1, 2.1 Hz, H-6′a), 3.81 (1H, pt, J = 9.5, 9.3 Hz, H-2′), 3.77 (1H, dd,
J = 12.1, 4.7 Hz, H-6′b), 3.59–3.52 (2H, m, H-3′, H-4′), 3.45–3.42 (1H, m, H-5′); 13C NMR (100 MHz,
CD3OD) δ (ppm): 170.4, 169.5, 166.2 (C-2, C-4, C-6), 137.5, 132.2, 129.9, 129.8, 129.6 (2) (Ph), 116.4 (CN),
90.8 (C-5), 87.8, 83.8, 82.2, 79.0, 70.9 (C-1′–C-5′), 62.4 (C-6′). ESI-HRMS positive mode (m/z): Calcd for
C17H19N4O5

+ [M + H]+ 359.1350; C13H18N2NaO8
+ [M + Na]+ 381.1169. Found: [M + H]+ 359.1350;

[M + Na]+ 381.1169.

2-(β-D-Glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (11f). Prepared from
compound 2 (50 mg, 0.21 mmol) and ethyl 2-cyano-3-phenylacrylate 7 (83 mg, 0.41 mmol) according
to general procedure 1. Reaction time: 1 h. Purified by column chromarography (CHCl3-MeOH =

7:3) to give 30 mg (41%) colourless syrup. Rf = 0.21 (CHCl3-MeOH 7:3); [α]D = +23 (c 0.16, MeOH);
1H NMR (360 MHz, D2O) δ (ppm): 7.81 (2H, d, J = 6.9 Hz, Ph), 7.64–7.58 (3H, m, Ph), 4.31 (1H, d, J =

9.5 Hz, H-1′), 3.91–3.78 (3H, m, H-2′, H-6′a, H-6′b), 3.69–3.60 (3H, m, H-3′–H-5′); 13C NMR (90 MHz,
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D2O) δ (ppm): 173.2, 171.1, 167.5 (C-2, C-4, C-6), 136.3, 131.7, 129.3 (2), 129.0 (2) (Ph), 118.7 (CN), 95.1
(C-5), 81.9, 80.4, 77.5, 73.3, 69.7 (C-1′–C-5′), 61.1 (C-6′). ESI-HRMS positive mode (m/z): Calcd for
C17H18N3O6

+ [M + H]+ 360.1190; C17H17N3NaO6
+ [M + Na]+ 382.1010. Found: [M + H]+ 360.1190;

[M + Na]+ 382.1009.

Methyl 2-(β-D-glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylate (11g). The Pd-catalyst
(50 mg, 20% Pd(OH)2/C) was suspended in anhydrous EtOH (10 mL) under Ar. This degased
suspension was saturatated with H2 (3×). To this heterogenous mixture, a solution of compound 10g
(200 mg, 0.27 mmol) in anhydrous EtOAc (2 mL) was added. The reaction mixture was heated at reflux
temperature under H2 atmosphere until the TLC indicated (EtOAc-hexane 1:1 and CHCl3-MeOH 4:1)
the complete conversion of the starting material (6 h). After the completion of the reaction, the catalyst
was filtered off through a pad of Celite, and washed with MeOH (3 × 5 mL). The combined organic
solution was concentrated under reduced pressure and the crude product was purified by column
chromatography (CHCl3-MeOH = 8:1). Yield: 73 mg (70%), colourless syrup. Rf = 0.43 (CHCl3-MeOH
= 7:1); [α]D = +37 (c 0.18, MeOH); 1H NMR (400 MHz, CD3OD) δ (ppm): 7.63–7.43 (5H, m, Ph), 4.28
(1H, d, J = 9.5 Hz, H-1′), 3.90 (1H, dd, J = 12.0, 2.0 Hz, H-6′a), 3.79 (1H, dd, J = 12.0, 4.3 Hz, H-6′b), 3.68
(3H, s, OCH3), 3.65 (1H, pt, J = 9.5, 9.2 Hz, H-2′), 3.55–3.43 (3H, m, H-3′, H-4′, H-5′); 13C NMR (100
MHz, CD3OD) δ (ppm): 167.7, 162.8, 162.2, 161.2 (C-2, C-4, C-6, COOMe), 137.9, 131.6, 129.6 (2), 129.2
(2) (Ph), 119.4 (C-5), 82.1, 80.0, 78.8, 74.0, 70.5 (C-1′–C-5′), 62.2 (C-6′), 53.0 (OCH3). ESI-HRMS positive
mode (m/z): Calcd for C18H21N2O8

+ [M + H]+ 393.1292; C18H20N2NaO8
+ [M + Na]+ 415.1112. Found:

[M + H]+ 393.1292; [M + Na]+ 415.1111.

Ethyl 2-(β-D-glucopyranosyl)-4-phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylate (11h). The Pd-catalyst
(50 mg, 20% Pd(OH)2/C) was suspended in anhydrous EtOH (10 mL) under Ar, and the suspension
was saturatated with H2 (3×). To this heterogenous mixture, a solution of compound 11h (200 mg,
0.26 mmol) in anhydrous EtOAc (2 mL) was added. The reaction mixture was heated at reflux
temperature under H2 atmosphere until the TLC indicated (EtOAc-hexane 1:1 and CHCl3-MeOH 4:1)
the complete conversion of the starting material (6 h). After completion of the reaction, the catalyst
was filtered off through a pad of Celite, and washed with MeOH (3 × 5 mL). The combined organic
solution was concentrated under reduced pressure and the crude product was purified by column
chromatography (CHCl3-MeOH = 8:1). Yield: 61 mg (58%), colourless syrup. Rf = 0.43 (CHCl3-MeOH
= 7:1); [α]D = +62 (c 0.11, MeOH); 1H NMR (400 MHz, CD3OD) δ (ppm): 7.63–7.43 (5H, m, Ph), 4.28
(1H, d, J = 9.5 Hz, H-1′), 4.16 (2H, q, J = 7.1 Hz, CH2CH3), 3.90 (1H, dd, J = 11.9, 2.0 Hz, H-6′a), 3.79
(1H, dd, J = 11.9, 4.3 Hz, H-6′b), 3.64 (1H, pt, J = 9.5, 9.1 Hz, H-2′), 3.54-3.46 (3H, m, H-3′, H-4′, H-5′),
1.08 (3H, t, J = 7.1 Hz, CH2CH3); 13C NMR (90 MHz, CD3OD) δ (ppm): 167.2, 162.9, 162.2, 161.2 (C-2,
C-4, C-6, COOEt), 138.1, 131.5, 129.5 (2), 129.3 (2) (Ph), 119.7 (C-5), 82.1, 80.1, 78.8, 74.0, 70.5 (C-1′–C-5′),
62.8 (C-6′), 62.2 (CH2CH3), 14.0 (CH2CH3). ESI-HRMS positive mode (m/z): calcd for C19H23N2O8

+ [M
+ H]+ 407.1449; C19H22N2NaO8

+ [M + Na]+ 429.1268. Found: [M + H]+ 407.1445; [M + Na]+ 429.1262.

Methyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-4-phenyl-6-oxo-1,4,5,6-tetrahydropyrimi-dine-5-
carboxylate (12g). Prepared from compound 1 (400 mg, 0.66 mmol) and dimethyl benzylidenemalonate
8 (292 mg, 1.33 mmol) according to general procedure 2. Purified by column chromatography
(EtOAc-hexane = 2:3) to give 451 mg (90%) colourless syrup. Rf = 0.46 (EtOAc-hexane = 2:3). 1H NMR
(400 MHz, CDCl3) δ (ppm): 8.74, 8.67 (br s, 2 × NH), 7.33–7.10 (m, aromatics), 5.00 (d, J = 13.5 Hz, H-4
or H-5), 4.94 (d, J = 11.6 Hz, H-4 or H-5), 4.87–4.48 (m, PhCH2), 4.10, 4.05 (2d, J = 9.1 Hz in each, 2
× H-1′), 3.79–3.55 (m, 2 × [H-2′–H-6′a,b]), 3.61, 3.55 (2s, 2 × OMe), 3.49 (d, J = 11.5 Hz, H-4 or H-5),
3.22 (d, J = 13.8 Hz, H-4 or H-5); 13C NMR (100 MHz, CDCl3) δ (ppm): 168.3, 168.1, 166.2 (2) (2 × [C-6,
COOMe]), 150.7, 150.5 (2 × C-2), 139.9 (2), 138.4, 138.2, 138.0, 137.9, 137.9, 137.8, 137.7 (2), 128.8-127.2
(aromatics), 86.3 (2), 79.2, 79.1, 79.1, 78.9, 78.7 (2), 77.4 (2) (2 × [C-1′–C-5′]), 75.7 (2), 75.2 (2), 74.8 (2),
73.6, 73.6 (8 × PhCH2), 68.8, 68.6 (2 × C-6′), 61.5, 61.4, 53.8, 53.7, 52.7, 52.7 (2 × [C-4, C-5, OCH3]).
ESI-HRMS positive mode (m/z): Calcd for C46H47N2O8

+ [M + H]+ = 755.3. Found: 755.5.
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Ethyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-4-phenyl-6-oxo-1,4,5,6-tetrahydropyrimidine-5-
carboxylate (12h). Prepared from compound 2 (400 mg, 0.66 mmol) and diethyl benzylidinemalonate
9 (329 mg, 1.33 mmol) according to general procedure 2. Purified by column chromatography
(EtOAc-hexane = 2:3) to give 413 mg (81%) colourless syrup. Rf = 0.46 (EtOAc-hexane = 2:3). 1H NMR
(400 MHz, CDCl3) δ (ppm): 8.68, 8.60 (br s, 2 × NH), 7.36–7.11 (m, aromatics), 4.99 (d, J = 13.3 Hz, H-4
or H-5), 4.92 (d, J = 11.8 Hz, H-4 or H-5), 4.90-4.49 (m, PhCH2), 4.08, 4.07 (2q, J = 7.1 Hz in each, 2 ×
CH2CH3), 4.05, 4.01 (2d, J = 9.1 Hz in each, 2 ×H-1′), 3.79–3.53 (m, 2 × [H-2′–H-6′]), 3.47 (d, J = 11.8
Hz, H-4 or H-5), 3.20 (d, J = 13.4 Hz, H-4 or H-5), 1.08, 1.06 (2t, J = 7.1 Hz in each, 2 × CH2CH3); 13C
NMR (100 MHz, CDCl3) δ (ppm): 167.8, 167.6, 166.3, 166.2 (2 × C-6, 2 × COOEt), 150.7, 150.5 (2 ×
C-2), 139.9, 139.9, 138.4, 138.2, 138.0, 137.9, 137.9, 137.8, 137.7, 137.7, 128.7–127.3 (aromatics), 86.3 (2),
79.2, 79.1, 79.1, 78.9, 78.7, 78.7, 77.5, 77.4 (2 × [C-1′–C-5′]), 75.7 (2), 75.2 (2), 74.8 (2), 73.6, 73.6, (8 ×
PhCH2), 68.8, 68.6 (2 × C-6′), 61.8, 61.7 (2 × CH2CH3), 61.6, 61.5, 53.8 (2) (2 × C-4, 2 × C-5), 14.0, 14.0 (2
× CH2CH3). ESI-MS positive mode (m/z): Calcd for C47H49N2O8

+ [M + H]+ 769.4. Found: 769.6.

2-Bromo-1,3-bis(dimethylamino)trimethinium perchlorate (15). 1,3-Bis(dimethylamino)trimethinium
perchlorate 13 (5 g, 22.06 mmol) and NBS (3.93 g, 22.06 mmol) were stirred in dry CH2Cl2 at rt
for 5 h. The solvent was then removed under diminished pressure and the residue was triturated with
cold EtOH (15 mL) and the precipitate was filtered off. The obtained pale yellow solid (yield: 6.67 g,
99%) was used in the next step without further purification. 1H NMR (400 MHz, DMSO-d6) δ (ppm):
7.95 (2H, s), 3.43 (6H, s), 3.23 (6H, s); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 161.9, 75.9, 49.4, 39.8.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidine(17a). Prepared from amidine 1 (200 mg,
0.33 mmol) and 1,3-bis(dimethylamino)trimethinium perchlorate 13 (82 mg, 0.36 mmol) according to
general procedure 4. Reaction time: 16 h. Purified by column chromatography (EtOAc-hexane = 1:2)
to give 120 mg (60 %) white solid. Mp: 87–89 ◦C; Rf = 0.45 (EtOAc-hexane = 1:1); [α]D = +66 (c 0.27,
CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.72 (2H, d, J = 4.9 Hz, H-4, H-6), 7.34–6.85 (21H, m,
aromatics, H-5), 4.94, 4.91 (2 × 1H, 2d, J = 11.2 Hz, PhCH2), 4.85, 4.57 (2 × 1H, 2d, J = 10.8 Hz, PhCH2),
4.59, 4.16 (2 × 1H, 2d, J = 11.3 Hz, PhCH2), 4.57 (1H, d, J = 9.6 Hz, H-1′), 4.55, 4.50 (2 × 1H, 2d, J = 12.2
Hz, PhCH2), 4.15 (1H, pt, J = 9.6, 9.2 Hz, H-2′), 3.90 (1H, pt, J = 9.2, 9.1 Hz, H-3′), 3.77–3.70 (4H, m,
H-4′–H-6′a,b); 13C NMR (100 MHz, CDCl3) δ (ppm): 166.5 (C-2), 157.3 (C-4, C-6), 138.8, 138.2, 138.1
(2), 128.5-127.5 (aromatics), 120.6 (C-5), 87.2, 83.2, 81.4, 79.9, 78.4 (C-1′–C-5′), 75.7, 75.2, 74.7, 73.5 (4 ×
PhCH2), 69.3 (C-6′). ESI-MS positive mode (m/z): Calcd for C38H39N2O5

+ [M + H]+ 603.3; Found: [M +

H]+ 603.5.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-5-chloropyrimidine (17b). Prepared from amidine 1
(200 mg, 0.33 mmol) and 2-chloro-1,3-bis(dimethylamino)trimethinium hexafluorophosphate 14
(111 mg, 0.36 mmol) according to general procedure 4. Reaction time: 6 h. Purified by column
chromatography (EtOAc-hexane = 1:3) to give 205 mg (97%) white solid. Mp: 68–70 ◦C; Rf = 0.40
(EtOAc-hexane = 1 : 3); [α]D = +4 (c 0.25, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.54 (2H,
s, H-4, H-6), 7.36–6.86 (20H, m, aromatics), 4.94 (2H, s, PhCH2), 4.85, 4.56 (2 × 1H, 2d, J = 10.7 Hz,
PhCH2), 4.64, 4.26 (2 × 1H, 2d, J = 11.6 Hz, PhCH2), 4.52 (1H, d, J = 9.7 Hz, H-1′), 4.54, 4.49 (2 × 1H, 2d,
J = 12.4 Hz, PhCH2), 4.06 (1H, pt, J = 9.7, 9.3 Hz, H-2′), 3.89 (1H, pt, J = 9.3, 9.2 Hz, H-3′), 3.75–3.67 (4H,
m, H-4′–H-6′a,b); 13C NMR (100 MHz, CDCl3) δ (ppm): 164.1 (C-2), 155.6 (C-4, C-6), 138.7, 138.2, 138.1,
138.0, 128.6–127.5 (aromatics), 130.8 (C-5), 87.3, 82.3, 80.9, 79.9, 78.4 (C-1′–C-5′), 75.8, 75.2, 74.7, 73.6
(4 × PhCH2), 69.2 (C-6′). ESI-MS positive mode (m/z): Calcd for C38H38ClN2O5

+ [M + H]+ 637.2464;
C38H37ClN2NaO5

+ [M + Na]+ 659.2283. Found: [M + H]+ 637.2464; [M + Na]+ 659.2284.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-5-bromopyrimidine (17c). Prepared from amidine 1
(200 mg, 0.33 mmol) and 2-bromo-1,3-bis(dimethylamino)trimethinium perchlorate 15 (111 mg, 0.36
mmol) according to general procedure 4. Reaction time: 6 h. Purified by column chromatography
(EtOAc-hexane = 1:3) to give 203 mg (90%) white amorphous solid. Rf = 0.48 (EtOAc-hexane = 1:2);
[α]D = +69 (c 0.17, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.62 (2H, s, H-4, H-6), 7.36–6.86
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(20H, m, aromatics), 4.94 (2H, s, PhCH2), 4.85, 4.57 (2 × 1H, 2d, J = 10.8 Hz, PhCH2), 4.64, 4.28 (2 × 1H,
2d, J = 11.6 Hz, PhCH2), 4.54, 4.48 (2 × 1H, 2d, J = 12.2 Hz, PhCH2), 4.50 (1H, d, J = 9.6 Hz, H-1′), 4.06
(1H, pt, J = 9.6, 9.2 Hz, H-2′), 3.89 (1H, pt, J = 9.2, 9.1 Hz, H-3′), 3.75–3.67 (4H, m, H-4′–H-6′a,b); 13C
NMR (100 MHz, CDCl3) δ (ppm): 164.3 (C-2), 157.7 (C-4, C-6), 138.6, 138.1, 138.0, 137.9, 128.5–127.5
(aromatics), 119.9 (C-5), 87.3, 82.3, 80.8, 79.9, 78.3 (C-1′–C-5′), 75.7, 75.2, 74.6, 73.5 (4 × PhCH2), 69.1
(C-6′). ESI-MS positive mode (m/z): Calcd for C38H38BrN2O5

+ [M + H]+ 681.1959; C38H37BrN2NaO5
+

[M + Na]+ 703.1778. Found: [M + H]+ 681.1965; [M + Na]+ 703.1782.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidine-5-carbaldehyde (17d). Prepared from amidine
1 (200 mg, 0.33 mmol) and 2-dimethylaminomethylene-1,3-bis(dimethylimonio)propane diperchlorate
16 (139 mg, 0.36 mmol) according to general procedure 4. Reaction time: 4 h. Purified by column
chromatography (EtOAc-hexane = 1:2) to give 180 mg (86%) white solid. Mp: 80–82 ◦C; Rf = 0.62
(EtOAc-hexane = 1:1); [α]D = +80 (c 0.21, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 10.06 (1H, s,
CHO), 9.01 (2H, s, H-4, H-6), 7.36–6.84 (20H, m, aromatics), 4.94 (2H, s, PhCH2), 4.86, 4.58 (2 × 1H, 2d,
J = 10.7 Hz, PhCH2), 4.65, 4.25 (2 × 1H, 2d, J = 11.6 Hz, PhCH2), 4.63 (1H, d, J = 9.5 Hz, H-1′), 4.54, 4.49
(2 × 1H, 2d, J = 12.2 Hz, PhCH2), 4.12 (1H, pt, J = 9.5, 9.3 Hz, H-2′), 3.92 (1H, pt, J = 9.2, 9.1 Hz, H-3′),
3.77-3.69 (4H, m, H-4′–H-6′); 13C NMR (100 MHz, CDCl3) δ (ppm): 188.8 (CHO), 170.3 (C-2), 158.2 (C-4,
C-6), 138.6, 138.1, 138.0, 137.9, 128.6–127.5 (aromatics), 127.7 (C-5), 87.3, 82.7, 81.0, 80.0, 78.3 (C-1′–C-5′),
75.8, 75.3, 74.7, 73.6 (4 × PhCH2), 69.2 (C-6′). ESI-MS positive mode (m/z): Calcd for C39H39N2O6

+ [M
+ H]+ 631.2803; C39H38N2NaO6

+ [M + Na]+ 653.2622. Found: [M + H]+ 631.2806; [M + Na]+ 653.2626.

2-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-glucopyranosyl)-5-phenylpyrimidine (17e). Compound 17c (380 mg, 0.56
mmol), phenylboronic acid (136 mg, 1.12 mmol, 2 equiv.), Pd(PPh3)2Cl2 (79 mg, 0.11 mmol, 0.2 equiv.),
Cs2CO3 (363 mg, 1.12 mmol, 2 equiv.), and Bu4NF (1.12 mL, 1.12 mmol, 2 equiv., 1M solution in dry
THF) were heated at 100 ◦C in dry 1,4-dioxane (10 mL). After 16 h, the solvent was removed under
diminished pressure and the residue was purified by column chromatography (EtOAc-hexane = 1:2).
Yield: 340 mg (90%), white amorphous solid. Rf = 0.29 (EtOAc-hexane = 1:2); [α]D = +55 (c 0.27,
CH2Cl2); 1H NMR (400 MHz, CDCl3) δ (ppm): 8.86 (2H, s, H-4, H-6), 7.56–6.87 (25H, m, aromatics),
4.97, 4.94 (2 × 1H, 2d, J = 11.1 Hz, PhCH2), 4.87, 4.59 (2 × 1H, 2d, J = 10.8 Hz, PhCH2), 4.65, 4.28 (2 × 1H,
2d, J = 11.4 Hz, PhCH2), 4.63 (1H, d, J = 9.6 Hz, H-1′), 4.56, 4.50 (2 × 1H, 2d, J = 12.2 Hz, PhCH2), 4.20
(1H, pt, J = 9.6, 9.3 Hz, H-2′), 3.93 (1H, pt, J = 9.3, 9.1 Hz, H-3′), 3.80–3.72 (4H, m, H-4′–H-6′a,b); 13C
NMR (100 MHz, CDCl3) δ (ppm): 165.0 (C-2), 155.1 (C-4, C-6), 138.7, 138.1 (3), 134.2, 133.2, 129.5–127.1
(aromatics, C-5), 87.3, 82.9, 81.2, 79.8, 78.4 (C-1′–C-5′), 75.7, 75.2, 74.7, 73.5 (4 × PhCH2), 69.2 (C-6′).
ESI-MS positive mode (m/z): Calcd for C44H43N2O5

+ [M + H]+ 679.3. Found: [M + H]+ 679.6.

Methyl 2-(2′,3′,4′,6′-tetra-O-benzyl-β-D-glucopyranosyl)-pyrimidine-5-carboxylate (17f). To a solution of
compound 17d (100 mg, 0.16 mmol) in dry CH3CN (2 mL) NIS (107 mg, 0.48 mmol, 3 equiv.), K2CO3

(67 mg, 0.48 mmol, 3 equiv.) and MeOH (32 µL, 0.79 mmol, 5 equiv.) were added. The reaction mixture
was stirred at rt until the TLC (EtOAc-hexane = 2:3) showed complete transformation of the starting
material (5 h). The reaction was then quenched with 10% aq. solution of Na2S2O3 (10 mL) and the
mixture was extracted with EtOAc (3 × 10 mL). The combined organic phase was washed with brine
(10 mL), dried over MgSO4, filtered, and the solvent was removed under diminished pressure. Column
chromatographic purification of the residue (EtOAc-hexane = 1:2) gave 72 mg (69%) white amorphous
solid. Rf = 0.33 (EtOAc-hexane = 1:2); [α]D = +53 (c 0.20, CH2Cl2); 1H NMR (400 MHz, CDCl3) δ
(ppm): 9.14 (2H, s, H-4, H-6), 7.36–6.84 (20H, m, aromatics), 4.94 (2H, s, PhCH2), 4.86, 4.58 (2 × 1H, 2d,
J = 10.8 Hz, PhCH2), 4.61, 4.21 (2 × 1H, 2d, J = 11.5 Hz, PhCH2), 4.61 (1H, d, J = 9.6 Hz, H-1′), 4.55, 4.49
(2 × 1H, 2d, J = 12.2 Hz, PhCH2), 4.11 (1H, pt, J = 9.6, 9.3 Hz, H-2′), 3.99 (3H, s, OCH3), 3.91 (1H, pt,
J = 9.3, 9.1 Hz, H-3′), 3.77–3.69 (4H, m, H-4′–H-6′a,b); 13C NMR (100 MHz, CDCl3) δ (ppm): 169.4,
164.1 (COOMe, C-2), 158.2 (C-4, C-6), 138.6, 138.1, 138.0, 137.8, 128.5–127.5 (aromatics), 123.1 (C-5), 87.2,
82.7, 8, 1.0, 79.9, 78.3 (C-1′–C-5′), 75.8, 75.2, 74.7, 73.5 (4 × PhCH2), 69.1 (C-6′), 52.8 (OCH3). ESI-MS
positive mode (m/z): Calcd for C40H41N2O7

+ [M + H]+ 661.3. Found: [M + H]+ 661.6.
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2-(β-D-Glucopyranosyl)-pyrimidine (18a). Method A: Prepared from amidine 2 (100 mg, 0.41 mmol)
and 1,3-bis(dimethylamino)trimethinium perchlorate 13 (103 mg, 0.45 mmol) according to general
procedure 4. Reaction time: 16 h. Purified by column chromatography (CHCl3-MeOH = 5:1) to give
81 mg (81%) colourless syrup. Method B: Compound 17a (200 mg, 0.33 mmol) was dissolved in
anhydrous CH2Cl2 (10 mL). The stirred reaction mixture was cooled to -78 ◦C and ~1M solution of BCl3
in CH2Cl2 (1.7 mL, 1.7 mmol, 5 eqiuv.) was added. The stirring was continued at this temperature and
the reaction was monitored by TLC (EtOAc-hexane = 1:2 and CHCl3-MeOH = 3:1). After the complete
disappearance of the starting material (3 h), MeOH (15 mL) was added to the reaction mixture and was
left to warm to rt. The solvents were removed under diminished pressure and the residue was purified
by column chromatography (CHCl3-MeOH = 5:1) to give 68 mg (85%) colourless syrup. Rf = 0.28
(CH3Cl-MeOH = 7:3); [α]D = +44 (c 0.24, H2O); 1H NMR (360 MHz, CD3OD) δ (ppm): 8.84 (2H, d, J =

5.0 Hz, H-4, H-6), 7.48 (1H, t, J = 5.0 Hz, H-5), 4.44 (1H, d, J = 9.6 Hz, H-1′), 3.88 (1H, dd, J = 12.2, 1.7 Hz,
H-6′a), 3.76 (1H, pt, J = 9.5, 9.1 Hz, H-2′), 3.72 (1H, dd, J = 12.2, 4.7 Hz, H-6′b), 3.58 (1H, pt, J = 9.1, 9.0
Hz, H-3′ or H-4′), 3.52 (1H, pt, J = 9.3, 9.1 Hz, H-3′ or H-4′), 3.49–3.46 (1H, m, H-5′); 13C NMR (90 MHz,
CD3OD) δ (ppm): 167.9 (C-2), 158.7 (2) (C-4, C-6), 122.2 (C-5), 83.6, 82.3, 79.3, 74.8, 71.2 (C-1′–C-5′), 62.7
(C-6′). ESI-MS positive mode (m/z): C10H14N2NaO5

+ [M + Na]+ 265.0795. Found: 265.0795.

5-Chloro-2-(β-D-glucopyranosyl)-pyrimidine (18b). Prepared from amidine 2 (100 mg, 0.41 mmol) and
2-chloro-1,3-bis(dimethylamino)trimethinium hexafluorophosphate 14 (139 mg, 0.45 mmol) according
to general procedure 4. Reaction time: 2 h. Purified by column chromatography (CHCl3-MeOH = 9:1)
to give 100 mg (88%) white solid. Mp: 200–202 ◦C; Rf = 0.25 (CH3Cl-MeOH = 5:1); [α]D = -11 (c 0.22,
H2O); 1H NMR (360 MHz, CD3OD) δ (ppm): 8.87 (2H, s, H-4, H-6), 4.43 (1H, d, J = 9.6 Hz, H-1′), 3.87
(1H, dd, J = 12.3, 1.7 Hz, H-6′a), 3.76 (1H, pt, J = 9.5, 9.1 Hz, H-2′), 3.70 (1H, dd, J = 12.3, 4.8 Hz, H-6′b),
3.54 (1H, pt, J = 9.2, 9.0 Hz, H-3′ or H-4′), 3.50–3.43 (2H, m, H-3′ or H-4′, H-5′); 13C NMR (90 MHz,
CD3OD) δ (ppm): 165.9 (C-2), 157.1 (2) (C-4, C-6), 132.1 (C-5), 83.6, 82.6, 79.3, 74.7, 71.4 (C-1′–C-5′), 62.8
(C-6′). ESI-MS positive mode (m/z): C10H13ClN2NaO5

+ [M + Na]+ 299.0405. Found: 299.0407.

5-Bromo-2-(β-D-glucopyranosyl)-pyrimidine (18c). Prepared from amidine 2 (100 mg, 0.41 mmol) and
2-bromo-1,3-bis(dimethylamino)trimethinium perchlorate 15 (138 mg, 0.45 mmol) according to general
procedure 4. Reaction time: 2 h. Purified by column chromatography (CHCl3-MeOH = 9:1) to give
112 mg (85%) white solid. Mp: 224–226 ◦C; Rf = 0.25 (CH3Cl-MeOH = 5:1); [α]D = +19 (c 0.22, H2O);
1H NMR (360 MHz, CD3OD) δ (ppm): 8.96 (2H, s, H-4, H-6), 4.41 (1H, d, J = 9.6 Hz, H-1′), 3.87 (1H,
dd, J = 12.2, 1.5 Hz, H-6′a), 3.75 (1H, pt, J = 9.6, 9.1 Hz, H-2′), 3.70 (1H, dd, J = 12.2, 4.6 Hz, H-6′b),
3.54 (1H, pt, J = 9.3, 9.1 Hz, H-3′ or H-4′), 3.50–3.43 (2H, m, H-3′ or H-4′, H-5′); 13C NMR (90 MHz,
CD3OD) δ (ppm): 166.2 (C-2), 159.4 (2) (C-4, C-6), 120.9 (C-5), 83.7, 82.6, 79.3, 74.7, 71.4 (C-1′–C-5′), 62.8
(C-6′). ESI-MS positive mode (m/z): C10H13BrN2NaO5

+ [M + Na]+ 342.9900. Found: 342.9901.

2-(β-D-Glucopyranosyl)-5-phenylpyrimidine (18e). Compound 17e (200 mg, 0.29 mmol) was dissolved in
anhydrous CH2Cl2 (10 mL). The stirred reaction mixture was cooled to -78 ◦C and a ~1M solution of
BCl3 in CH2Cl2 (1.5 mL, 1.5 mmol, 5 equiv.) was added. The stirring was continued at this temperature
and the reaction was monitored by TLC (EtOAc-hexane = 1:2 and CHCl3-MeOH = 3:1). After the
complete disappearance of the starting material (2 h), MeOH (10 mL) was added to the reaction mixture
and was left to warm to rt. The solvents were removed under diminished pressure and the residue
was purified by column chromatography (CHCl3-MeOH = 9:1) to give 87 mg (93%) colourless syrup.
Rf = 0.50 (CH3Cl-MeOH = 3:1); [α]D = –31 (c 0.22, H2O); 1H NMR (360 MHz, CD3OD) δ (ppm): 9.07
(2H, s, H-4, H-6), 7.72 (2H, d, J = 7.1 Hz, Ph), 7.56–7.46 (3H, m, Ph), 4.49 (1H, d, J = 9.5 Hz, H-1′), 3.90
(1H, dd, J = 12.1, 1.7 Hz, H-6′a), 3.81 (1H, pt, J = 9.5, 9.1 Hz, H-2′), 3.74 (1H, dd, J = 12.1, 4.8 Hz, H-6′b),
3.59 (1H, pt, J = 9.1, 9.0 Hz, H-3′ or H-4′), 3.53 (1H, pt, J = 9.2, 9.0 Hz, H-3′ or H-4′), 3.53–3.51 (1H,
m, H-5′); 13C NMR (90 MHz, CD3OD) δ (ppm): 166.5 (C-2), 156.3 (2) (C-4, C-6), 135.1, 134.9 (Ph, C-5),
130.6 (2), 130.3, 128.1 (2) (Ph), 83.6, 82.5, 79.4, 74.9, 71.3 (C-1′–C-5′), 62.9 (C-6′). ESI-MS positive mode
(m/z): C16H18N2NaO5

+ [M + Na]+ 341.1108. Found: 341.1108.
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Methyl 2-(β-D-glucopyranosyl)-pyrimidine-5-carboxylate (18f). Compound 17f (200 mg, 0.30 mmol) was
dissolved in anhydrous CH2Cl2 (10 mL). The stirred reaction mixture was cooled to -78 ◦C and a ~1M
solution of BCl3 in CH2Cl2 (1.51 mL, 1.51 mmol, 5 equiv.) was added. The stirring was continued at this
temperature and the reaction was monitored by TLC (EtOAc-hexane = 1:2 and CHCl3-MeOH = 3:1).
After complete disappearance of the starting material (2 h), MeOH (15 mL) was added to the reaction
mixture and was left to warm to rt. The solvents were removed under diminished pressure and the
residue was purified by column chromatography (CHCl3-MeOH = 9:1) to give 74 mg (81%) colourless
syrup. Rf = 0.31 (CH3Cl-MeOH = 5:1); [α]D = +51 (c 0.22, H2O); 1H NMR (360 MHz, CD3OD) δ (ppm):
9.29 (2H, s, H-4, H-6), 4.52 (1H, d, J = 9.6 Hz, H-1′), 3.99 (3H, s, OCH3), 3.88 (1H, dd, J = 12.2, 1.7 Hz,
H-6′a), 3.78 (1H, pt, J = 9.5, 9.1 Hz, H-2′), 3.72 (1H, dd, J = 12.2, 4.6 Hz, H-6′b), 3.62–3.47 (3H, m,
H-3′, H-4′, H-5′); 13C NMR (90 MHz, CD3OD) δ (ppm): 171.0 (C=O), 165.1 (C-2), 159.3 (2) (C-4, C-6),
124.8 (C-5), 83.8, 82.5, 79.3, 74.7, 71.2 (C-1′–C-5′), 62.8 (C-6′), 53.3 (OCH3). ESI-MS positive mode (m/z):
C12H16N2NaO7

+ [M + Na]+ 323.0850. Found: 323.0851.

3.2. Enzyme Assays

The inhibition of rmGPb by the test compounds was investigated with a maximal inhibitory
concentration of 625 µM by applying a general protocol described earlier [17,27].

In the glycosidase assays, the inhibition experiments were made under the same conditions,
except for buffer composition, substrate and enzyme concentration, which were as follows:

β-Glucosidase from almonds (Sigma-Aldrich Kft., Budapest, Hungary): 2.5 mM PNP-β-Glc
substrate in citrate-phosphate buffer pH 5.2 using 0.25 mg/mL of enzyme.

α-Glucosidase from Saccharomyces cerevisiae (Sigma-Aldrich Kft., Budapest, Hungary): 0.5 mM
PNP-α-Glc in glycerophosphate buffer pH 6.9 using 0.02 mg/mL of enzyme.

Bovine liver β-galactosidase (Sigma-Aldrich Kft., Budapest, Hungary): 1 mM PNP-β-Gal in
citrate-phosphate buffer pH 7.3 using 0.12 mg/mL of enzyme.

A 10 µL aliquot for each of the different inhibitor stock solutions was mixed with 370 µL of the
buffer and 20 µL of the enzyme stock solution in a plastic UV cuvette. After equilibration at 37 ◦C
for 5 min, a 100 µL aliquot of the substrate stock solution was added. The resulting solutions were
thoroughly mixed, and the change in absorbance was followed at 400 nm over 240 s in 2 s intervals using
the Parallel Kinetics Analysis program of a JASCO V550 (JASCO Tokyo, Japan) spectrophotometer.
Progress curves were plotted and fitted to a straight line. ∆A/min values, proportional to initial rate,
were considered to be enzyme activities. In a control experiment, the aliquot of the inhibitor solution
was replaced by the same amount of buffer. The initial rate data for the enzymatic substrate hydrolysis
in the presence and absence of inhibitor were transferred into percentages of overall inhibition and
plotted against the inhibitor concentration in logarithmic scale for IC50 determination.

4. Conclusions

New representatives of 2-C-glycopyranosyl pyrimidines, such as 2-C-(β-D-glucopyranosyl)-5,6-
disubstituted-pyrimidin-4(3H)-ones, 4-amino-2-C-(β-D-glucopyranosyl)-5,6-disubstituted-pyrimi-dines,
and 2-C-(β-D-glucopyranosyl)-5-substituted-pyrimidines were synthesized by ring-closures of
O-perbenzylated and O-unprotected C-(β-D-glucopyranosyl)formamidine hydrochlorides with
methylenemalonic acid derivatives or vinamidinium salts. The inhibitory activities of the resulting
5-mono- and 4,5,6-trisubstituted pyrimidines were investigated against some glycoenzymes. While none
of the new compounds proved to be effective against glycogen phosphorylase and α- and β-glucosidase
enzymes, some aryl and/or ester substituted derivatives displayed modest inhibitory potency against
bovine liver β-galactosidase.
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