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We examine theoretically the spreading of a viscous
liquid drop over a thin film of uniform thickness,
assuming the liquid’s viscosity is regulated by the
concentration of a solute that is carried passively
by the spreading flow. The solute is assumed to be
initially heterogeneous, having a spatial distribution
with prescribed statistical features. To examine how
this variability influences the drop’s motion, we
investigate spreading in a planar geometry using
lubrication theory, combining numerical simulations
with asymptotic analysis. We assume diffusion is
sufficient to suppress solute concentration gradients
across but not along the film. The solute field beneath
the bulk of the drop is stretched by the spreading flow,
such that the initial solute concentration immediately
behind the drop’s effective contact lines has a long-
lived influence on the spreading rate. Over long
periods, solute swept up from the precursor film
accumulates in a short region behind the contact
line, allowing patches of elevated viscosity within
the precursor film to hinder spreading. A low-order
model provides explicit predictions of the variances in
spreading rate and drop location, which are validated
against simulations.

1. Introduction
The thin liquid film lining lung airways plays an
important role in protecting airway tissues from
the harmful effects of inhaled particles or aerosol
droplets [1–3]. The film is a complex liquid that includes
mucins, surfactants and surfactant-associated proteins;
its thickness is regulated by osmotic effects driven
by ion fluxes across airway epithelial cells and its
transport is driven by active motion of cilia on epithelial
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cells. The film’s rheology is dependent in part on the secretion of mucins from goblet cells
distributed across the airway wall; disruption of normal mucin production can lead to harmful
effects associated with poor clearance of pathogens. The physical properties of the film in a
particular airway of a given individual are therefore subject to considerable uncertainties and
intrinsic spatial variability [4,5].

These features motivate this study, in which we seek to relate the spatial heterogeneity of a
liquid film to the dynamics of a drop spreading over it. We deliberately focus on a subset of
features relevant to airway liquid, neglecting non-Newtonian rheology, osmotic effects, surface-
tension gradients, internal stratification and ciliary transport. Instead, we assume that the film’s
viscosity is determined by the concentration of a solute (a proxy for mucins, strong determinants
of mucus viscosity [6]) that is distributed heterogeneously and diffuses slowly within the
film. We wish to establish how spatial variability in solute concentration influences the rate
at which an inhaled aerosol droplet might spread over the film. This allows us to address an
equivalent, related question: given imperfect knowledge of the film’s properties, what is the likely
distribution of spreading rates?

To investigate these questions, we exploit a sequence of approximations. The drop and the
film over which it spreads are both assumed to be thin, allowing the flow to be described
using lubrication theory, but macroscopic, so that disjoining pressure effects can be neglected.
We assume the solute is of an appropriate molecular weight to diffuse across the film during
the lifetime of the drop spreading, but not appreciably along it. This allows us to simulate the
spreading flow using a pair of coupled transport equations, for the film thickness and the cross-
sectionally averaged solute distribution. The initial solute distribution along the film is described
as a Gaussian random field with a specified covariance. We can then simulate multiple (Monte
Carlo) realizations of spreading dynamics, although this is computationally expensive. Further
progress can be made by assuming the drop height significantly exceeds the precursor film
thickness. As is well known from numerous studies (reviewed in [7–10]), the drop dynamics is
then regulated by the flow in narrow ‘inner’ regions in the neighbourhood of the drop’s effective
contact lines. Analysis using characteristics shows that the solute distribution ahead of the drop is
swept into each inner region where it concertinas as the drop advances over the film; in contrast,
the solute distribution within the remainder of the drop is stretched by the spreading. At any
instant, the drop spreading rate is regulated primarily by the viscosity at the rear of each inner
region, where it overlaps with the bulk ‘outer’ region. We exploit these observations to derive
a set of nonlinear ODEs (a surrogate of the full system) that captures drop spreading rates and
which allows the statistical variability in the dynamics to be characterized efficiently. Further
simplifications arise when the disorder in the initial viscosity field is weak.

Our study complements numerous previous theoretical studies of drop spreading and
contact-line motion. The precursor film regularizes the contact-line singularity [11,12]; we
avoid introducing slip or a disjoining pressure, while recognizing that these may be relevant
in some applications. While there are numerous potential origins of randomness (thermal
fluctuations [13], a rough surface [7,14–18], etc.), we focus here on spatial heterogeneity of the
liquid itself, a feature that is particularly relevant to biological applications. The problem is
governed by four primary dimensionless quantities (a precursor film thickness; a Péclet number;
the variance and correlation length of the initial random field); rather than attempt comprehensive
coverage of parameter space, we investigate distinguished limits in which insights are possible
through model reduction techniques.

2. The model problem
We consider the evolution of a thin liquid film having spatially heterogeneous viscosity. The
film lies on a flat plane and spreads under the action of surface tension alone. The liquid
wets the plane (with zero equilibrium contact angle) and satisfies the no-slip condition at
its lower surface; its upper surface is free of external stress. The liquid is assumed to have
Newtonian rheology but contains a chemical species, which is transported passively, such that
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the liquid’s viscosity is linearly proportional to the chemical concentration (the surface tension
being unaffected). Provided the film is sufficiently thin, lubrication theory can be used to derive
a nonlinear evolution equation for the film thickness H(X, T), as a function of distance X along
the plane and time T. Molecular diffusion is assumed sufficiently strong to suppress transverse
but not axial concentration gradients of the chemical species, so that its cross-sectionally averaged
concentration, and thus the cross-sectionally averaged solute field M̄(X, T) (which for convenience
we call the viscosity field), are transported by the cross-sectionally averaged fluid velocity Ū(X, T).
As demonstrated in appendix Aa, these equations (in a planar geometry) may be expressed in
dimensionless form as

HT + (ŪH)X = 0, Ū = H2

3M̄
HXXX (2.1a)

and

M̄T + ŪM̄X = 1
Pe

(HM̄X)X

H
. (2.1b)

The evolution equation for H describes how fluid is transported by surface-tension-induced
pressure gradients associated with gradients of interfacial curvature, at a rate modulated by the
local viscosity field; this field is transported by bulk advection and can spread along the film via
molecular diffusion. The Péclet number, Pe, measuring the strength of advection to diffusion, is
chosen to be sufficiently large for axial diffusion to appear only as a weak singular effect. In the
absence of diffusion, (2.1b) can be expressed in conservative form for the transported variable
HM̄, which represents the amount of solute per unit length of film.

To illustrate the impact of heterogeneous viscosity, we consider spreading of a droplet sitting
on a precursor film. The drop has an initial parabolic profile with (dimensional) height h0 and
half-width l0, from which we define an aspect ratio ε = h0/l0 � 1; the precursor film surrounding
the drop has thickness ηh0, where η � 1. We do not attempt to model the impact of the drop with
the film or subsequent mixing of material. The initial condition on H is simply

H(X, 0) =
{

η (|X| > 1),

η + 1 − X2 (|X| ≤ 1).
(2.2)

The initial viscosity field M̄(X, 0) is represented as a random field M(X, ω), where ω is an event
in an underlying probability space. For fixed X, M is a random variable; for an outcome ω, M is
a function of X that we call the sample associated with ω. We assume M= exp(G(X, ω)), where
G(X, ω) is a Gaussian random field with zero mean and stationary covariance

kG(X, X′) = σ 2 exp

(
−1

2

(
X − X′

l

)2
)

. (2.3)

Here, σ 2 is the variance of the Gaussian random field and l is the correlation length of the initial
viscosity distribution. The squared exponential covariance function (2.3) yields smooth samples
of the Gaussian random field, facilitating numerical simulations. For convenience, we do not
label variables H, M̄, etc., with ω although this will be implicit. We wish to establish how the
uncertainties in M, represented by σ 2 and l, propagate through (2.1), when the precursor film is
vanishingly thin (η � 1) and diffusion is weak (1 � Pe � ε−1).

To close the problem we impose no-flux conditions at |X| = L for some L � 1, ensuring that the
film sufficiently far from the drop remains undisturbed as the drop spreads. To perform numerical
simulation, we draw a sample of M (constructed using a Karhunen–Loéve decomposition, see
appendix Ab); using this as an initial condition for M̄(X, 0), we solve (2.1) numerically with the
method of lines using fourth-order spatial differences. We collect results from multiple runs to
compute statistics (such as mean and variance) of quantities of interest, which we compare with
predictions of asymptotic analysis.

Results of simulations are presented in §3 and in figures 1–4. Figures 1–4 also include
approximations from a low-order model, derived in §4. We restrict our attention to times over
which the drop remains significantly thicker than the precursor film.
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Figure 1. A realization of (2.1) withσ = 0.5, l = 0.2, Pe= 105, L= 2 andη = 10−2 shows (a)H and (b) M̄ at T = 0 (dashed)
and T = 10 (solid); open circles in (a,b) denote X = a± where the film thickness has a primary minimum; points marked A±
in (b) show the initial drop edge X = ±1; points marked A′

± show locations where ŪX = 0 at T = 10, distinguishing regions
of expansion (ŪX > 0 in A′

− < X < A′
+) from compression. (Online version in colour.)

3. Simulations
Figure 1 shows an example of drop spreading given a sample of M, for which the correlation
length l is shorter than the drop width, and the variance σ is sufficiently large to ensure that
variations in the film’s viscosity span an order of magnitude. The drop retains a parabolic profile
as it spreads. Insets near each contact line (figure 1a) show a characteristic dimple in the film
thickness where the drop connects to the precursor film. We use the local minimum to identify the
contact-line locations, defining X = a±(T) to be the locations at which H reaches its first minimum
as X increases (decreases) from the drop centre, where a−(T) < a+(T). We use these variables
to characterize the drop width W(T) and lateral displacement of its mid-point C(T) as the drop
spreads, defined by

W(T) = a+ − a− and C(T) = 1
2 (a+ + a−). (3.1)

Because the initial viscosity distribution is heterogeneous (figure 1b), the two contact lines travel
at slightly different speeds: in this example, the left-hand contact line has travelled a little further
than the right-hand contact line (|a−(10)| > a+(10)); the region of high viscosity near X = 1.6
appears to restrain the motion of the right-hand contact line.

The simulation in figure 2 demonstrates how the drop behaves when the correlation length
l is large compared with the drop width. The viscosity is larger on the right-hand side of the
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Figure 2. A realization of (2.1)withσ = 0.5, l = 5, Pe= 105 andη = 10−3, and its asymptotic approximation. (a)H at T = 0
(dashed) and T = 100 (solid) calculated from(2.1) andH at T = 100 from leading-order outer asymptotic solution (4.4) (dashed-
dotted); (b) M̄ at T = 0 (dashed) and T = 100 (solid) calculated from (2.1), where circles show initial values of M at X = −1
and X = 1, that isM+ = 1.046 andM− = 0.8382, and squares show the position ofM± at T = 100 convected by Ū; (c) drop
widthW calculated from (2.1) (solid) and from the low-order model (4.25), (4.28) (dashed); (d) drop centre C calculated from
(2.1) (solid) and from (4.25) and (4.28) (dashed); (e) bulk velocity Ū (solid) and its asymptotic approximations Ūout (4.8) (dashed)
and Ūcom (4.31) (dotted-dashed), at T = 100, with insets showing close-ups near each contact line. (Online version in colour.)

drop, leading to slight leftward displacement of the drop centre as it spreads (figure 2d). As
in the majority of cases investigated, the bulk velocity of the spreading flow Ū (figure 2e) is
approximately linear beneath the drop, falling abruptly to zero (with small flow reversal) near
each contact line.
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Figure 3. (a) Contact-line locations X = a±(T) (dashed) and characteristics (solid) calculated from dX/dT = Ū for the flow
presented in figure 2, using Ū = Ūcom. (b) Near the right-hand contact line, characteristics cross X = a+(T) and accumulate in a
narrow region behind it. The dotted-dashed line indicates the characteristic along which ŪX = 0, lying in the overlap between
the inner and outer regions. T is plotted on a log scale in (a) and a linear scale in (b). (Online version in colour.)
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Figure 4. The effect of variance σ on the standard deviation (a,b) of drop centre C and widthW , respectively, at T = 100,
for l = 1, η = 10−3 and Pe= 105. Squares represent results from the PDE model (2.1); solid lines represent results from the
weak disorder approximation (4.35) and dashed lines represent results from the linearizedwedgemodel (5.7). Panels (c,d) show
corresponding dependence on the correlation length l forσ = 0.1. (Online version in colour.)

Transport of the M̄ field may be understood by considering (2.1b) in the absence of diffusion,
which may be expressed in terms of characteristics as

dM̄
dT

= 0 on
dX
dT

= Ū. (3.2)
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Thus, the linear stretching flow beneath the spreading drop (ŪX > 0, figure 2e) stretches the M̄
field laterally without changing its magnitude. This is illustrated in figure 1b, where the points
A′± bound the region in which ŪX > 0. Ahead of the drop the M̄ field is undisturbed, whereas
near the contact line, where the flow is strongly compressive (ŪX < 0, see insets in figure 2e),
the M̄ field steepens. This compression is evident from the distributions in figures 1b and 2b.
In figure 2b, symbols mark locations at which M̄(X, T) = M̄(±1, 0), demarcating the boundary
between stretching and compression of the M̄ field. This is further demonstrated by the pattern
of characteristics, which shows uniform stretching of the concentration field beneath the drop
(figure 3a), with crowding of characteristics near the contact line (figure 3b), leading to rapid
variation of M̄ in this region. Weak axial diffusion can be expected to suppress such gradients
over long times.

Figure 4 presents statistics describing drop spreading over multiple realizations of the initial
viscosity field. We use 1000 samples to estimate the standard deviation of the drop centre and
width (σC , σW ) at T = 100 and assess the dependence on the variance σ 2 and correlation length
l of the initial viscosity field; the means of C and W do not show appreciable dependence on σ

or l in this example. For the present, we focus on the square symbols, denoting predictions from
simulations of (2.1). Figure 4a,b shows that, as σ increases, σC and σW increase. (Simulations for
larger σ were limited by the difficulty of resolving very large viscosity gradients that accumulated
in the contact-line region, for the chosen value of Pe.) The standard deviations show notable
dependence on the correlation length (figure 4c,d): for small l, the viscosities at the left and
right contact lines are uncorrelated, whereas they become increasingly similar as l increases.
Consequently, fluctuations in drop width increase in magnitude as l increases (if one contact line
is, say, hindered, then the other is also likely to be), whereas there is less tendency for the drop
to drift sideways (the mean drift remains very close to zero). This behaviour is consistent with
studies of drops spreading on random surfaces [18]. As l becomes very small, σC falls; this reflects
the effects of axial diffusion in simulations suppressing sharp gradients in the solute field. We
seek to quantify the dependence of σC and σW on σ and l using an asymptotic model below.

4. Derivation of a low-order model
With η � 1, the drop motion is slow and is dominated by the flow in the neighbourhood of the
contact lines. We now investigate the impact of readjustment of the viscosity field on this motion,
initially neglecting the influence of axial diffusion in (2.1). We divide the flow into an outer region
in which the drop adopts an equilibrium shape to leading order, with narrow regions at each
contact line (illustrated by insets to figure 1a) governed by a modified form of the Landau–Levich
equation. While the overall structure of the flow follows the uniform-viscosity case [10,17,19],
we seek to identify how variations of film properties modify the drop spreading rate. We follow
previous authors [17,20] in matching the cube of the interface slope between inner and outer
regions, rather than invoking an intermediate region. Formally, we assume that σ and l are O(1)
as η → 0, ensuring that the correlation length of the initial viscosity field exceeds the width of the
contact-line regions.

(a) Outer region
For X > a+ and X < a−, away from the contact lines, H = η, M̄ = M̄(X, 0) and Ū = 0. Within the
drop, with a−(T) < X < a+(T), we seek a solution of (2.1a) subject to

lim
X→a±∓

H = 0,
∫ a+

a−
H dX = V , (4.1)

where V = 4
3 is the volume of the droplet (and the ∓ symbol here denotes a one-sided limit).

Assuming the drop shape to be quasi-static, we write

X = C + 1
2WY, H(X, T) = G(Y; a+, a−), M̄(X, T) = N(Y; a+, a−), (4.2)



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160270

...................................................

which allows us to write (2.1a) as

Ga+ ȧ+ + Ga− ȧ− − ȧ+(1 + Y) + ȧ−(1 − Y)
W GY + 1

3

(
2
W

)4
(

G3GYYY

N

)
Y

= 0, (4.3)

where ȧ+ ≡ da+/dT > 0 and ȧ− ≡ da−/dT < 0. Assuming |ȧ±| � 1 (we see below that ȧ± is approx.
O(1/ log(1/η)), when T = O(1)), we expand G as G = G0 + G1 + · · · , where G0 is the quasi-static
solution

G0 = 3
2
V(1 − Y2)

W (4.4)

and G1 is linear in ȧ±, satisfying

G0a+ ȧ+ + G0a− ȧ− − ȧ+(1 + Y) + ȧ−(1 − Y)
W G0Y + 1

3

(
2
W

)4
(

G3
0G1YYY

N

)
Y

= 0, (4.5)

which we seek to solve subject to

lim
Y→±1∓

G1 = 0,
∫ 1

−1
G1 dY = 0. (4.6)

Substituting (4.4) into (4.5) and integrating (4.5) once with respect to Y yields

G1YYY = NW5((ȧ+ − ȧ−)Y + ȧ+ + ȧ−)
12V2(1 − Y2)2 . (4.7)

The bulk fluid velocity in the outer region is therefore

Ūout = H2HXXX

3M̄
= 8(G2

0G1YYY + · · · )H(a+ − X)H(X − a−)

3NW3

= (X − a−)ȧ+ + (a+ − X)ȧ−
W H(a+ − X)H(X − a−) + · · · , (4.8)

where H(·) is Heaviside function. The linear stretching flow is illustrated in figure 2c. Thus, Ūout =
Ċ + 1

2 ẆY ≡ dX/dT, implying that M̄ = N(Y) exactly satisfies (3.2). The viscosity field beneath the
bulk of the drop is stretched linearly, as illustrated in figures 1b and 2b. It is therefore reasonable
to identify M±(T) = limY→±1 N = M̄(a±(0+), 0), where 0+ denotes the early time at which the
asymptotic spreading structure is established (which we take here to be T = 0); the value of M±
may be affected by axial diffusion in practice.

G is singular as Y → ±1 and (4.7) shows its asymptotic behaviour to be

G1YYY = M±ȧ±W5

24V2(1∓Y)2 + O((1∓Y)−1), (Y → ±1∓). (4.9)

Integrating (4.9) twice with respect to Y gives

G1Y ∼ −M±ȧ±W5

24V2 [ln(1∓Y) + ζ± + O((1 ∓ Y) ln(1 ∓ Y))], (Y → ±1∓). (4.10)

Finding the constants ζ± requires use of conditions (4.6), which cannot be carried out analytically
for arbitrary N(Y). However, following [17] and multiplying (4.7) by (1 − Y)(1 + Y)2 and
integrating by parts with respect to Y from −1 + ε− to 1 − ε+ (ε− and ε+ are small and positive),
we have

[(1 − Y)(1 + Y)2G1YY − (1 + Y)(1 − 3Y)G1Y − 2(1 + 3Y)G1]1−ε+
−1+ε− + 6

∫ 1−ε+

−1+ε−
G1 dY

= W5

12V2

[
(ȧ+ − ȧ−)

∫ 1−ε+

−1+ε−

NY
1 − Y

dY + (ȧ+ + ȧ−)
∫ 1−ε+

−1+ε−

N
1 − Y

dY

]
. (4.11)
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Using (4.6) and (4.10) and noting that
∫ 1−ε+

−1+ε−

N
1 − Y

dY ≈ M− ln 2 − M+ ln ε+ +
∫ 1−ε+

−1+ε−
NY ln(1 − Y) dY (4.12a)

and ∫ 1−ε+

−1+ε−

NY
1 − Y

dY ≈ M−(ln 2 − 1) − M+(1 + ln ε+) +
∫ 1−ε+

−1+ε−
NY(Y + ln(1 − Y)) dY (4.12b)

(provided N is sufficiently smoothly varying), we simplify (4.11) to find, as ε± → 0,

ζ± = 1 + I1 − I±
2 − M∓ ln 2
M±

− ȧ∓
ȧ±

I1

M±
, (4.13)

where the result for ζ− follows analogously from multiplying (4.7) by (1 + Y)(1 − Y)2. Here,

I1 ≡ 1
2

∫ 1

−1
N dY, I±

2 ≡
∫ 1

−1
NY ln(1 ∓ Y) dY, N(Y) ≡ M̄

(
C(0) + 1

2
W(0)Y, 0

)
. (4.14)

The asymptotic behaviour of HX (the inner limit of the outer solution) is obtained as

HX = 2
W GY ∼ 2

W

(
∓3V

W − M±ȧ±W5

24V2 [ln(1 ∓ Y) + ζ±]

)
, (Y → ±1∓), (4.15)

(recalling [17,19]), so the cube of the slope may be written in original variables as

H3
X = ∓216V3

W6 − 9M±ȧ±
[

ln{±(a± − X)} + ln
2
W + ζ±

]
, (X → a±∓). (4.16)

(b) Inner region
For convenience, we restrict attention initially to the inner region at the right-hand contact line.
Here, we stretch X and enlarge H using

X = a+ + η(3ȧ+)−1/3X̃, H(X, T) = ηH̃(X̃) and M̄(X, T) = M̃(X̃), (4.17)

so that (2.1a) becomes, for η � 1,

M̃(1 − H̃) + H̃3H̃X̃X̃X̃ = 0 (4.18)

after integrating once and imposing H̃ → 1 as X̄ → ∞. Equation (4.18) is a generalized Landau–
Levich equation, modified by the variable viscosity field M̃. We see from figure 3 that
characteristics crowd into the contact-line region, reflecting the compression of the viscosity
field that is encountered by the advancing contact line. While the compressed field drifts slowly
from the front to the back of the inner region, we assume for the time being that the M̃ field is
quasi-steady; we return to its slow evolution later on.

Matching to the outer region requires M̃ → M+ for X̃ → −∞ (in the overlap between the
inner and outer regions), and limX̃→∞ M̃ = M+ ≡ M̄(a+(T)+, 0), representing the contact line
advancing over the unperturbed viscosity field. These far-field boundary conditions on M help
us to construct far-field asymptotic solutions of (4.18). One boundary condition can be simplified
by writing X̂ = (M+)1/3X̃, Ĥ(X̂) = H̃(X̃), M̂(X̂) = M̃(X̃)/M+, so that (4.18) becomes

M̂(1 − Ĥ) + Ĥ3ĤX̂X̂X̂ = 0. (4.19)

The corresponding boundary conditions are

lim
X̂→−∞

H̃X̂X̂ = 0 where M̂ = rM ≡ M+
M+ , lim

X̂→∞
H̃ = 1, where M̂ = 1. (4.20)

We are also at liberty to place the primary minimum of the solution at the origin (H̃X̂(0) = 0) in
computed solutions.
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Denoting ¯̄X = r1/3
M X̂, (4.19) has an asymptotic solution of the form

Ĥ = − ¯̄Xφ( ¯̄X)1/3(31/3 + α1φ( ¯̄X)−1 + O(φ( ¯̄X)−2)), ( ¯̄X → −∞), (4.21)

where α1 is a constant dependent on the whole M̂ field in the inner region and φ( ¯̄X) ≡ ln(− ¯̄X). As
X̂ → +∞, (4.19) has an asymptotic solution of the form

H̃ = 1 + α2 exp

(
− X̂

2

)
cos

(√
3X̂
2

)
+ O(exp(−X̂)), (X̂ → +∞), (4.22)

where α2 is also a constant. The solution (4.22) represents a one-parameter family of solutions of
(4.19); only one member of that family satisfies (4.21). We solve (4.19) numerically to determine
α2, and hence α1. Shooting towards X̂ → −∞, we seek the solution satisfying X̂H̃2

X̂
H̃X̂X̂ = −rM

at the left of the domain, in accordance with the asymptotic solution (4.21). We evaluate α1 by
solving H̃3

X̂
+ 3rM(ln(−r1/3

M X̂) + 32/3α1 + 1) = 0 at the domain boundary.

When M̂ ≡ 1, for example, we find that α1 ≈ −0.63 ≡ A1, say, in accordance with prior studies
(Peng et al. [21], for example, report a value equivalent to −0.61 using a three-term expansion over
an unspecified domain). We now consider how α1 is influenced by spatial variations of the M̃ field.
Because the inner-region flow is compressive, a region of high or low viscosity encountered by an
advancing contact line will typically manifest as a steep ramp in the M̃ field; the ramp will slowly
propagate from the front to the rear of the inner region. To mimic this situation, we chose

M̂ =
{

rM, (X̂ < X̂r),

1, (X̂ ≥ X̂r),
(4.23)

for some X̂r, imposing continuity conditions in Ĥ, ĤX̂, ĤX̂X̂ across X̂r, which we solved on a long
domain [−X̂L, X̂R]. Computed values of α1 are illustrated in figure 5. For values of rM close to
unity, the approximation α1 ≈ A1 is robust, particularly when X̂r > 0. However, there is a striking
difference between cases in which rM � 1 (representing a drop spreading into a high-viscosity
region) and rM � 1 (a drop encountering a low-viscosity region): α1 becomes large and positive
in the former case (with α1 ∝ 1/rM for fixed Xr ≤ 0) but remains relatively small and negative in
the latter. The jump in viscosity therefore has greatest influence on the magnitude of α1 when the
jump extends into regions where the film is thicker and when the contact line is encountering a
region of elevated viscosity. We explore the consequences of these variations below.

(c) Matching
Written in outer variables, the outer limit of the inner problem (4.21) is

H3
X = 3ȧ+M+H̃3

¯̄X = 3ȧ+M+(−3 ln(− ¯̄X) − 3 − 35/3α1 + O(ln(− ¯̄X)−1))

so that in the overlap regions η|ȧ±|−1/3 � |a± − X| � 1,

H3
X ≈ 9ȧ±M±(ln η − ln |a± − X| − 1

3 ln |3ȧ±M±| − 1 − 32/3α±), (4.24)

where α± denotes the values of α1 at each contact line. Matching (4.16) with (4.24) gives the
coupled ODEs[

M±
(
J± + 1

3
ln |3ȧ±M±|

)
− I1 − (M± − M∓) ln 2 + I±

2

]
ȧ± + I1ȧ∓ = ±24V3

W6 , (4.25a)

where

J± ≡ 32/3α± + lnW − ln η. (4.25b)

The system (4.25) constitutes a simplified model for the slow spreading of a drop over a
heterogeneous film, and recalls similar descriptions of drop-spreading on homogeneous films
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Figure 5. (a) α1 versus rM with Xr = 0 (horizontal line),−5 (solid),−10 (dashed) and−15 (dotted-dashed) and α1 versus
−Xr with (b) rM = 0.01 and (c) 100, from numerical solutions of (4.19) and (4.20) with step viscosity (4.23) and X̂L = 109 and
X̂R = 10. (Online version in colour.)

[22], for which I1 = 1, I±
2 = 0, M± = 1; this limit yields a deterministic expression for a± = ±a0,

namely

ȧ0

(
−2 + 32/3A1 + ln(2a0) − ln η + 1

3
ln(3ȧ0)

)
= 3V3

8a6
0

, (4.26)

which may be written as ȧ0a6
0 ln[2a0(3ȧ0)1/3e32/3A1/ηe2] = 8

9 (illustrating how the drop width grows
roughly proportionally to t1/7 in a planar geometry).

Equation (4.25) indicates that the contact-line speeds are coupled via hydrodynamic effects
within the bulk drop, and are dependent primarily on the viscosities M± upstream of each contact
line. This becomes evident on taking leading-order terms as η → 0, when (4.25) reduces to

[M±(− ln η)]ȧ± ≈ ±24V3

W6 , (4.27)

confirming that the contact-line speed is O(1/ ln(1/η)). The compressed viscosity field within each
contact-line region influences the constants α± in (4.25b): if variations are modest, we adopt the
approximation

α± = A1 ≈ −0.63, M± = M̄(±1, 0); (4.28)

alternatively, large variations in the viscosity field are accommodated by changes in the value of
α± and, potentially, M±.

To solve (4.25) and (4.28), we transform them to a system of differential-algebraic equations
by defining ȧ± as two new variables. Figure 2a–c compares the asymptotic predicted drop shape,
width W and centre C with simulations of the PDE system (2.1). The ODE model successfully
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captures the lateral drift of the drop owing to the gradient in the viscosity field. Factors limiting
the accuracy of the low-order model are the inclusion of diffusion in the PDE simulations; given
the logarithmic (rather than algebraic) dependence on the small parameter η, (4.25) provides
notably greater quantitative accuracy than (4.27).

The limitations of the assumption α± = A1 are illustrated in figure 1. In this example, M+ < M−
(compare the viscosities at A±), leading to initial rightward drift of the drop. However, the peak
in viscosity near X = 1.6 causes the right-hand contact line to slow and the drop to then drift left.
In this example, the viscosity field within the inner region (between A′+ and the open circle in
figure 1b) has a ramp with magnitude rM ≈ 0.2. As it propagates into the contact-line region, α+
can be expected to increase as indicated in figure 5. The dominant terms in (4.25) when η � 1 and
α+ � 1,

ȧ+ ∝ 1
M+(ln(1/η) + 32/3α+)

, (4.29)

indicate how passage of the region of elevated viscosity backwards into the inner region slows
the advance of the contact line.

(d) The bulk velocity field
To understand solute transport in more detail, we use the asymptotic approximation to describe
the bulk velocity field. In the inner region, the velocity is

Ūin± = H̃2H̃X̃X̃X̃

3M̃
= ȧ±

(
1 − 1

H̃(±(X − a±)(3|ȧ±|M±)1/3/η)

)
. (4.30)

Noting that limX→a±∓ Uout = ȧ± = limX̂→−∞ Uin±, we can construct a composite approximation
of Ū using (4.8) as

Ūcom = Ūout + Ūin+ + Ūin− − ȧ+H(a+ − X) − ȧ−H(X − a−). (4.31)

This approximation is illustrated in figure 2e and is used to construct the characteristics along
which M̄ is transported in figure 3, using solutions of a±(T) from (4.25) and (4.28), and the
numerical solution of H̃ from (4.19) with M′ = 1. It is clear from figure 3b that Ūcom < ȧ+ in
the neighbourhood of the contact line, implying that characteristics move smoothly through
the inner region. Evaluating the X derivative of Ūcom reveals that the velocity maximum lies a
distance of order [a+η(ȧ+M+)−1/3]1/2 (the geometric mean of the inner and outer lengthscales)
behind a+, placing it formally within the overlap region between the inner and outer solutions.
This defines the boundary between expansive and compressive regions (figure 3). Thus, in the
absence of diffusion, all the solute swept up by the contact line remains confined to a narrow
zone immediately behind the contact line, within which the asymptotic inner region is confined.

(e) Weak disorder
When σ � 1, we can use a perturbation method to quantify the variability in solutions of (4.25)
and (4.28) explicitly. We write the random variables M± and a± as sums of their mean and a small
random perturbation

M± = 1 + M±1 + · · · , a± = ±a0 + a±1 + · · · , (4.32)

where a0 satisfies (4.26). We anticipate that perturbations are O(σ ) smaller than leading-order
terms and M±1 = G(±1, ω) with 〈M±1〉 = 0. For simplicity, we restrict attention to leading-order
terms as η → 0, expanding (4.27) using (4.32). Expressions for a±1 give, in terms of the drop
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displacement C and width W ,

Ċ = −1
2

(M+1 − M−1)ȧ0, Ẇ = 2ȧ0 − (M+1 + M−1)ȧ0 −
(

6ȧ0

a0

)
(W − 2a0). (4.33)

We set C(t) = (M+1 − M−1)C̄(t) and W(t) = 2a0 + (M+1 + M−1)W̄(t), where C̄(0) = 0, W̄(0) = 0.
Integrating (4.33), C̄ and W̄ satisfy the deterministic equations

C̄ = 1
2 (1 − a0) and W̄ = 1

7 (a−6
0 − a0). (4.34)

Thus, the mean drop centre and width satisfy 〈C〉 = C̄(〈M+1〉 − 〈M−1〉) = 0, 〈W〉 = 2a0 +
W̄(〈M+1〉 + 〈M−1〉) = 2a0 as expected, while the variances are

Var(C) = C̄2(Var(M+1) + Var(M−1) − 2 Cov(M+1, M−1)) = 2C̄2σ 2(1 − e−2/l2 ) (4.35a)

and

Var(W) = W̄2(Var(M+1) + Var(M−1) + 2 Cov(M+1, M−1)) = 2W̄2σ 2(1 + e−2/l2 ), (4.35b)

using (2.3) directly to evaluate covariances.
Predictions of the PDE system (2.1), the ODE system (4.25) and (4.28) and the explicit

expressions (4.35) are compared in figure 4. The linear dependence of σC and σW on σ is reflected
by simulations, except for larger variance where the assumption M± = M̄(±1, 0) breaks down,
because the effects of axial diffusion may also be significant. The dependence on the correlation
length is also captured well for l � 1, but not at smaller l where again the effects of axial diffusion
are likely to become significant. The present predictions could be refined by incorporating
O(1/ ln η) corrections to a0 in (4.26), which would also include the influence of the initial viscosity
distribution across the bulk of the drop through the integrals I1, I±

2 in (4.25) and their correlations
with M±. However, we focus instead on incorporting the effects of axial diffusion.

5. An approximate model for axial diffusion
Compression of the viscosity field at the contact line limits the time over which computations
can be pursued (for fixed Pe � 1), particularly when initial solute gradients are large. Naturally,
axial diffusion can be expected to have a growing influence in each compressive region as time
increases. We now develop a simple model to describe drop motion when diffusion is sufficient
to homogenize the solute in the short compressive regions behind each contact line.

We model the wedge behind the contact line, in which the flow is compressive, by taking
H ≈ θ+(a+ − X) + η for b+ < X < a+ and H = η for X > a+, where b+ represents the rear boundary
of the wedge, defined below. (For clarity, we initially consider only the right-hand contact line.)
In this simple compartmental approach, θ+ represents the approximate contact angle at the edge
of the outer region. The inner region near the front of the wedge at X = a+ has length η/θ+, which
is short compared with a+; we introduce ε+ = η/(a+θ+) � 1. Within the inner region Ū = ȧ+(1 −
(η/H)) (from (4.30)); combining this with the stretching flow in the outer region gives a composite
expression for the velocity across the wedge as

Ū = ȧ+
(

1 − η

H

)
+ ȧ+

(
X − a−

W − 1
)

(b+ < X < a+). (5.1)

Thus, ŪX = 0 at b+ = a+(ε+ + 1) − √
a+ε+W , defining the rear of the wedge. The fluid volume in

the wedge, V+ = ∫a+
b+

H dX, satisfies, from (2.1a),

V̇+ = (ȧ+ − Ū|a+ )H|a+ − (ḃ+ − Ū|b+ )H|b+ . (5.2)

The mass of solute in the wedge,

N+ =
∫ a+

b+
HM̄ dX, (5.3)
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satisfies (from (2.1b), neglecting diffusive fluxes at the edges of the wedge)

Ṅ+ = (ȧ+ − Ū|a+ )(HM̄)|a+ − (ḃ+ − Ū|b+ )(HM̄)|b+ . (5.4)

At the front of the wedge, H = η and Ū = 0; at the rear, H = ηW/
√

a+ε+W and Ū = ȧ+(W + a+ε+ −
2
√

a+ε+W)/W . We then assume that the compressed viscosity field is mixed by diffusion within
the wedge, so that the integral in (5.3) may be approximated as N+ ≈ M̃+V+ and M̄|b+ = M̃+
in that case (5.2), (5.4) give the leading-order approximation, as ε+ → 0, of the evolving solute
concentration in the wedge as

˙̃M± = ±2ȧ±(M± − M̃±)
W , (5.5)

(treating the left-hand contact line analogously). The reservoir of solute in the wedge is fed by
a source in the film ahead, and diluted by expansion of the wedge. Our candidate model for
spreading, accounting for the effects of diffusion where the flow is strongly compressive, therefore
uses (4.25) with α1 = A1 and M± replaced by M̃±(t), supplemented with (5.5).

The weak-disorder limit of this model is particularly revealing. Writing M̄ = 1 + M̄1 + · · · ,

a± = ±a0 + a±1 + · · · and M̃± = 1 + M̃±1 + · · · , (5.5) yields ˙̃M±1 = ȧ0(M̄1(±a0, 0) − M̃±1)/a0, C =
(M̃+1 − M̃−1)C̄ and W = 2a0 + (M̃+1 + M̃−1)W̄ , with C̄ and W̄ satisfying (4.34) and M̄1(X, 0) =
G(X, ω). Taking a0(0) = 1 and M̃±1(0) = M̄1(±1, 0) leads to

M̃±1(t) = 1
a0

[
M̄1(±1, 0) +

∫ a0

1
M̄1(±X, 0) dX

]
. (5.6)

This shows how the solute concentration in the wedge has contributions from the initial condition
and from solute swept up by the advancing contact line. As a0 increases the latter component
dominates the former, showing a fading memory of the initial condition. Because M̃1 is a linear
functional of the initial solute distribution, its statistics can be evaluated directly (appendix Ac)
to give

〈C〉 = 0, (5.7a)

〈W〉 = 2a0, (5.7b)

Var(C) = 2σ 2C̄2

a2
0

[
1 − 2l2 − e−2/l2 + l2(2e−(a0−1)2/2l2 − e−2a2

0/l2 + 2e−(a0+1)2/2l2 − e−2/l2 )

+
√

2πa0l

(
erf
(

a0 − 1√
2l

)
− erf

(√
2a0

l

)
+ erf

(
a0 + 1√

2l

))]
(5.7c)

and Var(W) = 2σ 2W̄2

a2
0

[
1 − 2l2 + e−2/l2 + l2(2e−(a0−1)2/2l2 + e−2a2

0/l2 − 2e−(a0+1)2/2l2 + e−2/l2 )

+
√

2πa0l

(
erf
(

a0 − 1√
2l

)
+ erf

(√
2a0

l

)
− erf

(
a0 + 1√

2l

))]
. (5.7d)

Figure 4 shows how the modified system captures the reduction in σC and σW as l falls to zero.
For l = O(1), (5.7) recovers (4.35) for a0 → 1, whereas both variances are proportional to

√
2πa0l

for a0 � 1 at leading order. Likewise, both variances are proportional to 1 + √
2πa0l for l � 1 with

a0 = O(1). The increase in variance with l when the correlation length is short compared with the
drop radius can be explained as follows: diffusion acting within each wedge will tend to suppress
the effect of fluctuations in the accumulated viscosity field; however, increasing the correlation
length suppresses this effect, in each contact line independently, promoting variation in drop
location and width. The approximations (4.35) and (5.7) indicate how variances change with time
as the drop spreads (through their dependence on a0), as long as the drop stays thick compared
with the precursor film.
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6. Discussion
Complex liquids in natural environments can have spatially heterogeneous properties that
influence, and are transported by, a flow. Although diffusion can be expected to suppress spatial
gradients over long timescales, heterogeneity will persist in liquids containing large molecular-
weight structures with low mobility. In practical applications, the heterogeneity can often be
quantified at best at a statistical level, requiring flow outcomes to be described in terms of
distributions. The example we present here illustrates some of the challenges of this task. Regions
of strong compression quickly generate large spatial gradients in the transported material, far
narrower than the physical boundary layers within the flow, which rapidly inflate computational
cost; this cost is magnified by the requirement to simulate multiple realizations of the problem.

The example we consider here, motivated by an application in respiratory physiology,
illustrates the benefits (and limitations) of low-order approximations of the flow, which can be
used to predict outcomes and their variability. When heterogeneity is weak, drop spreading rates
are determined primarily by conditions near each contact line at the start of the spreading process;
the drop ‘samples’ restricted features of the initial viscosity distribution and these have long-lived
influence. In this case, we were able to derive explicit expressions for the mean and variance of
variables describing the drop’s motion, in terms of parameters describing the structure of the
initially heterogeneous liquid. A more complex picture emerges for a strongly heterogeneous
liquid, for which spreading is inhibited by patches of elevated viscosity encountered by the
advancing contact lines. In this case, we derived an ad hoc model that shows how a reservoir
of solute immediately behind the contact line regulates spreading rates over long timescales.

We have focused attention on a parameter range that is accessible to analysis. A slender
geometry allowed the use of lubrication theory and the assumption of a fully wetting fluid
interacting with a pre-wetted surface obviated the need to include disjoining pressure. We
assumed a linear relationship between viscosity and the distribution of a passively transported
solvent, and assumed that the solvent had a sufficiently large molecular weight for diffusion
to suppress gradients across but not along the liquid layer. We also assumed that the
correlation length of the initial solute distribution exceeded the film thickness. The resulting
system of coupled nonlinear hyperbolic/parabolic PDEs generates solutions with large localized
gradients requiring careful numerical treatment. To gain physical insights, we derived asymptotic
approximations exploiting the difference between the height of the drop and the depth of the
precursor film over which it spreads. This yielded a hierarchy of algebraic/ODE systems for
the location of the two contact lines, which can predict the mean and variance of drop width
and lateral displacement. Naturally, many features arising in applications should be addressed in
future studies, not least spreading in two spatial dimensions.

The ODE model revealed the mechanism whereby drop motion is arrested when encountering
a patch of elevated viscosity. The viscosity field is initially steepened within an inner layer near
the contact line (of approximate width ηt2/7 at large times—this is short compared with the drop
width of approximate order t1/7, assuming t � η−7), leading to a ramp-like distribution passing
slowly towards the rear of the inner region. (The shear rate in the inner region is order 1/(t8/7η),
sufficient to lead to exponentially rapid compression of the viscosity field.) As the more viscous
liquid invades the inner region, the matching parameter α± increases in magnitude (figure 5),
causing slowing of the contact line’s motion. Compression of the viscosity field extends into the
overlap region between the inner and outer problems (a distance of order (ηt3/7)1/2 behind the
contact line). Thus, in the absence of longitudinal diffusion, characteristics are confined within
this ‘compressive wedge’. In practice, diffusion can be expected to suppresses gradients in this
wedge over large times. In this case, spreading rates are increasingly regulated by features of the
viscosity field encountered during the spreading process. The increasing influence of material
encountered during spreading is neatly illustrated by (5.6).

In terms of the application motivating this study, the primary insight concerns the role of the
precursor (mucus) film in regulating the spreading of an inhaled drop of a different material.
Assuming the liquids are fully miscible, the drop will slowly accumulate endogenous material
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at its leading edge and fluctuations in its motion can therefore be associated directly with initial
heterogeneities in the precursor film. As figure 4e shows, fluctuations in drop location (relative to
drop radius) are most pronounced when the drop radius is comparable to the correlation length
of the viscosity distribution. From a methodological perspective, our study shows how low-order
physical models, combined with weak disorder expansions, can be effective in quantifying the
statistical variability in flow outcomes.
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Appendix A

(a) Model derivation
We consider a liquid layer bounded below by a horizontal solid substrate and above by a free
surface. We introduce Cartesian coordinates (x, z) such that the solid substrate lies on z = 0 and
the free surface occupies z = h(x, t), where t is time. The liquid is incompressible, Newtonian and
has dynamic viscosity μ(x, z, t), constant density ρ and uniform surface tension σ . The Reynolds
number is assumed sufficiently small for inertia to be neglected, so that the flow field (u, w) and
pressure p satisfy the Stokes equations, which when accounting for spatially varying viscosity
may be expressed as

0 = ux + wz, (A 1a)

0 = −px + μ(uxx + uzz) + 2μxux + μz(uz + wx) (A 1b)

and 0 = −pz + μ(wxx + wzz) + 2μzwz + μx(uz + wx). (A 1c)

We assume the viscosity μ = μ(c(x, z, t)) is determined by the distribution of a chemical species
with concentration c(x, z, t), which satisfies the transport equation

ct + (cu)x + (cw)z = γ (cxx + czz), (A 2)

where γ is a constant diffusivity. No-flux conditions are imposed on c at z = 0 and z = h.
We introduce a length scale l0, height scale h0 (defining ε ≡ h0/l0 � 1), viscosity scale μ0,

velocity scale u0 = ε3σ/μ0 and concentration scale c0, and non-dimensionalize variables using
(x, z, h) = h0(X/ε, Z, H), (u, w) = u0(U, εW), t = (h0/εu0)T, p = (μ0u0/εh0)P, with μ = μ0M(C) and
c = c0C, where the function M(C) is to be specified. We define the Péclet number Pe = l0u0/γ .

The governing equations and boundary conditions become

UX + WZ = 0, 0 = −PX + (MUZ)Z, 0 = −PZ, (A 3a)

CT + (CU)X + (CW)Z = 1
Pe

CXX + 1
ε2Pe

CZZ, (A 3b)

W = 0, U = 0, CZ = 0, (Z = 0) (A 3c)

and W = HT + UHX, P = −HXX, UZ = 0, CZ = ε2HXCX, (Z = H(X, T)), (A 3d)

with M = M(C). Here we have eliminated terms of O(ε2) from the flow equations (as is standard
in lubrication theory) but have retained all terms in the solute transport equation. It follows that
P(X, T) = −HXX, and integration of the horizontal momentum equation yields

U(X, Z, T) = PX

(∫Z

0

Z′ dZ′

M(X, Z′, T)
−

∫Z

0

H dZ′

M(X, Z′, T)

)
. (A 4)

http://dx.doi.org/10.5061/dryad.t2v1b
http://dx.doi.org/10.5061/dryad.t2v1b
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We define an averaging operator on the function Φ(X, Z, T) as

Φ̄ ≡ 1
H

∫H

0
Φ(X, Z, T) dZ, (A 5)

so that Φ̄Z = (Φ|Z=H − Φ|Z=0)/H and

Φ̄X = Φ̄X + 1
H

HX(Φ̄ − Φ|Z=H) and Φ̄T = Φ̄T + 1
H

HT(Φ̄ − Φ|Z=H). (A 6)

Exploiting these identities, averaging the mass conservation equation (A 3a)-1 and using
the boundary conditions (A 3c)-1 and (A 3d)-1 yields HT + (HŪ)X = 0, as in (2.1a). Likewise,
averaging the transport equation (A 3b) and imposing boundary conditions (A 3c)-1, (A 3d)-1,
(A 3c)-3 and (A 3d)-4 gives

(HC̄)T + (HCU)X = Pe−1(HC̄X)X. (A 7)

We may combine (2.1a) and (A 7) to give

C̄T + (CU)X − C̄ŪX + 1
H

HX(CU − C̄Ū) = 1
Pe

(HC̄X)X

H
. (A 8)

We introduce the decomposition

C = C̄ + C′, U = Ū + U′, W = W̄ + W′ and M = M̄ + M′, (A 9)

with C̄ = C̄(X, T) and C′ ≡ 0, etc. Averaging (A 3b) and using the decomposition (A 9) gives

C̄T + C′
T + (C̄Ū)X + C̄U′

X + U′C̄X + (ŪC′)X + (C′U′)X

+ C̄W′
Z + W̄C′

Z + (C′W′)Z = 1
Pe

C̄XX + 1
Pe

C′
XX + 1

ε2Pe
C′

ZZ, (A 10)

while the cross-sectional averaged transport equation (A 8) becomes

C̄T + ŪC̄X + (C′U′)X + 1
H

HXC′U′ = 1
Pe

C̄XX + 1
Pe

HXC̄X

H
+ 1

Pe
(HC′X)X

H
. (A 11)

Subtracting (A 11) from (A 10) gives

C′
T + U′C̄X + (ŪC′)X + (C′U′)X − (C′U′)X − 1

H
HXC′U′ + W̄C′

Z + (C′W′)Z

= 1
Pe

C′
XX + 1

ε2Pe
C′

ZZ − 1
Pe

HXC̄X

H
− 1

Pe
(H(C′X))X

H
. (A 12)

We seek the limit in which C′ � C̄ ∼ 1, whereas U′ ∼ Ū ∼ 1, taking Pe � 1 as ε → 0. Anticipating
the dominant balance in (A 12) to be U′C̄X = C′

ZZ/ε2Pe, so that C′ = O(ε2Pe), the terms in (A 11)
fall into four categories with magnitude O(1) (advection), O(1/Pe) (diffusion), O(ε2Pe) (Taylor
dispersion) and O(ε2). Thus for 1/ε � Pe � 1, the approximation of (A 11) up to O(1/Pe) is

C̄T + Ū C̄X = 1
Pe

(HC̄X)X

H
. (A 13)

We retain the O(1/Pe) contribution of diffusion in (A 13) to facilitate numerical simulations.
Assuming that the viscosity M linearly depends on C yields (2.1b) and M′ � M̄. Then, averaging
the horizontal velocity component (A 4) gives

Ū = PX

(
1
H

∫H

0

∫Z

0

Z′ dZ′ dZ
M(X, Z′, T)

−
∫H

0

∫Z

0

dZ′ dZ
M(X, Z′, T)

)
≈ −PX

H2

3M̄
. (A 14)

with error O(1/Pe, ε2Pe, ε2), as in (2.1a).
A similar formulation has been adopted by Karapetsas et al. [23] in a study of thin-film

suspension flow, for which a nonlinear relation between viscosity and particle concentration was
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retained. As in that study, we assume here that the solute field does not influence the interfacial
tension; for suspensions, linearization of M(C) is appropriate at low volume fractions [24].

(b) Karhunen–Loéve decomposition
We use the Karhunen–Loéve decomposition to sample the Gaussian random field G, which
then gives one sample of M via exponentiation. Given the spatial grid {Xi}, i = 0, 1, . . . , n, on
the computational domain [−L, L], the covariance function kG produces a covariance matrix
K = {kG(Xi, Xj)}, i, j = 0, 1, . . . , n, which can be factorized as K = VΛVT, where Λ is the (n + 1) ×
(n + 1) diagonal matrix of eigenvalues, λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0, of K, and V = [v0, . . . , vn] is the
(n + 1) × (n + 1) matrix whose columns vi are the eigenvectors of K. To resolve the M field
properly, we choose the grid width such that it is smaller than one fifth of the correlation length l.
As in [25], the discrete random field G := [G(X0, ω), . . . ,G(Xn, ω)]T can be generated as

G =
n∑

i=0

√
λiviξi, (A 15)

where ξi are independent and identically distributed Gaussian random variables with zero mean
and unit variance. For large n, we further truncate the sum in (A 15) after n′ (� n) terms and use
the approximate discrete random field

G′ =
n′∑

i=0

√
λiviξi. (A 16)

The quality of the approximation of G′ ≈ G is determined by the sizes of the neglected eigenvalues
λn′+1, . . . , λn. Here, we choose smallest n′ such that λn′/λ0 < 10−3.

(c) Compressive wedge approximation in the weak disorder limit
Writing Y(X) ≡ M̄1(X, 0) ± M̄1(−X, 0), (5.6) implies

M̃+1 ± M̃−1 = 1
a0

[
Y(1) +

∫ a0

1
Y(X) dX

]
≈ 1

a0

⎡
⎣Y(X1) + �X

N∑
j=1

Y(Xj)

⎤
⎦ , (A 17)

approximating the integral as a Riemann sum with �X = (a0 − 1)/N, Xj = 1 + (j − 1)�X and N a
large positive integer. Clearly, 〈M̃+1 ± M̃−1〉 = 0 while

Var(M̃+1 ± M̃−1) ≈ 1

a2
0

⎡
⎣Var(Y(X1)) + 2�X

N∑
j=1

Cov(Y(X1), Y(Xj))

+ (�X)2
N∑

j=1

N∑
i=1

Cov(Y(Xi), Y(Xj))

⎤
⎦ , (A 18)

and

Cov(Y(Xi), Y(Xj)) = Cov(M̄1(Xi, 0) ± M̄1(−Xi, 0), M̄1(Xj, 0) ± M̄1(−Xj, 0))

= Cov(M̄1(Xi, 0), M̄1(Xj, 0)) ± Cov(M̄1(Xi, 0), M̄1(−Xj, 0))

± Cov(M̄1(−Xi, 0), M̄1(Xj, 0)) + Cov(M̄1(−Xi, 0), M̄1(−Xj, 0))

= 2σ 2 exp

(
−1

2

(Xi − Xj

l

)2
)

± 2σ 2 exp

(
−1

2

(Xi + Xj

l

)2
)

. (A 19)
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Restoring sums to integrals leads to

Var(M̃+1 ± M̃−1)

= 2σ 2

a2
0

[
1 ± exp

(
− 2

l2

)
+ 2

∫ a0

1
exp

(
−1

2

(
1 − X

l

)2
)

± exp

(
−1

2

(
1 + X

l

)2
)

dX

+
∫ a0

1

∫ a0

1
exp

(
−1

2

(
X − X′

l

)2
)

± exp

(
−1

2

(
X + X′

l

)2
)

dX dX′
]

, (A 20)

with Riemann sums converted to integrals as N → ∞. The integrals in (A 20) can be explicitly
evaluated in terms of the error function to give (5.7).
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