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Modeling of the Weight Status and Risk of Nonalcoholic
Fatty Liver Disease in Elderly Individuals: The Potential
Impact of the Disulfide Bond-Forming Oxidoreductase
A-Like Protein (DsbA-L) Polymorphism on the Weight
Status
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Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. Disulfide bond-forming oxidoreductase A-like
protein (DsbA-L) is known to be a key molecule in protection against obesity and obesity-induced inflammation. In the present
study, we used a modeling and simulation approach in an attempt to develop body mass index (BMI) and BMI-based NAFLD
prediction models incorporating the DsbA-L polymorphism to predict the BMI and NAFLD in 341 elderly subjects. A nonlinear
mixed-effect model best represented the sigmoidal relationship between the BMI and the logit function of the probability of
NAFLD prevalence. The final models for BMI and NAFLD showed that DsbA-L rs1917760 polymorphism, age, and gender were
associated with the BMI, whereas gender, patatin-like phospholipase 3 rs738409 polymorphism, HbA1c, and high-density and
low-density lipoprotein cholesterol levels were associated with the risk of NAFLD. This information may aid in the genetic-
based prevention of obesity and NAFLD in the general elderly population.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 384–393; doi:10.1002/psp4.12292; published online 30 March 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Although obesity is closely associated with the devel-

opment and progression of NAFLD, at present, no models

incorporating detailed population background information

can adequately predict the association between the

weight status and NAFLD. Several experimental models

showed that DsbA-L is known as a key molecule in pro-

tecting against obesity and obesity-induced inflamma-

tion and insulin resistance; however, it is totally unclear

whether DsbA-L polymorphism is associated with the

weight status or NAFLD in humans.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study addresses the how the weight status is asso-

ciated with the risk of developing NAFLD, and how func-

tional polymorphism of DsbA-L (rs1917760, -1308G>T) is

potentially associated with the weight status and the risk of

NAFLD in the elderly general population using a NONMEM

approach and structural equation modeling.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� This study adds information regarding: (1) a popula-
tion prediction model for predicting the risk of NAFLD,
which can be shown as a sigmoidal maximum response
using the BMI as an exposure variable; and (2) the clin-
ical implications of the DsbA-L rs1917760 polymor-
phism, which is associated with the weight status, and
which is possibly indirectly associated with the risk of
NAFLD in the general elderly population.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The results of this study suggest that the DsbA-L
may be an effective target for preventing or treating
obesity, especially in DsbA-L T/T genotype carriers. In
addition, the modeling and simulation procedure of this
study may contribute to the further development of
genetic-based prediction models for other metabolic
diseases.

Nonalcoholic fatty liver disease (NAFLD) is the hepatic

manifestation of metabolic syndrome, which is an indepen-

dent risk factor for type 2 diabetes, cardiovascular disease,

and its related future events.1–3 NAFLD is particularly com-

mon in elderly people, and elderly patients with NAFLD

have a high risk of strongly aging-related metabolic
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complications (i.e., type 2 diabetes and cardiovascular dis-
ease).1,4 Experimental and epidemiological evidence have
shown that obesity is closely associated with the develop-
ment and progression of NAFLD.1–3 However, NAFLD can
also be observed in subjects with a normal-weight (body
mass index (BMI) <25 kg/m2), especially in Asian popula-
tions.1,5 We recently reported that patatin-like phospholi-
pase domain-containing 3 (PNPLA3) rs738409, a well-
known polymorphism that predisposes carriers for a fatty
liver,6 was associated with a risk of developing NAFLD,
even in individuals with a normal weight status.7 Thus, the
population background (e.g., genetic polymorphisms, life-
style, age, gender, and underlying diseases) should be
carefully considered when determining the association
between the weight status and the risk of NAFLD; how-
ever, at present, no population models incorporating
detailed population background information can predict
this association with sufficient accuracy.

Adiponectin, an adipose tissue-specific hormone, has
been reported to be associated with the protection against
adipose tissue inflammation, insulin resistance, and mito-
chondrial dysfunction and to have an important role in
the prevention of obesity and its related diseases.8–10

Plasma adiponectin exists as a low-molecular-weight trimer,
medium-molecular-weight hexamer, and high-molecular-
weight (HMW) oligomer.10 HMW oligomers of adiponectin
are the major relevant forms for improving insulin sensitivity,
anti-inflammatory and antidiabetic activities, and low levels
of HMW oligomers represent an independent risk factor for
several metabolic diseases.10 Thus, adiponectin multimeri-
zation, which requires disulfide bond formation between
two different trimers,11,12 may play a crucial role in the pre-
vention of metabolic disease.

Disulfide bond-forming oxidoreductase A-like protein
(DsbA-L), a renamed protein from glutathione S-transferase
kappa 1, is highly expressed in the endoplasmic reticulum
and mitochondria and plays an important role in disulfide
bond formation and antioxidant action.13–15 DsbA-L is con-
sidered to be a key regulator of adiponectin multimerization
in 3T3-L1 cells that are most commonly used as an adipo-
cyte differentiation model.14 In addition, it has been reported
that the mRNA level of DsbA-L in adipose tissue correlated
negatively with obesity in both mice and humans.13,14 Chen
et al.16 showed that the liver-specific knock-out of DsbA-L in
mice exacerbated high-fat diet-induced hepatosteatosis, and
the overexpression of DsbA-L protected mice against hepa-
tosteatosis and insulin resistance. Furthermore, the sup-
pression of DsbA-L is associated with the impairment of the
respiratory capacity in mitochondria and the elevation of cel-
lular oxidative stress.16 Recently, Bai et al.17 revealed DsbA-
L as a key molecule in protecting obesity-induced inflamma-
tion and insulin resistance by suppressing the cGMP-AMP
(cGAMP) synthase (cGAS)-cGAMP-stimulator of interferon
genes (STING) pathway, which mediates DNA sensing and
signaling and is involved in the lipotoxic activation of Tank-
binding protein kinase 1 and subsequent p62 phosphoryla-
tion in hepatocytes.18,19 Thus, in humans, the DsbA-L poly-
morphisms may play a key role in the development and/or
progression of obesity and obesity-induced liver diseases
(e.g., NAFLD).

A common polymorphism in the DsbA-L gene at -1308
bp (rs1917760) can influence the DsbA-L function and/or
expression.20 Among Asians, the rs1917760 polymorphism
has previously been described with an allele frequency of
�20%20; however, the polymorphism was not detected
among European and African populations. Our recent
cross-sectional study indicated that the DsbA-L rs1917760
polymorphism is associated with decreased levels of DsbA-
L mRNA in peripheral blood mononuclear cells and an
increased prevalence of being overweight among male Jap-
anese patients with schizophrenia.21 Given these findings,
the DsbA-L polymorphism may play a critical role in the
development of obesity and NAFLD; however, the clinical
roles of the DsbA-L polymorphism in weight gain and the
development of NAFLD, including its relationship to adipo-
nectin, oxidative stress, and environmental factors, remain
unknown.

Pharmacometrics is a relatively recently established sci-
ence that provides quantitative models regarding the phar-
macology through the mathematical modeling of clinical
efficacy based on multivariable analyses.22–25 A nonlinear
mixed-effect model (NONMEM) is a pharmacometric pro-
cedure that is widely applied in pharmacokinetic (PK) and
PK/pharmacodynamic (PD) analyses based on longitudi-
nal data, which enables the examination of various base
models and the effects of various cofactors, the utilization
of all observation points, and the evaluation of validity
based on simulation.22–25 On the other hand, disease pro-
gression models are often integrated with PK/PD models
using a NONMEM approach to quantify the influence of
various factors on disease progression because of the
ability to quantify several levels of variability, to address
instability data, and to identify individual specific cofac-
tors.22,23 Thus, a NONMEM approach can be an effective
tool for developing a disease prediction model using clini-
cal information and to help clarify the precise effects of
various factors on disease development and progression.

Structural equation modeling is a multivariable statistical
method that involves the estimation of parameters for a
system of simultaneous equations, including regression
analyses, pathway analyses, factor analyses, simultaneous
econometric equations, and latent growth curve models.26

Structural equation modeling, which has been widely used
in medical sciences, including clinical studies, enables the
identification of direct or indirect relationships among pre-
dictors, mediators, and clinical outcomes.26 It is a general
and powerful approach that accounts for measurement
error and causal pathways by estimating the parameters for
a system of simultaneous equations.27 Thus, structural
equation modeling is another useful tool for modeling the
associations between massive patient information and com-
plex systems of multiple phenotypes.27,28

In the present study, we applied NONMEM using genetic
and longitudinal clinical data to characterize the weight sta-
tus and the risk of developing NAFLD in elderly Japanese
subjects who participated in a health screening program. The
primary objective of this study was to investigate the potential
impact of the DsbA-L rs1917760 polymorphism on the weight
status and the risk for NAFLD in the elderly general popula-
tion using the prediction models of BMI and risk for NAFLD
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constructed by a NONMEM program. In addition, we ana-

lyzed the association among the DsbA-L genotype, BMI,

NAFLD, and their related covariates (e.g., adiponectin multi-

merization) using structural equation modeling.

MATERIALS AND METHODS
Subjects and study protocol
All subjects were Japanese participants in the elderly health

screening program held by the Japanese Red Cross Kuma-

moto Health Care Center. A retrospective longitudinal anal-

ysis with a follow-up period of 5.5 6 1.1 years was

conducted among 341 subjects who did not have a habitual

alcohol intake (consumption of >30 g/day of alcohol in men

or >20 g/day in women) and/or were not hepatitis B or C

virus-positive, in accordance with the previously reported

practical guidelines for NAFLD.29 The study complies with

the Declaration of Helsinki, and was approved by the ethics

committees of the Faculty of Life Sciences at Kumamoto

University and the Japanese Red Cross Kumamoto Health

Care Center. All the subjects provided their written informed

consent prior to enrollment in the study. All analyses were

performed in accordance with Ethical Guidelines for Epide-

miological Research in Japan.

Measurements
Overweight and normal-weight statuses were defined as

BMI �25 kg/m2 and BMI <25 kg/m2, respectively. Hepatic

ultrasonography scanning was used to diagnose fatty liver

disease (FLD). The FLD was diagnosed based on the fol-

lowing four criteria: (1) a diffuse hyperechoic echotexture

(bright liver); (2) an increased echo texture in comparison

to the kidneys; (3) vascular blurring; and (4) deep

attenuation.29

Genotyping
Genomic DNA was extracted from whole blood using a

DNA purification kit (FlexiGene DNA kit; QIAGEN, Hilden,

Germany). DsbA-L rs1917760 (-1308G>T) and PNPLA3

rs738409 (c.444C>G, encoding I148M) genotypes were

determined using a real-time TaqMan allelic discrimination

assay (Applied Biosystems, Waltham, MA) in accordance

with the manufacturer’s protocol (DsbA-L, assay no.

C_11980950_10; PNPLA3, assay no. C_7241_10). To

ensure the genotyping quality, we included DNA samples

as internal controls, hidden samples of a known geno-

type, and negative controls (water).

Measurement of adiponectin
The levels of total and HMW adiponectin were measured

using fasting serum samples that were collected at the

end of the observation period. Concentrations of total and

HMW adiponectin in fasting serum samples were deter-

mined by enzyme-linked immunosorbent assay (ELISA)

kits with intra-assay coefficients of variation of 2.5–4.7%

and 2.6–3.7%, respectively, and with interassay coeffi-

cients of variation of 5.8–6.9% and 8.3–8.6%, respectively

(Human Total Adiponectin/Acrp30 and Human HMW Adi-

ponectin/Acrp30 Quantikine ELISA Kits; R&D Systems,

Minneapolis, MN). These ELISA assays were performed

in accordance with the manufacturer’s protocol.

Measurement of oxidized human serum albumin
The redox state of human serum albumin (HSA) was used
as a systemic oxidative stress marker, as it reflects the pro-
gression of oxidative stress-related chronic diseases.30,31

The redox state of HSA was analyzed by high-performance
liquid chromatography for the fasting serum samples that
were collected at the end point of the observation period,
as described in a previous study for assessing the level of
oxidative stress.32 Based on the high-performance liquid
chromatography profiles of HSA, the values of each of the
albumin fractions (for human mercapto-albumin, human
non-mercapto-albumin (HNA)1 and HNA2) were esti-
mated by dividing the area of each fraction by the total
area corresponding to HSA. A mixture of HNA1 and
HNA2 was defined as oxidized HSA.

Statistical analyses
The details of the statistical analyses are shown in the
Supplementary Materials and Methods.

RESULTS
Clinical characteristics of the subjects at baseline
The observed genotype frequency distributions of the
DsbA-L and PNPLA3 were consistent with the Hardy-
Weinberg equilibrium (P> 0.05). The demographic charac-
teristics at baseline of the subjects stratified by the DsbA-L
genotypes are shown in Table 1. The longitudinal differ-
ences in the BMI and the cumulative prevalence of NAFLD
between the DsbA-L genotypes are shown in Figure 1.
Although the BMI at baseline did not differ among patients
with the DsbA-L genotypes (Table 1), the BMI was higher
in carriers of the DsbA-L T/T genotype than in those with
the G/G or G/T genotypes during the observation period
that was analyzed using the generalized estimating equa-
tions approach (P 5 0.013; Figure 1). The prevalence
of NAFLD at baseline did not differ among the DsbA-L
genotypes (Table 1), and no significant association was
found between the cumulative prevalence of NAFLD
and the DsbA-L genotypes during the observation period
(P 5 0.128; Figure 1).

Development of a model describing the interindividual
variability in the BMI values
First, we developed a model describing the interindividual
variability in the BMI values. Because the mean value of
BMI was nearly unchanged during the observation period
(Figure 1), we developed a model for BMI using a linear
regression model. Supplementary Table S1 shows the
effects of the tested covariates on the objective function of
the parameters regarding modeling for the BMI. Age, gen-
der, and DsbA-L genotype were significantly associated
with the BMI. The final model for BMI was as follows:

BMI522:63 AGE=70:8ð Þ20:071
30:968female11:50DsbALT=Tgenotype (1)

Female 5 1 for females, and 0 for males; DsbA-L T/T
genotype 5 1 for carriers of the T/T genotype, and 0 for
noncarriers (i.e., carriers of DsbA-L G/G or G/T genotype).
This BMI model indicated that age, female gender, and
DsbA-L T/T genotype were associated with BMI (Eq. 1).
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The results showed that the BMI in the DsbA-L T/T geno-
type was higher by �1.5 kg/m2 than that of the G/G or G/T

genotype carriers (Eq. 1).

Development of the prediction model for NAFLD
Next, we developed the base model of the risk for NAFLD
using a logistic regression model. Because the develop-

ment of NAFLD is closely related to the presence of obe-

sity, the logit (probability (Pr)) value of the model was a

sigmoidal maximum response of the prevalence for NAFLD
using BMI as the exposure variable. Supplementary

Table S2 shows the effects of the tested covariates on the

objective function of the parameters regarding the risk of
developing NAFLD. Female gender; levels of high-density

lipoprotein cholesterol (HDL-C), low-density lipoprotein cho-

lesterol (LDL-C), and HbA1c; and a PNPLA3 genotype
were significantly associated with the risk of developing

NAFLD. However, the DsbA-L genotype had no effect on the

risk of developing NAFLD. The final prediction model for the
risk of NAFLD was as follows:

LogitðPrÞ5251
LogitðPr Þmax 3 BMI217ð Þ3:43

BMI50217ð Þ3:43
1 BMI217ð Þ3:43 (2)

Logit Prð Þmax 54:1711:02female20:0603 HDL269:4ð Þ
10:0093 LDL2120ð Þ (3)

BMI5051716:4230:760PNPLA3 C=G genotype

30:591PNPLA3 C=G genotype3 HbA1c=5:88ð Þ23:34 (4)

where Logit(Pr)max is the maximum value of the logit
regarding the prevalence of NAFLD; BMI50 is the BMI cor-
responding to 50% of the Logit(Pr)max; female 5 1 if female,
and 0 if male; PNPLA3 C/G genotype or PNPLA3 G/G
genotype 5 1 for carriers of each genotype, and 0 for
carriers of other genotypes. This NAFLD model indicated
that the risk of developing NAFLD increased with increas-
ing BMI (Eq. 2 and Figure 2). Female gender, a low value
of HDL-C, and a high value of LDL-C were associated
with an increased Logit(Pr)max (Eq. 3 and Figure 2). The
PNPLA3 rs738409 polymorphism and a high value of
HbA1c were associated with a decreased BMI50 (Eq. 4
and Figure 2). The DsbA-L genotype was not found to be
a significant covariate for the Ligit (Pr) of the risk of devel-
oping NAFLD. The results of model evaluation and simula-
tion are shown in the Supplementary Results. In order
to assess the effect of the DsbA-L genotype on
overweight-induced NAFLD, we also developed models for
NAFLD stratified by the weight status (i.e., overweight or
normal-weight; Supplementary Tables S2 and S4). How-
ever, no association was found between the DsbA-L geno-
type and the risk of developing NAFLD in either normal
weight or overweight subjects (Supplementary Tables S2
and S4).

Table 1 Clinical characteristics of all subjects at baseline

DsbA-L genotype

G/G (n 5 192) G/T (n 5 129) T/T (n 5 20) P value

Female (%) 80 (41.7) 56 (43.4) 9 (45.0) 0.928

Age, years 68.0 6 5.9 67.3 6 5.8 67.3 6 6.0 0.513

BMI, kg/m2 22.5 6 2.9 22.6 6 2.7 23.9 6 3.0 0.112

Waist circumstance, cm 82.2 6 8.3 82.9 6 7.3 83.8 6 6.7 0.691

Fasting blood glucose, mg/dL 99.7 6 18.8 104.0 6 23.2 102.9 6 8.2 0.200

HbA1c, % 5.80 6 0.63 5.88 6 0.75 5.91 6 0.45 0.500

Systolic blood pressure, mmHg 123.4 6 18.3 121.9 6 17.3 122.6 6 13.0 0.762

Diastolic blood pressure, mmHg 72.1 6 10.3 71.4 6 11.3 72.7 6 11.2 0.775

eGFR, mL/min/1.73 m2 72.1 6 14.5 72.1 6 11.6 75.6 6 15.9 0.541

LDL-C, mg/dL 125.9 6 27.3 125.5 6 25.9 121.0 6 25.6 0.747

HDL-C, mg/dL 69.7 6 16.1 68.8 6 16.3 71.2 6 23.8 0.799

TG, mg/dL 100.9 6 49.7 100.5 6 44.1 105.6 6 52.2 0.907

AST, IU/L 24.4 6 7.3 23.1 6 5.9 23.8 6 5.3 0.221

ALT, IU/L 21.7 6 10.0 21.2 6 9.3 23.3 6 7.0 0.653

GGT, IU/L 30.2 6 25.6 27.6 6 22.8 27.1 6 13.4 0.586

Overweight (%) 35 (18.2) 22 (17.1) 7 (35.0) 0.154

Diabetes (%) 22 (11.5) 19 (14.7) 2 (10.0) 0.644

Hypertension (%) 78 (40.6) 53 (41.1) 9 (45.0) 0.931

Dyslipidemia (%) 96 (50.0) 61 (47.3) 7 (35.0) 0.430

NAFLD (%) 27 (14.1) 19 (14.7) 5 (25.0) 0.435

Ever smoker (%) 57 (29.7) 51 (39.5) 6 (30.0) 0.176

Alcohol intake (g/day) 4.6 6 6.7 4.7 6 7.0 3.7 6 7.2 0.835

The data are the means 6 SD or proportions for categorical variables.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; DsbA-L, disulfide bond-forming oxidoreductase A-like protein; eGFR,

estimated glomerular filtration rate; GGT, gamma-glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;

NAFLD, non-alcoholic fatty liver disease; TG, triglyceride.
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Associations of the adiponectin levels with the DsbA-L
genotype
The median values (range) of total and HMW adiponectin
and the ratio of HMW to total adiponectin (i.e., index of adi-
ponectin multimerization) were 123.0 (7.9–542.6) ng/mL,

74.9 (3.4–350.7) ng/mL, and 0.65 (0.09–0.99), respectively.
The ratio of HMW to total adiponectin was significantly
lower in carriers of DsbA-L T/T genotype than in those with

Figure 2 The relationships between the body mass index (BMI) and
the logit of nonalcoholic fatty liver disease (NAFLD) prevalence
based on the prediction model for NAFLD. The effects of covariates
on the relationships between the BMI and the logit of NAFLD preva-
lence are indicated by arrows. (a) The relationship between the BMI
and the logit of NAFLD prevalence is shown as a solid curve for
average subjects. (b) The relationships between the BMI and the
logit of NAFLD prevalence are shown as a solid curve for female
subjects or subjects with a low value of high-density lipoprotein cho-
lesterol and/or a high value of low-density lipoprotein cholesterol, and
are shown as a dotted curve for average subjects. (c) The relation-
ship between the BMI and the logit of NAFLD prevalence are shown
as a solid curve for subjects with patatin-like phospholipase domain-
containing 3 (PNPLA3) C/G or G/G genotypes and/or a high value of
HbA1c and are shown as a dotted curve for average subjects.

Figure 1 Longitudinal changes in the mean values of body mass
index (BMI) and the cumulative prevalence of nonalcoholic fatty
liver disease (NAFLD) stratified by the disulfide bond-forming oxi-
doreductase A-like protein (DsbA-L) genotype. The mean values
of BMI (a) and the cumulative prevalence of NAFLD (b) are shown
as dashed-dotted, dotted, and solid lines for the subjects with the
DsbA-L G/G, G/T, and T/T genotypes, respectively. (a) The bars
represent the mean 6 SE. (b) The graph provides the best fit linear
lines of the cumulative prevalence of NAFLD (%). The bars repre-
sent the 95% confidence intervals, and the trigonal, cross, and
dimetric plots represent the actual measurements in the DsbA-L G/
G, G/T, and T/T genotypes, respectively. The coefficient of determi-
nations (R2) of the best fit linear lines in the DsbA-L G/G, G/T, and
T/T genotypes were 0.886, 0.740, and 0.783, respectively.
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the G/G or G/T genotype (Figure 3), and this association
was also observed in the multiple regression analysis
(Supplementary Table S5). An interactive effect of DsbA-L
genotype and overweight status (end point) on the ratio of
HMW to total adiponectin was observed (P< 0.05). There-
fore, we also analyzed the associations of the DsbA-L
genotype with the values of total and HMW adiponectin and
their ratio among normal weight and overweight subjects in
end point (Figure 3). Among overweight subjects, the ratio
of HMW to total adiponectin was significantly lower in carriers
of DsbA-L T/T genotype than in those with the G/G or G/T
genotype (Figure 3), and this association was also observed
in the multiple regression analysis (Supplementary Table S5).

In contrast, the DsbA-L T/T genotype was not associated with

the ratio of HMW to total adiponectin value among normal-

weight subjects (Figure 3 and Supplementary Table S5).

Association of the oxidized HSA with the DsbA-L

genotype
The median value (range) of oxidized HSA was 1.99

(1.53–2.64) g/dL. The median value (range) of oxidized

HSA was higher in subjects who were overweight than in

those with normal weight (2.05 (1.66–2.54) g/dL vs. 1.97

(1.53–2.64) g/dL; P 5 0.005; Supplementary Figure S2).

In addition, the median value (range) of oxidized HSA

was also higher in subjects with NAFLD than in those with

Figure 3 The effect of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) genotype on the adiponectin levels. Plots of
the values of total adiponectin (a), high-molecular-weight (HMW) adiponectin (b), and the ratio of HMW to total adiponectin (c) stratified
by the DsbA-L genotype are shown for all, overweight, and normal weight subjects. The P values were calculated by Mann-Whitney U-
test. *The significance remained after Bonferroni’s test.
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non-NAFLD (2.07 (1.71–2.54) g/dL vs. 1.98 (1.53–2.64) g/dL;
P5 0.003; Supplementary Figure S2). Although the differ-
ences were not significant, the median values (ranges) of oxi-
dized HSA tended to be higher in the DsbA-L G/T or T/T
genotypes carriers (2.01 (1.64–2.64) g/dL or 2.06 (1.67–2.26)

g/dL) than in the G/G genotype carriers (1.96 (1.53–2.57) g/
dL; P 5 0.106 and P 5 0.417, respectively; Figure 4).
Among the normal weight subjects, the median value of oxi-
dized HSA was higher in the DsbA-L G/T than in the G/G

genotype carriers (1.99 (1.64–2.64) g/dL vs. 1.93 (1.53–
2.57) g/dL; P 5 0.027) but the significance disappeared
after Bonferroni’s adjustment (Figure 4).

Structural equation modeling
Finally, we evaluated the relationships among the DsbA-L
genotypes, BMI, the prevalence of NAFLD, and their related
covariates. Figure 5 shows the structural equation model

using the clinical data at the end point of the observation
period. The P value for the model fit to a v2 (18.40, degree of
freedom 5 17) was 0.364, and the goodness of fit index,
adjusted goodness of fit index, and root mean square error of
approximation were 0.987, 0.972, and 0.016, respectively.

Taken together, these fitness statistics indicated a good fit for
the structural equation model. The DsbA-L T/T genotype
seems to influence a high BMI both directly and indirectly
through a decreased HMW-to-total adiponectin ratio,
whereas the DsbA-L T/T genotype was not directly associ-

ated with the risk of developing NAFLD (Figure 5). A high
BMI and lower adiponectin multimerization were directly and/
or indirectly associated with the risk of NAFLD (Figure 5).

DISCUSSION

In the present study, we used a NONMEM program to
develop population prediction models incorporating popula-
tion background characteristics (e.g., the DsbA-L T/T

genotype) to predict the BMI and the risk of NAFLD in the

general elderly population. In this study, the population pre-

diction model for predicting the risk of NAFLD could be
shown as a sigmoidal maximum response using the BMI as

an exposure variable, and the interindividual variability in

the BMI values was described using a linear regression

model. The models we developed described the data ade-

quately (Supplementary Results, Supplementary Figure S1,

and Supplementary Tables S3 and S4). We expect that

these findings and/or the procedure of this study will aid in

the further prevention/treatment of obesity and obesity-

related diseases, such as NAFLD, in the general elderly pop-

ulation based on the population background.
This is the first study to show that the DsbA-L T/T geno-

type is associated with an increased BMI partially by

decreasing adiponectin multimerization. Although the DsbA-

L polymorphism did not affect the risk for NAFLD directly in

the prediction model of NAFLD, the structural equation

model suggested that the DsbA-L T/T genotype might affect

the risk of developing NAFLD through a high BMI in relation

to lowering adiponectin multimerization. A previous study

reported that DsbA-L was able to protect mice from high-

fat-diet-induced obesity, and the expression of DsbA-L

was inversely correlated with the BMI in both mice and

humans.13 DsbA-L rs1917760 polymorphism was also
associated with increased insulin secretion and fat deposi-

tion in humans.33 Thus, early intervention to upregulate

DsbA-L or enhance adiponectin multimerization (e.g., die-

tary intervention34) in DsbA-L T/T genotype carriers may be

an effective approach for preventing obesity in the elderly

population.
Low circulating levels of HMW adiponectin are a strong

risk factor for the development of visceral obesity.10 DsbA-L

is a key regulator of the adiponectin multimerization in 3T3-

L1 cells14 and protects mice from diet-induced obesity and

insulin resistance.13 Liu et al.35 showed that DsbA-L

Figure 4 The effect of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) genotype on the oxidized human serum albu-
min (HAS) level. Plots of the values of total oxidized HSA stratified by the DsbA-L genotype are shown for all, overweight, and normal
weight subjects. The P values were calculated by Mann-Whitney U-test. *The significance disappeared after Bonferroni’s test.
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localized in the endoplasmic reticulum, and this localization

was critical for suppressing endoplasmic reticulum stress

and promoting HMW adiponectin biosynthesis and secre-

tion. The present study revealed that the DsbA-L T/T geno-

type was associated with a high BMI as well as a low

HMW-to-total adiponectin ratio in relation to overweight sta-

tus in the general Japanese population (Eq. 1, Figures 1,

3, and 5, and Supplementary Table S5); however, this

genotype did not have any significant impact on the cumu-

lative prevalence of NAFLD (Figure 1) or the BMI-based

prediction model for the risk of NAFLD (Eqs. 2, 3, and 4).

Meanwhile, we found that a high BMI and lower adiponectin

multimerization were directly and/or indirectly associated

with the risk of NAFLD in our structural equation model

(Figure 5). Taken together, we hypothesize that the DsbA-L

T/T genotype may be indirectly and partially associated

with the risk of NAFLD through a high BMI and low adipo-

nectin multimerization.
Chen et al.16 showed that hepatic DsbA-L protects mice

from high-fat diet-induced fatty liver and insulin resistance.

More recently, the cGAS-cGAMP-STING pathway has been

identified as a cytosolic DNA sensor of pathogen-derived

DNA, which mediates the innate immune response.18 Bai

et al.17 showed that obesity-induced mtDNA is released

into cytosol resulting in inflammatory responses through the

activation of the cGAS-cGAMP-STING pathway. Moreover,

they identified DsbA-L as an important regulator of the

mitochondrial integrity and function, which suppresses the

activation of the cGAS-cGAMP-STING pathway resulting in

obesity-induced inflammation and insulin resistance.17

Thus, it is considered that DsbA-L may play a key role in

the development and progression of NAFLD, especially in

obese populations. In the present study, the association

between DsbA-L polymorphism and the median ratio of

HMW to total adiponectin, which is related to protection

against adipose tissue inflammation and insulin resis-

tance,8–10 was more pronounced in overweight subjects

than in the overall study population (Figure 3). However,

we did not find any direct effects of DsbA-L polymorphism

on the risk of NAFLD, even in overweight subjects (Eqs. 2,

3, and 4, and Supplementary Tables S2 and S4). In this

study, we could not investigate the association between

DsbA-L polymorphism and the risk of NAFLD in the obese

population, because the prevalence of obesity (BMI

�30 kg/m2) among the study subjects (1.2%) was small.

Further larger studies will be needed to elucidate the poten-

tial impact of this polymorphism on the obesity-induced devel-

opment and progression of NAFLD in humans.
DsbA-L is expressed in both the mitochondria and the

endoplasmic reticulum in adipocytes,35 and it plays a role in

not only adiponectin multimerization but also antioxidant

protection.35,36 DsbA-L exerts activities against a number of

substrates associated with oxidative stress (e.g., l-chloro-

2,4-dinitrobenzene, ethacrynic acid, cumene hydroperoxide,

and t-butyl hydroperoxide).36 Furthermore, the knockdown

of DsbA-L in Caenorhabditis elegans resulted in a signifi-

cant decrease in the respiration rate and a change in the

fatty acid metabolism in mitochondria.37 The redox state of

HSA has been proposed as a plasma marker of chronic

oxidative stress-related diseases,30 including the progres-

sion of chronic hepatitis and cirrhosis.31 The results of this

study showed that the oxidized HSA level was increased in

subjects who were overweight and/or with NAFLD (Supple-

mentary Figure S2). However, the oxidized HSA level was

not markedly different among the DsbA-L rs1917760 geno-

types (Figure 4); as such, the DsbA-L T/T genotype might

Figure 5 The structural equation modeling diagram of nonalcoholic fatty liver disease (NAFLD) and the disulfide bond-forming oxidore-
ductase A-like protein (DsbA-L) genotype. Lines with numbers indicate significant paths with standardized partial regression (b) coeffi-
cients (P<0.05). The e1, e2, e3, e4, and e5 indicate latent factors. Arrows represent an association between two factors. The b
values ranged from 21 to 1, with a positive value representing a positive correlation and negative value representing a negative corre-
lation. HDL-C, high-density lipoprotein cholesterol.
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be associated with being overweight due to the decreased

adiponectin multimerization rather than the increased oxida-

tive stress, although further studies are needed to verify the

relationship of the DsbA-L genotype with oxidative stress

using other more sensitive oxidative stress-related markers.
Several limitations associated with the present study war-

rant mention. The subjects’ alcohol consumption and smok-

ing status were evaluated through face-to-face interviews,

which might have lacked reliability. The diagnosis of FLD

was performed by hepatic ultrasonography scanning and

was not confirmed by a liver biopsy. Another limitation of

the present study was the study design. The present study

was retrospective in nature and investigated a relatively

small number of subjects, especially of the subjects strati-

fied by the DsbA-L genotypes. Furthermore, some of the

subjects did not attend the health screening program annu-

ally throughout the observation period; thus, the number of

study subjects varied at some points of the observation

period. Notably, the decrease in the number of subjects

with the T/T genotype (�20%) was less than that in the

patients with the G/G or G/T genotypes (>30%) during the

observation period (Figure 1). In the present study, we

modeled the BMI and the risk of NAFLD using a NONMEM

procedure, which enabled the quantification of several lev-

els of variability and allowed us to address unstable data

(e.g., a limited number of samples per individual at different

time points). Thus, the variation in the number of study sub-

jects during the observation period may not have had a sig-

nificant impact on the results of this study. Nevertheless, a

further large longitudinal investigation is required to verify

the present findings.
In conclusion, our population prediction model of BMI

indicated that the DsbA-L T/T genotype was significantly

associated with a high BMI. The BMI-based NAFLD predic-

tion model showed that the DsbA-L T/T genotype did not

have any direct impact on the risk of NAFLD, whereas our

structural equation model suggested that this genotype

effect might be indirectly or partially associated with the

risk of developing NAFLD through a high BMI and low adi-

ponectin multimerization. Thus, genotyping to investigate

DsbA-L polymorphism and determine the patients with the

highest risk of developing obesity may help to prevent obe-

sity, and possibly NAFLD, by facilitating targeted prevention

and treatment programs in patients with a high risk of obe-

sity; however, further larger studies are needed to verify

our findings.

Acknowledgments. The authors thank all of the study participants
and the staff of the Japanese Red Cross Kumamoto Health Care Center.

Source of Funding. The work was supported by grants-in-aid for
scientific research from the Ministry of Education, Culture, Sports, Science
and Technology, Japan (grant numbers: 25860117, 15K18925, and
16K08406), and the Japan Research Foundation for Clinical Pharmacology.

Conflict of Interest. The authors declared no competing interests
for this work.

Author Contributions. Ke.O., T.W., and J.S. wrote the manuscript.
Ke.O., T.W., T.I., and J.S. designed the research. Ke.O., T.W., M.K., T.O.,
K.M., Y.S., K.N., T.I., Y.I., H.W., T.M., Ko.O., Y.O., and J.S. performed the
research. Ke.O., M.K., T.I., and T.O. analyzed the data.

1. Seto, W.K. & Yuen, M.F. Nonalcoholic fatty liver disease in Asia: emerging perspec-
tives. J. Gastroenterol. 52, 164–174 (2017).

2. Buzzetti, E., Pinzani, M. & Tsochatzis, E.A. The multiple-hit pathogenesis of non-
alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038–1048 (2016).

3. Portillo-Sanchez, P. et al. High prevalence of nonalcoholic fatty liver disease in
patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J.
Clin. Endocrinol. Metab. 100, 2231–2238 (2015).

4. Bertolotti, M. et al. Nonalcoholic fatty liver disease and aging: epidemiology to man-
agement. World J. Gastroenterol. 20, 14185–14204 (2014).

5. Liu, C.J. Prevalence and risk factors for non-alcoholic fatty liver disease in Asian peo-
ple who are not obese. J. Gastroenterol. Hepatol. 27, 1555–1560 (2012).

6. Zhang, L. et al. PNPLA3 polymorphisms (rs738409) and non-alcoholic fatty liver dis-
ease risk and related phenotypes: a meta-analysis. J. Gastroenterol. Hepatol. 30,
821–829 (2015).

7. Oniki, K. et al. Influence of the PNPLA3 rs738409 polymorphism on non-alcoholic
fatty liver disease and renal function among normal weight subjects. PLoS One 10,
e0132640 (2015).

8. Cho, J., Koh, Y., Han, J., Kim, D., Kim, T. & Kang, H. Adiponectin mediates the
additive effects of combining daily exercise with caloric restriction for treatment of
non-alcoholic fatty liver. Int. J. Obes. (Lond). 40, 1760–1767 (2016).

9. Handa, P. et al. Reduced adiponectin signaling due to weight gain results in nonalco-
holic steatohepatitis through impaired mitochondrial biogenesis. Hepatology 60,
133–145 (2014).

10. Fisman, E.Z. & Tenenbaum, A. Adiponectin: a manifold therapeutic target for metabolic
syndrome, diabetes, and coronary disease? Cardiovasc. Diabetol. 13, 103 (2014).

11. Waki, H. et al. Impaired multimerization of human adiponectin mutants associated
with diabetes. Molecular structure and multimer formation of adiponectin. J. Biol.
Chem. 278, 40352–40363 (2003).

12. Wang, Y. et al. Post-translational modifications of the four conserved lysine residues
within the collagenous domain of adiponectin are required for the formation of its
high molecular weight oligomeric complex. J. Biol. Chem. 281, 16391–16400 (2006).

13. Liu, M. et al. Fat-specific DsbA-L overexpression promotes adiponectin multimeriza-
tion and protects mice from diet-induced obesity and insulin resistance. Diabetes 61,
2776–2786 (2012).

14. Liu, M. et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adipo-
nectin multimerization. Proc. Natl. Acad. Sci. USA 105, 18302–18307 (2008).

15. Theodoratos, A. et al. The impact of glutathione transferase kappa deficiency on adi-
ponectin multimerisation in vivo. Int. J. Obes. (Lond). 36, 1366–1369 (2012).

16. Chen, H. et al. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and
insulin resistance. FASEB J. 31, 2314–2326 (2017).

17. Bai, J. et al. DsbA-L prevents obesity-induced inflammation and insulin resistance by
suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. Proc. Natl.
Acad. Sci. USA 114, 12196–12201 (2017).

18. Cai, X., Chiu, Y.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA
sensing and signaling. Mol. Cell 54, 289–296 (2014).

19. Cho, C.S. et al. Lipotoxicity induces hepatic protein inclusions through TBK1-
mediated p62/SQSTM1 phosphorylation. Hepatology; e-pub ahead of print 2017.

20. Shield, A.J., Murray, T.P., Cappello, J.Y., Coggan, M. & Board, P.G. Polymorphisms
in the human glutathione transferase Kappa (GSTK1) promoter alter gene expression.
Genomics 95, 299–305 (2010).

21. Oniki, K. et al. Glutathione S-transferase K1 genotype and overweight status in
schizophrenia patients: a pilot study. Psychiatry Res. 239, 190–195 (2016).

22. Nguyen, T.H. et al. Model evaluation of continuous data pharmacometric models:
metrics and graphics. CPT Pharmacometrics Syst. Pharmacol. 6, 87–109 (2017).

23. Marshall, S.F. et al. Good practices in model-informed drug discovery and develop-
ment: practice, application, and documentation. CPT Pharmacometrics Syst. Pharma-
col. 5, 93–122 (2016).

24. Aoyama, T. et al. Pharmacokinetics and pharmacodynamics of meloxicam in East
Asian populations: the role of ethnicity on drug response. CPT Pharmacometrics
Syst. Pharmacol. 6, 823–832 (2017).

25. Vinks, A.A., Emoto, C. & Fukuda, T. Modeling and simulation in pediatric drug ther-
apy: application of pharmacometrics to define the right dose for children. Clin. Phar-
macol. Ther. 98, 298–308 (2015).

26. Stein, C.M., Morris, N.J., Hall, N.B. & Nock, N.L. Structural equation modeling. Meth-
ods Mol. Biol. 1666, 557–580 (2017).

27. Song, Y.E., Morris, N.J. & Stein, C.M. Structural equation modeling with latent varia-
bles for longitudinal blood pressure traits using general pedigrees. BMC Proc. 10,
303–307 (2016).

28. Chavance, M., Escolano, S., Romon, M., Basdevant, A., de Lauzon-Guillain, B. &
Charles, M.A. Latent variables and structural equation models for longitudinal

Prediction Models for BMI and NAFLD
Oniki et al.

392

CPT: Pharmacometrics & Systems Pharmacology



relationships: an illustration in nutritional epidemiology. BMC Med. Res. Methodol. 10,
37 (2010).

29. Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver dis-
ease: practice guideline by the American Gastroenterological Association, American
Association for the Study of Liver Diseases, and American College of Gastroenterol-
ogy. Gastroenterology 142, 1592–1609 (2012).

30. Nagumo, K. et al. Cys34-cysteinylated human serum albumin is a sensitive
plasma marker in oxidative stress-related chronic diseases. PLoS One 9,
e85216 (2014).

31. Setoyama, H. et al. Oral branched-chain amino acid granules improve structure and
function of human serum albumin in cirrhotic patients. J. Gastroenterol. 52, 754–765
(2017).

32. Hayashi, T., Suda, K., Imai, H. & Era, S. Simple and sensitive high-performance liq-
uid chromatographic method for the investigation of dynamic changes in the redox
state of rat serum albumin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 772,
139–146 (2002).

33. Gao, F. et al. Polymorphism of DsbA-L gene associates with insulin secretion and
body fat distribution in Chinese population. Endocr. J. 56, 487–494 (2009).

34. Olivares-Garcia, V. et al. Fasting and postprandial regulation of the intracellular locali-
zation of adiponectin and of adipokines secretion by dietary fat in rats. Nutr. Diabetes
5, e184 (2015).

35. Liu, M. et al. Endoplasmic reticulum (ER) localization is critical for DsbA-L protein to
suppress ER stress and adiponectin down-regulation in adipocytes. J. Biol. Chem.
290, 10143–10148 (2015).

36. Morel, F. & Aninat, C. The glutathione transferase kappa family. Drug Metab. Rev.
43, 281–291 (2011).

37. Petit, E. et al. Glutathione transferases kappa 1 and kappa 2 localize in peroxisomes
and mitochondria, respectively, and are involved in lipid metabolism and respiration in
Caenorhabditis elegans. FEBS J. 276, 5030–5040 (2009).

VC 2018 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the
terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no
modifications or adaptations are made.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://psp-journal.com)

Prediction Models for BMI and NAFLD
Oniki et al.

393

www.psp-journal.com


	l
	l

