
ORIGINAL RESEARCH ARTICLE
published: 06 June 2012

doi: 10.3389/fgene.2012.00097

A hierarchical Bayesian approach to multi-trait clinical
quantitative trait locus modeling

Crispin M. Mutshinda1†, Neli Noykova1 and Mikko J. Sillanpää1,2,3,4*

1 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
2 Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
3 Department of Mathematical Sciences, University of Oulu, Oulu, Finland
4 Department of Biology, University of Oulu, Oulu, Finland

Edited by:

Kenneth S. Kompass, University of
California San Francisco, USA

Reviewed by:

Jian Li, Tulane University, USA
Bjarni V. Halldorsson, Reykjavik
University, Iceland

*Correspondence:

Mikko J. Sillanpää, Department of
Mathematical Sciences, PO Box
3000, University of Oulu, FIN-90014
Oulu, Finland.
e-mail: mjs@rolf.helsinki.fi
†Current address:

Crispin M. Mutshinda, Department of
Mathematics and Computer Science,
Mount Allison University, York Street
67, Sackville, NB, Canada E4L 1E6.

Recent advances in high-throughput genotyping and transcript profiling technologies have
enabled the inexpensive production of genome-wide dense marker maps in tandem with
huge amounts of expression profiles.These large-scale data encompass valuable informa-
tion about the genetic architecture of important phenotypic traits. Comprehensive models
that combine molecular markers and gene transcript levels are increasingly advocated
as an effective approach to dissecting the genetic architecture of complex phenotypic
traits. The simultaneous utilization of marker and gene expression data to explain the vari-
ation in clinical quantitative trait, known as clinical quantitative trait locus (cQTL) mapping,
poses challenges that are both conceptual and computational. Nonetheless, the hierarchical
Bayesian (HB) modeling approach, in combination with modern computational tools such
as Markov chain Monte Carlo (MCMC) simulation techniques, provides much versatility for
cQTL analysis. Sillanpää and Noykova (2008) developed a HB model for single-trait cQTL
analysis in inbred line cross-data using molecular markers, gene expressions, and marker-
gene expression pairs. However, clinical traits generally relate to one another through
environmental correlations and/or pleiotropy. A multi-trait approach can improve on the
power to detect genetic effects and on their estimation precision. A multi-trait model also
provides a framework for examining a number of biologically interesting hypotheses. In this
paper we extend the HB cQTL model for inbred line crosses proposed by Sillanpää and
Noykova to a multi-trait setting. We illustrate the implementation of our new model with
simulated data, and evaluate the multi-trait model performance with regard to its single-
trait counterpart. The data simulation process was based on the multi-trait cQTL model,
assuming three traits with uncorrelated and correlated cQTL residuals, with the simulated
data under uncorrelated cQTL residuals serving as our test set for comparing the per-
formances of the multi-trait and single-trait models. The simulated data under correlated
cQTL residuals were essentially used to assess how well our new model can estimate
the cQTL residual covariance structure. The model fitting to the data was carried out by
MCMC simulation through OpenBUGS. The multi-trait model outperformed its single-trait
counterpart in identifying cQTLs, with a consistently lower false discovery rate. Moreover,
the covariance matrix of cQTL residuals was typically estimated to an appreciable degree
of precision under the multi-trait cQTL model, making our new model a promising approach
to addressing a wide range of issues facing the analysis of correlated clinical traits.

Keywords: Bayesian multilevel modeling, genetic architecture, linked marker-expression pairs, pleiotropy

INTRODUCTION
Integrating genetic polymorphism and gene expression data to
elucidate the genetic architecture and regulatory networks of com-
plex clinical traits is a rousing trend in modern biology. This
tendency owes much to the now established view (e.g., Schadt
et al., 2005; Kendziorski et al., 2006; Lee et al., 2009; Mackay, 2009)
that gene expression profiles usually act as intermediate pheno-
types between genetic polymorphism and the phenotypic traits of
interest.

The genomic loci associated with the variation in gene tran-
script levels, known as expression quantitative trait loci (eQTLs),

can be identified through a standard quantitative trait locus (QTL)
mapping framework, with transcript levels acting as surrogate for
classical quantitative traits (Jansen and Nap, 2001; Schadt et al.,
2003; Cheung et al., 2005; Drake et al., 2006; Breitling et al., 2008).
An expression profile that is treated as a continuous trait for map-
ping purposes is called an expression trait (eTrait; Zou et al.,
2007), and the genome-wide genetic analysis of gene expression
data is known as genetical genomics (Jansen and Nap, 2001) or
transcriptome mapping (Li and Deng, 2010).

An eQTL is said to be cis- or trans-acting (Brem et al., 2002),
depending on its location with regard to the chromosomal position
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of its target gene (i.e., the gene whose expression it regulates). A
cis eQTL encompasses the genomic location of its target gene,
whereas a trans eQTL maps to a distant genomic location. Trans
eQTLs may aggregate in small segments of DNA sequences called
genomic “hotspots” in which each eQTL may regulate a large
number of gene transcripts (Breitling et al., 2008; Wu et al.,
2008). It is, however, not straightforward to determine whether
an eQTL acts in cis or in trans. One way out is to consider as
cis-acting all eQTLs lying within a specific distance of their target
genes, and view the ones that are far removed from their target
genes as trans-acting (e.g., Brem et al., 2002; Wittkopp, 2005).
Along these lines, Brem et al. (2002) used 10 kb as the thresh-
old distance for distinguishing between cis- and trans-regulatory
effects.

With the advent of high-throughput genotyping and transcript
profiling technologies, it is now easy and inexpensive to con-
currently generate genome-wide dense marker maps and huge
amounts of expression profiles for each individual in a study pop-
ulation (Borevitz et al., 2003; Ronald et al., 2005). These large-scale
data are generally littered with valuable information on the link
between genetic polymorphisms and clinical traits of interest, and
on the subtle molecular networks or pathways involved. The simul-
taneous utilization of marker and expression data to explain the
variation in clinical quantitative traits is termed clinical quantita-
tive trait locus (cQTL) analysis (Hoti and Sillanpää, 2006; Sillanpää
and Noykova, 2008; Pikkuhookana and Sillanpää, 2009). cQTL
analysis poses many problems and challenges, four of which are
pointed out below.

(1) The high model dimensionality implied by the huge number
of parameters undermines the effectiveness of standard statistical
methods. (2) High correlations between predictors (markers or
expressions) tend to reduce statistical power in the sense that, if
one predictor shows a spurious association, its correlates will most
likely show that same erroneous association. (3) The statistical
issue of inflated false discovery rate (FDR) or type I error due to
multiple testing (Kendziorski et al., 2006) limits the usefulness of
single-locus testing procedures. A multi-locus approach provides
more power for identifying the few potentially relevant loci to the
phenotype-to-genotype association in both QTL and eQTL analy-
ses. (4) Small sample size in terms of the number of individuals
(de Koning and Haley, 2005) remains a problem in both QTL and
eQTL analyses as the curse of dimensionality associated with the
so-called“large p small n”problem is ever more ubiquitous. In this
regard, regularization or shrinkage methods (e.g., Xu, 2003; Mut-
shinda and Sillanpää, 2010, 2011) are increasingly advocated as
an effective way of reducing the model dimensionality in a regres-
sion set-up, by shrinking the effects of irrelevant covariates toward
zero.

Hierarchical Bayesian (HB) modeling or Bayesian multilevel
modeling (Gelman et al., 2003) provides a convenient approach for
combining information from various data sources and accommo-
dating uncertainty at different levels. By HB model, we understand
a Bayesian model conceptualized in a hierarchical form in the
sense that, the parameters involved in the likelihood function
have priors, the parameters of which may also have priors involv-
ing a set of parameters, which may in turn have priors and so
on, with the process coming to an end when no new priors are

introduced (e.g., Mutshinda et al., 2008). In many cases, the HB
prior specification provides the flexibility to define more realistic
priors intended to match the requirements of the data at hand,
while taking into account existing knowledge and expert opin-
ion. It also helps enhance parameter estimation by “borrowing
strength”from data used to estimate related quantities. With recent
advances in computer intensive sampling-based methods such
as Markov chain Monte Carlo (MCMC) simulation techniques
(Gilks et al., 1996), the computational hurdles that have long
prevented the broad application of HB modeling are no longer
an issue; Bayesian models of arbitrary complexity are now being
developed and implemented across a broad spectrum of scientific
disciplines.

Sillanpää and Noykova (2008) developed a HB model for
single-trait cQTL analysis in inbred line cross-data, using molec-
ular markers, gene expressions, and marker-gene expression pairs.
Their approach involved an eQTL model as missing data model
for the intermediate link between markers and transcript levels
in the determination of clinical phenotypic traits. The intermedi-
ate eQTL model can provide valuable insights into gene networks
and molecular mechanisms linking genes to the clinical traits of
interest.

It has, however, been pointed out (e.g., Mackay, 2009) that
phenotypic traits do not exist in isolation; they often relate to one
another through environmental correlations and pleiotropy. Many
authors, including Jiang and Zeng (1995) and Liu et al. (2007,
2008) have pointed up a number of advantages of a joint analy-
sis of multiple correlated traits over their separate analyses. These
include the improvement on the statistical power to detect QTLs
and on the precision of parameter estimation. Moreover, a multi-
trait model provides a formal framework for examining a number
of biologically interesting hypotheses regarding the underpinnings
of genetic correlations between different traits. This understand-
ing is crucial in animal and plant breeding where, as pointed out
by Jiang and Zeng (1995), one of the major goals is to break
unfavorable linkage.

The aim of this study is to extend the HB cQTL model for
inbred line crosses proposed by Sillanpää and Noykova (2008) to
a multi-trait setting, to illustrate the implementation or our new
model with simulated the data, and evaluate its performance, using
the single-trait counterpart as benchmark for comparison.

MATERIALS AND METHODS
DESCRIPTION OF THE INPUT DATA
Keeping with Sillanpää and Noykova (2008), we restrict attention
to inbred line crosses such as backcross or double haploid prog-
eny with one of two possible genotypes at any locus. However,
the model can straightforwardly be adapted for the F2 inter-cross
design as discussed in the appendix of Sillanpää and Noykova
(2008).

The input data involve molecular markers, gene expressions,
and a set of clinical phenotypic traits of interests from each sam-
pled individual. In addition, some marker-expression associations
are a priori suggested for inclusion in the model, and may concern
cis- or trans-regulatory effects. Hoti and Sillanpää (2006) refer to
the marker-gene expression pairs as linked data. The linked data
may result from oligonucleotide array data (Borevitz et al., 2003;
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FIGURE 1 | Hierarchical directed acyclic graph (DAG) of the model

structure. The pre-specified values (Model level I) or observed data (Model
level IV) are given in boxes. Ellipses (Model levels II and III) refer to the

unknown random variables, which are sampled. The solid arrows illustrate
hierarchical dependencies, and the dotted arrows show deterministic
dependences. The box given in bold indicates the multi-trait model structure.

Ronald et al., 2005) where markers and gene expression measure-
ment are concurrently produced at every position, or be based
on earlier findings of eQTL analyses or some known pathways. In
cases where there is no a priori information to suggest the linked
marker-expression pairs, these can be created from genetic dis-
tances, by assuming in cis effects between a marker and all genes
falling within a specific genetic distance from it. As in Sillanpää
and Noykova (2008), we assume each expression to be regulated
by a single marker, without excluding the possibility for a marker
to simultaneously regulate two or more expressions. In the latter
case, the involved marker needs to be represented twice or as many
times as required, the distance between its different copies being
roughly zero.

SPECIFICATION OF THE MULTI-TRAIT cQTL MODEL
Let y = [y1, y2, . . . , yNt

] denote the values of the Nt clinical
quantitative traits of interest on the N study individuals, where
yk = (yk,1, yk,2, . . ., yk,N)T represents the measurements of the kth
trait (k = 1. . .Nt). For each trait, the cQTL model of Sillanpää and
Noykova (2008) is assumed. That is,

yk = ak 1 + X̃ηk + ek , (1)

where ak is the population intercept for the kth trait, 1 is the N × 1
vector of ones, ek = (ek,1, ek,2, . . ., ek,N)T is the residual vector asso-
ciated with the kth trait, and X̃ is the design matrix involving NP

markers (G), NP expressions (E), and NP marker-expression pairs
(GE) organized as X̃ = [G E GE]. The parameter vec-
tor ηk therefore, describes the regulatory effect of genetic data on
the kth trait. The full multi-trait cQTL model can be compactly
written as

y = a + Xη + e, (2)

where a = (a11,a21, . . . ,aNt 1), X is a block-diagonal matrix
comprising Nt blocks identical to X̃, η = I•β is the 3NpNt × 1
vector of regression coefficients to be estimated from the data,
• denotes the entry-wise (Hadamard or Schur) product, I rep-
resents a 3NpNt × 1 vector of indicators, and β is the 3NpNt × 1
vector of genetic effects. As pointed out earlier, the method is
developed for experimental crosses such as backcross or dou-
ble haploid progeny with only one of two possible genotypes at
any locus. Assuming that one genotype is coded as 1 and the
other as −1, the size of the cQTL effects is represented by the
quantity 2Iβ.
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The regression terms ηM, ηE, and ηME are respectively related
to the marker genotypes, the expression measurements, and
the mixed marker-expression pairs; e = (e1, e2, · · · , eNt ) is the
NtN × 1 residual vector assumed to follow a multivariate nor-
mal distribution e ∼ MVN (̃0, S ⊗ IN ) with the NtN × 1 vector
0̃ = (0, 0, . . . , 0)T as mean and a (Nt N × Nt N ) covariance matrix
Σ = S ⊗ IN, where ⊗ denotes the Kronecker product operator.
Here S is an Nt × Nt covariance matrix describing the variances
and the (within individual) dependence between the residuals of
different traits and IN is the N × N identity matrix. This said, the
distribution of y is given by y ∼ MVN (a + Xη, S ⊗ IN), where a,
X, and η are defined above.

HIERARCHICAL STRUCTURE OF THE MULTI-TRAIT cQTL MODEL
Our HB multi-trait cQTL model comprises four hierarchical levels
as graphically depicted in Figure 1. Note that the intermedi-
ate eQTL model, presented as a shadowed box in the figure, is
exactly the same as the eQTL part of the single-trait cQTL model
(Sillanpää and Noykova, 2008). A detailed description of each
hierarchical level is given below.

Model level IV
The highest level (level IV) of our HB model is represented by data
vector D = (E0, G0, y).

Here the phenotypic data y (modeled by Eq. 1) for all Nt

traits are assumed to be available with no missingness, while
the observed gene expressions Eo and marker genotypes Go may
involve some missing values. The complete marker and expression
data are respectively denoted by G and E.

The parameters θ = (θc , θe) to be estimated can be partitioned
into two groups, namely θc = (I, β, a, S) = (η, a, S) which are

Table 1 | Locations of the non-zero effects: for the first trait, there is

marker ηM
24,1, and expression ηE

14,1 components, for the second trait,

marker ηM
24,2, and a mixed genotype × expression interaction ηME

4,2 , and

for the third trait, marker ηM
24,3, and expression ηE

18,3.

Location (j, k ) of the

regulatory effect ηj,k

Size of the effects ηl
j ,k

,

l = {M, E , ME }

Pair j Trait k ηM
j

ηE
j

ηME
j

True value True value True value

4 1 0 0 0

2 0 0 6

3 0 0 0

14 1 0 6 0

2 0 0 0

3 0 0 0

18 1 0 0 0

2 0 0 0

3 0 6 0

24 1 6 0 0

2 6 0 0

3 6 0 0

directly involved in cQTL model (2), and θe = (Iμ, μ, A, G, E, σ2
0)

used in the intermediate eQTL model. The eQTL model parame-
ter σ2

0 is the expression variance, Iμ is a vector of indicators, μ

is the vector of eQTL effect sizes, and A comprises the assign-
ment variables which, as in Sillanpää and Noykova (2008), define
the expression eQTL regulatory effects of the marker-expression
pairs.

According the Bayes theorem p(θ | D) ∝ p(D,θ) = p(D | θ)p(θ),
which is equivalent to p(θc, θe | EO, GO, y) ∝ p(I, β, a, S, θe, Eo, Go,
y). This can be further factorized (according to the conditional
independence assumptions made) to the form

p(θc , θe |Eo , Go , y) ∝ p(y|I, β, a, S, E, G)p(I|s)p(β|σρ2
β)

× p(σ2
β)p(a)p(S)p(Eo , Go , θe). (3)

The likelihood function associated with the multi-trait cQTL
model (2) is given by

p
(

y|I, β, a, S, E, G
) = (2π)−N/2|S ⊗ IN |−1/2 exp{−(y − a

− Xη)T (S ⊗ IN )−1(y − a − Xη) /2}, (4)

where η = I •β, and |M| denotes the determinant of M. The other
distributions on the right hand side (RHS) of Eq. 3 are described
at lower hierarchical levels.

Model levels II and III
The intermediate hierarchical levels II and III involve models
for the unknown parameters, as well as models for the com-
plete marker genotype and gene expression data. The coefficients
η = I • β in the cQTL regression model (2) are formed on Model
level III, whereas models for the genetic effects β and the eQTL
effect sizes μ appear on level II. The models of complete expres-
sion E and marker data G are given in model level III of eQTL
model (Sillanpää and Noykova, 2008).

Model level I
The lowest hierarchical level (level I) consists of all pre-specified
parameter and variable values.

At this level the rest of the terms on the RHS of Eq. 3
are defined. For the second term, we assume independence, so

that p(I|s) = ∏NT
k=1

∏Np

j=1 p(I M
j ,k |sM )p (I E

j ,k |sE )p (I ME
j ,k |sME ), where

p(I l
j ,k |sl) ∼ Bernoulli(sl) is a Bernoulli-distributed indicator asso-

ciated with the jth component of type l = {M, E, ME} with regard
to trait k. As for the single-trait cQTL model, we assume that
0 < sl ≤ 1/2 is very small for all l components, implying a small
probability that the corresponding candidate is associated with
the trait.

For the third term, we assume conditional independence. That

is, p(β|σ2
β
) = ∏NT

k=1

∏Np

j=1 p (βM
j ,k |σ2

βM
j

)p (βE
j ,k |σ2

βE
j
)p (βME

j ,k |σ2
βME

j
).

For each trait k, we assume that βl
j ,k |σ2

βl
j

∼ N (0, σ2
βl

j
), for j = 1,

. . ., Np and l ∈ {M, E, ME}.
For the genetic variances, we assume that p(σ2

β
) =∏NT

k=1

∏Np

j=1 p(σ2
βM

j
)p(σ2

βE
j
)p (σ2

βME
j

), and impose InvGa(1, 1) priors
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Table 2 |True and estimated (posterior means) cQTL effects under the MD1 version of the HB multi-trait cQTL model with 10% markers and 10%

expressions coded as missing and different values of Bernoulli parameter sl .

Location (j, k ) of

the effect ηj,k

Size of the regulatory effects ηl
j ,k

, l = {M, E , ME }

Pair j Trait k ηM
j

ηE
j

ηME
j

True value Estimated True value Estimated True value Estimated

sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09

4 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 6 4.01 4.11

3 0 0 0 0 0 0 0 0 0

14 1 0 0 0 6 5.52 5.53 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

16 1 0 0 0 0 0 0 0 0 0

2 0 0 −0.27 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

18 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 6 5.95 5.95 0 0 0

22 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0.65 0.63

3 0 0 0 0 0 0 0 0

24 1 6 5.05 5.20 0 0 0 0 0 0

2 6 5.57 5.68 0 0 0 0 0 0

3 6 5.25 5.36 0 0 0 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero (|η̄l
j ,k | � 0.2). The shaded cells indicate false positives and false negatives.

independently on the variance parameters σ2
βl

j
for j = 1, . . ., Np.

That is, 1/σ2
βl

j
∼ Ga (1, 1), where Ga(α, β) denote the Gamma

distribution with mean α/β and variance α/β2. In addition, we
impose the following (non-informative) normal prior distribution
on the parameters ak ∼ N (0, 100).

We place on the Nt × Nt residual covariance matrix S an
inverse Wishart prior with matrix parameter (or prior covariance
matrix) 100 × INt and Nt degrees of freedom, or equivalently,
a Wishart prior with matrix parameter 100 × INt and Nt

degrees of freedom on the precision matrix S−1. That is,

p(S−1) ∝ |S−1| 1
2 [(Nt ) − k−1] exp{− 1

2 trace[ (100 × INt )
−1 S−1]}.

Note that the number of degrees of freedom is set to be the largest
possible, i.e., the rank of S, to convey a lack of prior information.

For the last term in the RHS of Eq. 3, the joint distribution
p(Eo, Go, θe), is a part of eQTL model and is described in details
in Sillanpää and Noykova (2008).

APPLICATIONS
Simulation of the multi-trait cQTL data
We used the same marker and expression data from backcross
inbred line simulation experiment as Sillanpää and Noykova
(2008), in order to compare the performances of the multi-trait
and single-trait HB cQTL models. The expression data were simu-
lated through the OpenBUGS 2.2.0 program (Thomas et al., 2006)

conditionally on marker data, using the eQTL part of the multi-
trait cQTL model. Because of the high computational burden
of MCMC sampling, we chose a smaller subset from the com-
plete simulated marker and expression data. We also reduced the
population size from N = 200 to N = 100 individuals, and the
number of marker-gene pairs from Np = 102 to Np = 25 so that
the markers spanned only the first chromosome. The multi-trait
clinical cQTL data were subsequently simulated using the already
generated marker and expression data, through the multi-trait
cQTL model (1), assuming a fairly small (Nt = 3) number of traits.

Following Sillanpää and Noykova (2008), we chose two non-
zero regulatory effects ηl

j ,k , l ∈ {M,E,ME}, j = 1, . . .,Np, from every

trait k = 1, 2, 3, to generate the phenotypic values for the multi-
trait cQTL analysis. For the first trait we chose one marker ηM

24,1,

and one expression ηE
14,1 components to be non-zero, for the sec-

ond trait, one marker ηM
24,2, and one mixed genotype × expression

interaction ηME
4,2 , and for the third trait, one marker ηM

24,3, and one

expression ηE
18,3 components (Table 1). We fixed all non-zero effect

sizes to the arbitrarily chosen value βM
j ,k = βE

j ,k = βME
j ,k = 6. With

two non-zero effects out of 25 candidates, the simulated value of
sl = P(I l

j ,k = 1) is 2/25 = 0.08 for all l ∈ {M, E, ME}.

We investigated the model performance in the presence of
uncorrelated and correlated cQTL residuals, noting that uncor-
related cQTL residuals do not necessary imply uncorrelated traits
since the traits can still be correlated under uncorrelated cQTL

www.frontiersin.org June 2012 | Volume 3 | Article 97 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Mutshinda et al. A hierarchical approach for multi-trait cQTL

Table 3 |True and estimated (posterior means) cQTL effects under the MD1 version of the HB multi-trait cQTL model with 10% markers and 30%

expressions coded as missing and different values of Bernoulli parameter sl .

Location (j, k ) of

the effect ηj,k

Size of the regulatory effects ηl
j ,k

, l = {M, E , ME }

Pair j Trait k ηM
j

ηE
j

ηME
j

True value Estimated True value Estimated True value Estimated

sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09

2 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0.26

3 0 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 6 5.96 0

3 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0 0

2 0 0 −12.87 0 0 −1.46 0 0 7.14

3 0 0 0 0 0 0 0 0 0

14 1 0 0 0 6 5.78 5.52 0 0 0

2 0 0 −0.2 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

18 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 6 5.66 5.77 0 0 0

21 1 0 0 0 0 0 0 0 0 0

2 0 0 0.26 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

24 1 6 0.24 2.78 0 0 0 0 0 0

2 6 1.09 3.40 0 0 0 0 0 0

3 6 0.46 3.50 0 0 0 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero (|η̄l
j ,k | ≥ 0.2). The shaded cells indicate false positives and false negatives.

residuals owing for instance to pleiotropy. The simulated data
with uncorrelated cQTL residual represented our full test set for
comparing the multi-trait and single-trait models, whereas the
simulated data with correlated cQTL residuals data were merely
used to test how well our multi-trait model is able to estimate the
cQTL residual covariance structure.

To simulate data with small heritabilities and uncorrelated
cQTL residuals, the elements of the residual covariance matrix S

were arbitrarily fixed as S =
⎛
⎝139.1

0 123.3
0 0 128.1

⎞
⎠, where the

elements above the main diagonal have been omitted due to sym-
metry. On average, the standard deviations σ̂Yk

of the simulated
cQTL data over the N = 100 individuals for Trait 1, Trait 2, and
Trait 3 were 13.62, 12.92, and 12.50, respectively, implying a joint
heritability h2 ≈ (0.25, 0.26, 0.18)T, where h2

k = (σ̂2
Yk

− σ2
Sk

)/σ̂2
Yk

,

k = 1, 2, 3 and σ2
Sk

= Skk . Although these heritability values are
small and may not provide the best conditions for investigating
the model behavior, they do reflect the reality of values that are
commonly encountered in real-world genetic data.

To simulate data with large heritabilities and correlated cQTL
residuals, we set the elements of the residual covariance matrix as

S =
⎛
⎝154

130 112
133 113 117

⎞
⎠. On average, the standard deviations of

the simulated cQTL data over the N = 100 individuals for Traits 1,
2, and 3 were 17.45, 17.92, and 16.75, respectively, implying a joint
heritability h2 ≈ (0.49, 0.65, 0.58)T.

Analysis of simulated data
Simulation of missing marker and expression data. Often con-
siderable amount of missing marker and expression data may
occur at random positions in the data matrix. Also, due to finan-
cial constraints, marker data may be available for much larger
group of individuals than expression data. Following Sillanpää
and Noykova (2008), we considered the following missing data
scenarios for simulating data under uncorrelated cQTL residu-
als, in order to investigate the sensitivity of the method/model
to the amount of randomly missing values: (1) 10% of both
marker genotypes Gi,j and gene expressions Ei,j coded as missing.
(2) 10% of marker genotypes Gi,j and 30% of gene expressions
Ei,j coded as missing. We also investigated a third scenario with
10% of marker genotypes Gi,j and 50% of gene expressions Ei,j

coded as missing, but 50% turned out to be a too high and
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Table 4 |True and estimated (posterior means) cQTL effects under the MD2 version of the HB multi-trait cQTL model with 10% markers and 10%

expressions coded as missing and different values of Bernoulli parameter sl .

Location (j, k ) of

the effect ηj,k

Size of the regulatory effects ηl
j ,k

, l = {M, E , ME }

Pair j Trait k ηM
j

ηE
j

ηME
j

True value Estimated True value Estimated True value Estimated

sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09

4 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 6 0 0

3 0 0 0 0 0 0 0 0 0

14 1 0 0 0 6 5.52 5.50 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

18 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 6 5.85 5.90 0 0 0

22 1 0 0 0 0 0 0 0 0 0

2 0 0 0.22 0 0 0 0 1.91 1.91

3 0 0 0 0 0 0 0 0 0

24 1 6 1.54 4.36 0 0 0 0 0 0

2 6 0.95 2.82 0 0 −0.31 0 0 0

3 6 2.03 4.59 0 0 0 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero (|η̄l
j ,k | � 0.2). The shaded cells indicate false positives and false negatives.

inconclusive amount of missingness. We do not report the results
for this case.

Data analyses under the multi-trait and single-trait cQTL mod-
els. We analyzed the simulated (uncorrelated cQTL residual) data
under missing data scenarios 1 and 2 using two different miss-
ing data models namely, the model MD1, shown on Figure 1,
where Ei,j ∼ N (Ijμj Aj Gi,j , σ2

0) for each individual i and marker-

gene pair j, and the simpler MD2 model Ei,j ∼ N (0, σ2
0), where

p(E|I , μ, A, G, σ2
0) is simply replaced by p(E|σ2

0).
For both the MD1 and MD2 versions of the model, we

assumed a Bernoulli prior for indicators I l
k,j |sl ∼ Bern(sl), with

two different pre-specified parameter values for sl namely, (1)
sl = 0.013 = 1/(3 × 25), which implies fewer non-zero indicator
elements than the true simulated value, and (2) sl = 0.09 implying
a slightly larger proportion of non-zero effects.

We first analyzed the simulated data using our multi-trait
model, with sl set to 0.013 and 0.09, and subsequently fitted the
single-trait cQTL model of Sillanpää and Noykova (2008) to each
trait separately, with sl set to 0.0033, 0.013, and 0.09.

We used MCMC simulation through the Bayesian freeware
OpenBUGS 2.2.0 (Thomas et al., 2006) to sample from the joint
posterior of the model parameters. The BUGS code is available
from the authors upon request. The reported results are based
on 100,000 MCMC iterations, the first 10,000 of which were dis-
carded as burn-in. The convergence of the MCMC was assessed
through visual inspection of trace plots. The 100,000 MCMC
iterations took roughly 256,000 and 59,000 s for the multi-trait
and single-trait models, respectively on a PC equipped with an

Intel(R) Core(TM)2 Duo CPU T550 at 1.83G Hz and 3.00GB
of RAM.

We focus attention on the estimates (posterior means), η̄l
j ,k , of

the cQTL effects ηl
j ,k , l = {M, E, ME}, j = 1, . . ., Np and as a rule of

thumb, we consider ηl
j ,k to be non-negligible if its posterior mean

is equal or larger than 0.2 in absolute value i.e., if |η̄l
j ,k | ≥ 0.2.

Thus, all estimated ηl
j ,k such that |η̄l

j ,k | < 0.2 were set to zero and

deemed negligible.

RESULTS
Under uncorrelated cQTL residual data, the multi-trait model
broadly outperformed its single-trait counterpart. It is well known
that the single-trait approach is prone to poor statistical power in
the presence of correlated responses. In what follows, we pro-
vide a fairly detailed account of the results concerning the analysis
based on simulated data under uncorrelated cQTL residuals, and
only succinctly comment on the ability of the multi-trait model
to accommodate the covariance structure of cQTL residuals. The
reported results are typical of the model performances in different
settings.

Tables 2–5 give the true cQTL effects ηl
j ,k and their estimated

values as posterior means η̄l
j ,k under the two specifications (MD1

and MD2) of the HB multi-trait cQTL model for different missing
value scenarios and different values of the prior inclusion proba-
bility sl. In all tables, a bold font is used to indicate the positions
where the true or estimated effect was non-zero. The shaded cells
indicate false positives or false negatives.
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Table 5 |True and estimated (posterior means) cQTL effects under the MD2 version of the HB multi-trait cQTL model with 10% markers and 30%

expressions coded as missing and different values of Bernoulli parameter sl .

Location (j, k ) of

the effect ηj,k

Size of the regulatory effects ηl
j ,k

, l = {M, E , ME }

Pair j Trait k ηM
j

ηE
j

ηME
j

True value Estimated True Estimated True value Estimated

sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09 sl = 0.013 sl = 0.09

4 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 6 0 0

3 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0.31 0 0 0

3 0 0 0 0 0 0 0 0 0

14 1 0 0 0 6 5.49 5.42 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

18 1 0 0 0.49 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 6 5.60 5.48 0 0 0

19 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 −0.52

3 0 0 0 0 0 0 0 0 0

22 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 1.88 0

3 0 0 0 0 0 0 0 0 0

24 1 6 0 1.21 0 0 −0.47 0 0 0

2 6 0 0.20 0 0 −1.02 0 0 7.61

3 6 0.2 1.09 0 0 −0.55 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero (|η̄l
j ,k | � 0.2). The shaded cells indicate false positives and false negatives.

The results shown in Tables 2–5 suggest that the multi-trait
cQTL model is more effective at identifying cQTLs. The better per-
formance was observed when sl was set to be small (0.013), owing
presumably to the fact that a lower sl value implies a stronger
constraint on the presence of effect, which may prevent redundant
effects from showing up. Conversely, a higher sl value increases the
model propensity to false discovery, but may result in more accu-
rate estimates since in this case the effect sizes experience relatively
less shrinkage. However, the point of cQTL analysis is variable
selection rather than estimation, meaning that the accurate esti-
mation of the effects is not essential. It is also clear from our results
that the mixed phenotype × expression ηME effects are the most
difficult to identify. Moreover, the FDR proved to increase with
the proportion of missing data. Finally, cQTL identification was
more effective under the MD1 specification. The model was par-
ticularly ineffective at identifying the mixed regression parameter
ηME under the MD2 specification, and was more prone to false
discovery than under the MD1 specification. A potential explana-
tion for this propensity to false discovery is the lack of constraint
in the missing data model Ei,j ∼ N (0, σ2

0) under MD2.
More interestingly, the cQTL residual covariance matrix S

was estimated to an appreciable degree of accuracy under the

multi-trait model in case of correlated cQTL residuals. The esti-
mates (posterior medians) of the components of S under the
MD1 specification of the multi-trait model with 10% of mark-
ers and 10% expression coded as missing and sl = 0.013 was

S̃ ≈
⎛
⎝122.6

96.9 83
100.9 80 87.5

⎞
⎠, which is fairly close to the simulated

values.
In single-trait cQTL analyses, the results were comparable

across the three traits. Tables 6–9 give the results for single-
trait analysis of trait 1 based on simulated data under uncor-
related cQTL residuals. These results are representative of the
full set of (uncorrelated data) results from the single-trait cQTL
analysis.

In single-trait cQTL analysis too, the model performed bet-
ter under the MD1 specification when sl was low (0.0033
and 0.013). Although the model was capable of detecting
roughly all true effects under both the MD1 and MD2 spec-
ifications, the FDR was relatively higher under the MD2
specification. The number of false positives appeared to
increase with the proportion of missing expressions under both
specifications.
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Table 6 |True and estimated (posterior means) cQTL effects in the analysis ofTrait 1 using the MD1 version of the HB single-trait cQTL model

with (A) 10% markers and 10% expressions coded as missing and (B) 10% markers and 30% expressions coded as missing, and different values

of Bernoulli parameter sl.

Pair j Size of the regulatory effects ηl
j ,1

, l = {M, E , ME }

ηM
j

ηE
j

ηME
j

Estimated Estimated Estimated

True value sl = 0.0033 sl = 0.013 True value sl = 0.0033 sl = 0.013 True value sl = 0.0033 sl = 0.013

(A) MD1,TRAIT 1, 10% G, 10% E CODED AS MISSING

3 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

14 0 0 0 6 0 0.69 0 0 0

17 0 0 0 0 0 0 0 0 0

24 6 0.65 0.67 0 −0.46 −0.38 0 0 0

(B) MD1,TRAIT 1, 10% G, 30% E CODED AS MISSING

14 0 0 0 6 0.78 2.6 0 0 0

17 0 0 0 0 0 0 0 0 0

24 6 0.56 0.72 0 0 −0.55 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero. The shaded cells indicate false positives and false negatives.

Table 7 |True and estimated (posterior means) cQTL effects in the analysis ofTrait 1 using the MD2 version of the HB single-trait cQTL model

with (A) 10% markers and 10% expressions coded as missing and (B) 10% markers and 10% expressions coded as missing, and different values

of sl .

Pair j Size of the regulatory effects ηl
j ,1

, l = {M, E , ME }

ηM
j

ηE
j

ηME
j

True value Estimated True Estimated True value Estimated

sl = 0.0033 sl = 0.013 sl = 0.0033 sl = 0.013 sl = 0.0033 sl = 0.013

(A) MD2,TRAIT 1, 10% G, 10% E CODED AS MISSING

3 0 0.21 0.30 0 0 0 0 0 0

6 0 0.28 0.41 0 0 0 0 0 0

9 0 0 0.26 0 0 0 0 0 0

14 0 0 0 6 0 0.46 0 0 0

17 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0

24 6 1.55 2.40 0 0 0 0 0 0

(B) MD2,TRAIT 1, 10% G, 30% E CODED AS MISSING

3 0 0 0.23 0 0 0 0 0 0

6 0 0.24 0.20 0 0 0 0 0 0

9 0 0 0.39 0 0 0 0 0 0

14 0 0 0 6 0.63 2.58 0 0 0

17 0 0 0 0 0 0 0 0 0

24 6 1.38 2.38 0 −0.21 −0.23 0 0 0

A bold font is used to indicate positions where the true or estimated effect was non-zero. The shaded cells indicate false positives and false negatives.

DISCUSSION
The conceptual description of the new HB multi-trait cQTL
model was presented in this paper and it provides a promising
framework for integrating molecular markers and gene transcript

levels to dissect the genetic architecture of complex clinical
traits. Our results demonstrate that the multi-trait approach
enhances the power and should be considered seriously in cQTL
mapping framework. Because of its conceptual nature, it is worth
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Table 8 |True and estimated (posterior means) cQTL effects in the analysis ofTrait 1 using the MD1 version of the HB single-trait cQTL model

with (A) 10% markers and 10% expressions coded as missing and (B) 10% markers and 30% expressions coded as missing, and for sl = 0.09.

Pair j Size of the regulatory effects ηl
j ,1

, l = {M, E , ME }

ηM
j

ηE
j

ηME
j

True value Estimated True value Estimated True value Estimated

(A) MD1TRAIT 1,WITH 10%G, 10%E CODED AS MISSING

1 0 0 0 0 0 0

3 0 0.23 0 0 0 0

6 0 0 0 0 0 0

12 0 0 0 0 0 0

14 0 0 6 2.36 0 0

17 0 0.70 0 0 0 0

18 0 0.22 0 0 0 0

19 0 0 0 0 0 0

22 0 0 0 0 0 0.23

23 0 0 0 0 0 0.27

24 6 0.83 0 −0.45 0 0

(B) MD1TRAIT 1,WITH 10%G, 30%E CODED AS MISSING

3 0 0.21 0 0 0 0

6 0 0 0 0 0 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 6 4.49 0 0

16 0 0 0 0 0 0

17 0 0.63 0 −0.26 0 0

18 0 0.22 0 0 0 0

19 0 0 0 0 0 0

22 0 0 0 0 0 0

23 0 0 0 0 0 0.20

24 6 0.71 0 −0.39 0 0

emphasizing that practical and scalable implementations of the
method are beyond the scope of this paper. Often considerable
amount of missing marker and expression data may occur at ran-
dom positions in the data matrix with higher missing rate for
expressions than for marker genotypes. The analyses here were
based on two missing data scenarios with either 10% of both
marker genotypes Gi,j and gene expressions Ei,j coded as missing,
or 10% of marker genotypes Gi,j and 30% of gene expressions
Ei,j coded as missing. For both the multi-trait and single-trait
approaches, we considered two different model specifications
depending on the way the missing expression data were modeled
namely, MD1 (shown in Figure 1) where Ei,j ∼ N (Ijμj Aj Gi,j , σ2

0),
and MD2 where Ei,j ∼ N (0, σ2

0).
Under both MD1 and MD2 specifications, the priors on the

inclusion indicators, I l
k,j |sl , for the cQTL effects were defined as

I l
k,j |sl ∼ Bern(sl), and different pre-specified values were used

for prior inclusion probability sl, including sl = 0.013 = 1/(3 × 25),
which assumes fewer non-zero indicator elements (i.e., a sparser
model) than the true simulated value 0.08, and the slightly larger
value sl = 0.09.

For the sake of comparison, we also analyzed each trait sep-
arately through the single-trait cQTL model with three different

values for sl namely, 0.0033, 0.013, and 0.09. The single-trait analy-
ses were confined to simulated data under uncorrelated cQTL
residuals.

The multi-trait model performed better under the MD1 spec-
ification in terms of identifying cQTLs for small to moderate
(10–30%) proportion of missing expression data, and tended
to produce fewer false positives. Under the MD2 specifica-
tion, the model failed consistently to identify the mixed geno-
type × expression effects ηME when sl was large (0.09), regard-
less of the amount of missing data, whilst under the same
conditions. Overall, the MD1 version of the model was capa-
ble of identifying 75% of the mixed genotype × expression
effects.

The out-performance of the MD1 version of the model over
its MD2 counterpart in terms of the power to identify the non-
zero cQTL effects and an overall lower rate of false positives was
also observed in single-trait cQTL analyses. This suggests that the
handling of missing values can make a difference to the model
performance.

The multi-trait HB cQTL model showed over its single-trait
counterpart an increased power of identifying cQTLs with a lower
rate of false positives. The covariance structure of cQTL residuals
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Table 9 |True and estimated (posterior means) cQTL effects in the analysis ofTrait 1 using the MD2 version of the HB single-trait cQTL model

with (A) 10% markers and 10% expressions coded as missing and (B) 10% markers and 30% missing expressions coded as missing, and for

Bernoulli parameter sl = 0.09.

Pair j Size of the regulatory effects ηl
j ,1

, l = {M, E , ME }

ηM
j

ηE
j

ηME
j

True value Estimated True value Estimated True value Estimated

(A) MD2,TRAIT 1, 10% G, 10% E CODED AS MISSING

1 0 0 0 0 0 0

3 0 0.53 0 0 0 0

6 0 0.89 0 0 0 0

9 0 1.08 0 0 0 −0.46

12 0 0 0 0 0 0

14 0 0 6 1.57 0 0

15 0 0 0 0 0 0

16 0 0 0 0 0 0

17 0 0.66 0 0 0 0

18 0 0.39 0 0 0 0

21 0 0 0 0 0 0

22 0 0.22 0 0 0 0

24 6 2.40 0 0 0 0

(B) MD2,TRAIT 1, 10% G, 30% E CODED AS MISSING

1 0 0 0 0 0 0

3 0 0.50 0 0 0 0

6 0 0.33 0 0 0 0

9 0 2.03 0 0 0 0

12 0 0 0 0 0 0.23

13 0 0 0 0 0 0

14 0 0 6 4.64 0 0

15 0 0 0 0 0 0

16 0 −0.21 0 0 0 0

17 0 0.47 0 −0.32 0 0

18 0 0.28 0 0 0 0

19 0 0 0 0 0 0

22 0 0.24 0 0 0 0

24 6 2.72 0 0 0 0

was also estimated under the multi-trait model to a fair degree of
accuracy. The multi-trait approach to cQTL analysis is valuable for
addressing a number of practical challenges arising in the presence
of correlated phenotypic traits, as is the case for many complex dis-
ease syndromes like asthma (e.g., Kim and Xing, 2009). Moreover,
a multi-trait model provides a framework for investigating a num-
ber of biologically interesting hypotheses involving multiple traits,
such as pleiotropy. In conclusion, the HB approach to multi-trait

cQTL analysis holds great promises for elucidating the underlying
biology of complex clinical traits.
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