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Abstract: Label-free optical biosensors, such as surface plasmon resonance, are sensitive and well-
established for the characterization of molecular interactions. Yet, these sensors require stabilization
and constant conditions even with the use of reference channels. In this paper, we use tools from
signal processing to show why these sensors are so cross-sensitive and how to overcome their
drawbacks. In particular, we conceptualize the spatial affinity lock-in as a universal design principle
for sensitive molecular sensors even in the complete absence of stabilization. The spatial affinity
lock-in is analogous to the well-established time-domain lock-in. Instead of a time-domain signal,
it modulates the binding signal at a high spatial frequency to separate it from the low spatial frequency
environmental noise in Fourier space. In addition, direct sampling of the locked-in sensor’s response
in Fourier space enabled by diffraction has advantages over sampling in real space as done by
surface plasmon resonance sensors using the distributed reference principle. This paper and part
II hint at the potential of spatially locked-in diffractometric biosensors to surpass state-of-the-art
temperature-stabilized refractometric biosensors. Even simple, miniaturized and non-stabilized
sensors might achieve the performance of bulky lab instruments. This may enable new applications
in label-free analysis of molecular binding and point-of-care diagnostics.

Keywords: molecular sensors; chemosensors, biosensors; lock-in amplifiers; noise rejection; noise
analysis; optical diffraction; focal molography

1. Introduction

Molecular sensors—i.e., sensors that detect and characterize the binding of
(bio-)molecules—are one of the key pillars of (bio-)analytics. They are widely used in
drug screening and molecular diagnostics [1,2]. Molecular sensors enable the selective
identification of molecules based on their binding characteristics and by this offer a way to
study molecular interactions. Molecular sensors rely on molecular recognition [3,4]. Thus,
they operate based on the binding affinity between a molecule of interest and the affinity
probe, e.g., an antibody [5]. The binding affinity between the molecule of interest and the
affinity probe is stronger than the affinity between probe and background molecules [6].
The main challenge is to translate molecular binding into a quantity that can be measured
physically and to maintain the selectivity of the molecular recognition in the transduction.
A property that is shared by all biomolecules and that can be detected with high sensitivity
is their relatively high refractive index compared to water [7]. Therefore label-free optical
biosensors, such as surface plasmon resonance (SPR), are so widely spread for studying
molecular interactions [8,9]. One can correlate the refractive index change inside a test
volume to a change of the number of molecules [8]. Traditional molecular sensors, as
many other sensor types, are therefore integrative sensors, i.e., their output is the integral
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of the property of interest over the entire sensing volume. However, correlation is not
causation and since all biomolecules have a higher refractive index than water, the type
of molecule that is responsible for the change is not known per se [10]. In practice, for
simple samples and for detection at comparatively high concentrations, the selectivity
imparted by the recognition element combined with some control of or correction for
non-specific binding suffices to associate a changing signal with changing concentration of
analyte with reasonable confidence. However, this is not readily possible when very low
detection limits are required and in applications involving the detection of an analyte in a
complex biological fluid. Such sample matrices exert large and unpredictable non-specific
responses. If a complex fluid is in contact with the sensor, the molecules of interest usually
represent only a small fraction of the total biomolecular mass on the sensor, despite the
affinity difference between the molecule of interest and the background molecules in the
sample [11,12]. This is because the concentration of background molecules is several orders
of magnitude higher than the concentration of the molecule of interest [13,14]. In addition,
in classical binding experiments without any background molecules, the refractive in-
dex in the test volume is significantly affected by temperature gradients and medium
inhomogeneities [15]. These effects are especially detrimental, since the molecules only
occupy a tiny fraction of a typical sensor volume (a monolayer of molecules is ∼5 nm,
while the height of the sensing volume in evanescent field sensors ranges from 100 nm
to 300 nm) [16]. Thus, most state-of-the-art optical biosensors that are used to quantify
molecular recognition are extremely cross-sensitive and require controlled conditions for
their operation, otherwise the signal is buried in drift and noise [17].

Environmental noise, such as temperature fluctuations, is distributed in the time
domain according to 1/ f , where f is the frequency corresponding to the Fourier component
of the noise spectrum [18,19]. The solution to the problem of detecting a small signal buried
in environmental noise has been known since the 1930s and is widespread for temporal
signals [20–23]. Lock-in amplification works by modulating the signal with a carrier
frequency and multiplying the output of the sensor with a reference wave of the same
frequency (also known as homodyne/heterodyne detection). One but not all the benefits of
this detection principle is that by the action of modulation the signal power is shifted away
from direct current (DC) to the modulation frequency where environmental noise is much
lower. High-frequency lock-in amplifiers have enabled measurements of signals invisible
with a purely integrative detector [24–28]. Up to now the lock-in principle was primarily
restricted to the time domain using the transmission of electrical and optical signals. These
signals can be easily modulated at a high temporal frequency.

On the other hand, binding signals of molecules cannot be modulated in time that
simply. Their on and off rates are usually fixed by their molecular properties and the
individual binding and unbinding events are not in phase. Thus, while temporal lock-in
amplification can improve some of the noise characteristics in the readout electronics
of these sensors, it cannot improve the signal to environmental noise ratio [29]. Since
gradients in space and time are connected via the advection-diffusion equation, one can
expect that the environmental noise in space is similarly distributed to the 1/ f noise in the
time domain [30]. Thus, most of the noise is long ranged (low or zero spatial frequencies)
(Figure 1a) [18]. Integrative sensors have a spatial sensor transfer function that is centered
around zero frequency (Figure 1b). For this reason, the signal largely overlaps with the
noise and constitutes the heart of the drift and cross-sensitivity problem of most traditional
refractometric biosensors and integrative sensors in general.

A widely applied strategy to reduce the zero-frequency component of the sensor
transfer function, is to employ a differential measurement [15,31]. This is commonly
known as referencing or calibrating. It is accomplished by a second integrative sensor
and an electrical or digital subtraction of the two sensor outputs. However, this simple
form of referencing is very inefficient, since even when macroscopically referenced, the
transfer function of the sensor is still close to the origin of k-space and transfers most of



Sensors 2021, 21, 469 3 of 20

the noise (Figure 1c). We shall see in this paper that for the improvement of the signal to
environmental noise ratio a different lock-in, a spatial lock-in, is required.

Figure 1. The spatial affinity lock-in concept. Environmental noise and signal distribution are shown
for different sensor designs. In all cases, we assume a sensor that interrogates a volume close to
its surface and detects changes in the refractive index within that volume. The second column
shows the reciprocal space (also known as momentum or k-space) distribution of binding signal
and environmental noise. (a) Typical environmental noise sources such as temperature gradients or
non-specific binding of background molecules, are ‘long’ ranged. They usually exhibit a dominant
correlation mechanism and display a Lorenzian shape in momentum space. (b) An integrative sensor
with the analyte molecules bound uniformly has a spectral distribution of the signal centered around
zero spatial frequency in reciprocal space where most of the environmental noise is situated. (c) A
traditional referenced sensor still has most of the signal at DC and there is a significant spectral
overlap between the two signal lobes because the modulation period is of similar size as the sensor
dimension. (d) A locked-in sensor has a lock-in period that is much smaller than its lateral dimension.
The signal lobes are clearly separated, and the signal is situated at spatial frequencies where there is
hardly any environmental noise. As a remark, because we simply want to illustrate the concept, we
have neglected a zero-frequency component that is because we cannot put a negative mass analyte
molecule onto the reference. Also, we neglected all higher harmonics that are due to the rectangular
distribution of biomolecular mass in this figure.

As a temporal lock-in employs knowledge about the time dependence of a signal to
separate it from noise, the spatial affinity lock-in uses the signal’s spatial dependence for the
same purpose. Only when the binding signal is modulated at a high spatial frequency it can
be efficiently separated from the noise (Figure 1d). A spatial lock-in is not a new idea per se,
it relies on concepts that have already been developed in Fourier optics, optical information
processing and holography. Also, some concrete applications to directly measure spatial
coherence of light sources were demonstrated. However, it was only in the last two decades
that two label-free optical sensors schemes were introduced that use a spatially modulated
affinity pattern to improve their performance. One of the techniques are distributed ref-
erence surface plasmon resonance imaging sensors [15] and the other are diffractometric
biosensors. The two classes are different in that distributed reference sensors are a digital
lock-in whereas diffractometric sensors are an analog lock-in, similar to readout schemes
already known in the time domain [18]. Their first results were encouraging, in that the
resolution of non-temperature-controlled sensors was similar to temperature-stabilized
commercial biosensors [11,15]. In addition, it was demonstrated that the noise decreases
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linearly with the splitting factor (analogous to a smaller referencing period). This confirms
the 1/ξ character of the dominant noise (ξ is the spatial frequency) [15]. However, high
spatial lock-in frequencies were achieved only recently [11,32–35]. This is because impor-
tant foundations of a high-frequency spatial affinity lock-in, namely sufficiently coherent
and spectrally stable light sources (i.e., the laser) and micron scale affinity patterning
techniques of non-fouling adlayers (pioneered by photo-lithographic production of DNA
chips) were only perfected in recent decades [32]. Yet, micron scale affinity patterning
is mandatory but not sufficient for a high-quality spatial affinity lock-in. It is of crucial
importance that no optical modulation or worse an affinity modulation for unwanted
molecules is introduced on the sensor by the fabrication process [11]. To obtain the optimal
affinity lock-in, affinity matching of the binding pair towards background molecules is also
a necessity [36,37].

With this type of sensors emerging, it is pivotal to have a solid conceptual understand-
ing of the basic working principle of the spatial affinity lock-in and promising techniques
to implement it. These constitute the two aims of this paper. To keep our discussion simple,
we do not address the noise sources in the measurement chain, i.e., source noise, such as
straylight or wavefront stability, in our discussion. These noise sources are briefly discussed
in part II and in detail elsewhere [38,39]. We start by introducing the concept of the spatial
lock-in principle from a signal processing perspective. We derive the spectral distribution
of environmental noise as well as the signal of integrative and locked-in sensors and show
how locked-in sensors achieve reduced overlap of signal and noise bandwidths. After
highlighting the analogies of the spatial lock-in to its time-domain counterpart, we will
discuss the performance and the implementation of different spatial lock-in arrangements.
In particular, we will learn that analog lock-in amplifiers (diffractometric sensors) have nu-
merous advantages over digital lock-in amplifiers (distributed referenced surface plasmon
resonance sensors). This is because analog spatial lock-in amplifiers sample Fourier space
directly whereas digital spatial lock-in amplifiers sample in real space. It is advantageous
to sample Fourier space directly because in Fourier space the signal and noise are spatially
separated whereas in real space they overlap. All in all, the insights from the theoretical
concepts presented in this paper, together with the experimental evidence and comparison
to other established optical integrative sensors provided in part II [38], hint at the potential
of spatially locked-in diffractometric biosensors to surpass state-of-the-art temperature-
stabilized refractometric biosensors. Even simple, small and non-stabilized sensor devices
might achieve the performance of current bulky lab instruments, a feature that may enable
new applications in label-free analysis of molecular binding, environmental monitoring
and point-of-care diagnostics.

2. Results and Discussion

Before we start discussing temporal and spatial lock-in amplification we give a brief
introduction into linear system theory. In general, the input xin(~r, t) to any sensor can
be written as a superposition of the signal xs(~r, t) and the noise xn(~r, t), which are both
functions of space and time

xin(~r, t) = xs(~r, t) + xn(~r, t), (1)

where~r = (x, y, z) is the position vector and t is the time. The output of a linear system is
the convolution of the input with the impulse response of the sensor h(~r, t)

yout(~r, t) = h(~r, t) ∗ xin(~r, t). (2)

For the discussion of linear systems, it is convenient to adopt a frequency domain
description because the convolution operation reduces to simple multiplication. In the
Fourier domain, the sensor action writes

Yout

(
~ξ, f
)
= H

(
~ξ, f
)

Xin

(
~ξ, f
)

. (3)
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Here H
(
~ξ, f
)

is the sensor transfer function, i.e., the Fourier transform of the impulse

response, and ~ξ =
(
ξx, ξy, ξz

)
is the position vector in reciprocal space. (The difference be-

tween spatial frequency and the more commonly used angular spatial frequency (k-vector)
is merely a factor 2π (~k = 2π~ξ).) Xin

(
~ξ, f
)

and Yout

(
~ξ, f
)

are the spectral distributions

of the input and output, respectively. A sensor transfer function H
(
~ξ, f
)

connects the

spectral distribution of the input X
(
~ξ, f
)

to the spectral distribution of the sensor output

Y
(
~ξ, f
)

as long as the system is linear. It is a Fourier domain description of the sensor
action for any input. In addition, it is of interest to know how the power of signal and
noise are transmitted through the system. This will allow calculation of the signal-to-noise
ratio at the output of the sensor. In the time and space domain the total power is given by
the integral of the autocorrelation function xx(~r, t) of the sensor input over the entire time
period and real space

P =

∞∫
0

2π∫
0

π∫
0

∞∫
0

xx(~r, t)r2 sin(θ)dtdθdϕdr. (4)

In the frequency domain the total power is the integral of the power spectral density
over all frequencies (Parseval–Plancherel identity)

P =

∞∫
0

∞∫
0

2π∫
0

π∫
0

PSD
(
~ξ, f
)

ξ2 sin θdθdφdξd f , (5)

where in both cases we have changed to spherical coordinates for the integration (x =
r sin(θ) sin(ϕ), y = r sin(θ) cos(ϕ) and z = r cos(θ), ξx = ξ sin(θ) sin(φ), ξy = ξ sin(θ)
cos(φ) and ξz = ξ cos(θ) respectively). The power transmission of a system is therefore
described by its mapping of the power spectral density (PSD) from input to output. It can be
shown that the transfer function of the PSD is the squared magnitude of the sensor’s transfer
function [40]. Thus, the PSD of the output as a function of the PSD of the input reads

PSDyout

(
~ξ, f
)
=
∣∣∣H(~ξ, f

)∣∣∣2PSDxin

(
~ξ, f
)

. (6)

The power spectral density is the Fourier transformation of the autocorrelation func-
tion. Under the assumption of independence of signal and noise, the PSD of the input
is the sum of signal and noise power spectral densities, PSDxin

(
~ξ, f
)
= PSDxs

(
~ξ, f
)
+

PSDxn

(
~ξ, f
)

[40]. The signal-to-noise ratio of the sensor can then be expressed by the
sensor transfer function as well as signal and noise PSD

SNR =
PS
PN

=

∞∫
0

∞∫
0

2π∫
0

π∫
0

∣∣∣H(~ξ, f
)∣∣∣2PSDxs

(
~ξ, f
)

ξ2 sin θdθdφdξd f

∞∫
0

∞∫
0

2π∫
0

π∫
0

∣∣∣H(~ξ, f
)∣∣∣2PSDxn

(
~ξ, f
)

ξ2 sin θdθdφdξd f
. (7)

Heuristically, the signal-to-noise ratio is maximized by employing the following three
synergistic measures. First, shift the signal to a region in four-dimensional reciprocal
space, where the noise PSD is lowest. Second, concentrate the signal PSD into the smallest
frequency bandwidth possible. Third, reduce the bandwidth of the transfer function of the
sensor as far as possible and match it to the signal bandwidth (matched filter) [40]. A good
lock-in amplifier achieves all these simultaneously.

We have already depicted the PSD of environmental noise together with the PSD
of the signal of different sensors schematically in Figure 1. In the following, we derive
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an analytical form of the PSD of environmental noise as well as the PSD of the signal of
traditional and locked-in sensors.

2.1. Power Spectral Density of Environmental Noise

Environmental noise in molecular sensors is primarily due to temperature gradients,
yet also concentration gradients and non-specific binding will play a role [17,41]. Never-
theless, we restrict our treatment of environmental noise to temperature gradients and for
simplicity neglect convection. The formalism for concentration gradients is exactly the
same, since as the temperature equation, the diffusion equation is also a parabolic partial
differential equation. For a detailed discussion on intrinsic and extrinsic noise sources, see
chapter 7 in [39]. The temperature equation can be written as

∂T(~r, t)
∂t

= −DT∇2T(~r, t) +
q(~r, t)

ρcp
, (8)

where DT is the thermal diffusivity, ρ is the density, cp is the specific heat capacity under
constant pressure and q(~r, t) are the heat sources. The solutions (modes) of this equation

have the following form: Tξ = T0ei2π(~ξ·~r− f t). By inserting this ansatz into Equation (8)
and solving for the homogeneous solution (q(~r, t) = 0), we obtain the dispersion relation

f = iξ22πDT , with ξ :=
∣∣∣~ξ∣∣∣ = √ξ2

x + ξ2
y + ξ2

z [42]. Solving the inhomogeneous equation

q(~r, t) 6= 0 yields the PSD of the temperature fluctuations
〈

Tξ, f Tξ, f
∗
〉

as a function of the

PSD of the heat sources
〈

Qξ, f Qξ, f
∗
〉

(see Chapter 13 in [43] for a similar procedure at the
example of the Langevin equation)

PSDxn(ξ, f ) :=
〈

Tξ, f Tξ, f
∗
〉
=

〈
Qξ, f Qξ, f

∗
〉

ρcp

4π2DTξ2

(4π2DTξ2)
2 + (2π f )2 . (9)

To proceed, we need to assume the functional form of the PSD of the heat sources. For
simplicity and generality, we assume that the heat source process is wide sense stationary
with zero mean and the autocorrelation of the heat sources has a negative exponential form
with a characteristic length Lc and timescale τ: qq(r, t) = q0e−

r
Lc e−

t
τ , where r is the norm

of the position vector and t is time. Under these assumptions the one-sided power spectral
density of the heat sources reads

〈
Qξ, f Qξ, f

∗
〉
= 16πq0

Lc
3τ(

1 + (2πξLc)
2
)2

1

1 + (2π f τ)2 , (10)

where we have used the results from [44] for the PSD in three dimensions. By insert-
ing this expression into Equation (9) we finally arrive at the power spectral density for
environmental temperature noise

PSDxn(ξ, f ) = 16π
q0

ρcp

Lc
3τ(

1 + (2πξLc)
2
)2

1

1 + (2π f τ)2
4π2DTξ2

(4π2DTξ2)
2 + (2π f )2 . (11)

For our discussion only the functional form of the PSD matters and the exact mag-
nitude of the heat sources is irrelevant. Therefore, we use the following proportional
expression for the remainder of this paper

PSDxn(ξ, f ) ∝
1(

1 + (2πξLc)
2
)2

1

1 + (2π f τ)2
ξ2

(4π2DTξ2)
2 + (2π f )2 . (12)
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However, we do need a rough estimate of the spatial and temporal correlation
lengths/times of the heat sources. These length/timescales are important because the
terms in Equation (12) are constant up to a frequency that is equal to the inverse of the
correlation length/time and then start to roll-off with 1/ f 2 or 1/ξ2 respectively (Lorenzian
power spectrum). In practice, one will not notice this sharp transition because there are
multiple dominant correlation mechanism including a few with extremely long time and
length scales (i.e., seasonal variations) [18]. For our discussions it is nevertheless sufficient
to assume just one dominant correlation mechanism and this one can be motivated heuristi-
cally. The heat sources that influence our sensor will neither be kilometers apart nor closer
together than a few millimeters. Thus, a reasonable assumption for Lc for a molecular
sensor is in the order of centimeters. The dominant temporal correlation is likely shorter
than a day and longer than milliseconds, thus a reasonable assumption for τ would be
in the hundreds to thousands of second range. Since these correlation lengths are larger
than the sensor dimension, the noise is 1/ξ distributed for all length scales smaller than
the sensor. The same holds true for the temporal scales.

Equation (12) is the combined temporal and spatial power spectrum of the heat sources.
To obtain just the spatial power spectral density, one needs to integrate Equation (12) with
respect to f over the entire frequency spectrum to obtain

PSDxn(ξ) ∝
1(

1 + (2πξLc)
2
)2

1(
1 +

(
2πξ
√

DTτ
)2
) . (13)

Due to the assumption of wide sense stationarity and DT being time and space
independent we were able to carry out the integration. Equation (13) has two terms
corresponding to the two correlation mechanisms of the heat sources (one spatial and one
temporal): The first term with ξLc is the spatial correlation due to the inhomogeneous
spatial distribution of the heat sources. Its presence in the PSD was expected. The second
term with DTξ2τ is a spatial correlation mechanism caused by the temporal correlation
of the heat sources (on-off switching) [30]. Thus, a temporal correlation mechanism will
show up in the spatial frequency spectrum because the two domains are linked via the
diffusion equation.

The 1/ξ6 dependence in Equation (13) shows us that the environmental temperature
noise is mainly situated at low spatial frequencies. Therefore, it is beneficial to construct
molecular sensors that have most of their signal at high spatial frequencies, i.e., through
spatial modulation of the binding signal.

2.2. Signal Power Spectral Density of Integrative and Locked-in Sensors

We will now derive the PSD of the signal of the input of integrative and locked-in
sensors. Since the signal is deterministic, the PSD is the square of the Fourier transform
magnitude of the signal input

PSDxs

(
~ξ, f
)
=
∣∣∣Xs

(
~ξ, f
)∣∣∣2. (14)

The signal of a molecular sensor can be described by the multiplication of an enve-
lope/shape function s(~r, t) and a modulation function f (~r, t)

xs = s(~r, t) f (~r, t). (15)

The shape function constrains the sensors extent in time and space. It is, therefore,
dependent on the measurement time and the size of the sensor (zero outside of it). The
modulation is a periodic function of infinite extent that modulates the signal within the
sensor volume/experiment duration at a preferentially high spatial and/or temporal fre-
quency. The signal of a molecular sensor based on a label-free optical measurement is a
spatial and temporal change of the refractive index induced by the binding of molecules
to the immobilized recognition sites. The shape and modulation function therefore de-
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scribe the distribution of the refractive index due to the analyte in space and time during
an experiment.

The signal’s power spectrum is obtained by computing the squared Fourier magnitude
of the product of envelope and modulation functions

PSDxs

(
~ξ, f
)
=
∣∣∣Xs

(
~ξ, f
)∣∣∣2 =

∣∣∣∣∣∣
∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

s(~r, t) f (~r, t)e−2πi((~ξ·~r)+ f t)dxdydzdt

∣∣∣∣∣∣
2

, (16)

which can also be conveniently written as the convolution of the Fourier transforms of
envelope S and modulation function F

PSDxs

(
~ξ, f
)
=
∣∣∣S(~ξ, f

)
∗ F
(
~ξ, f
)∣∣∣2. (17)

As mentioned in the introduction, refractometric biosensors are integrative sensor.
This means that they simply integrate the refractive index change within the entire sensor
volume without any possibility for referencing within the sensing volume. Examples
of integrative sensors represent nearly all unreferenced or macroscopically referenced
(signal and reference sensors are further apart than the sensor dimensions, maybe even in
different flow channels) refractometric sensors such as surface plasmon resonance (SPR)
or waveguide-based biosensors. In integrative sensors, the modulation function is unity,
and the signals PSD is then equal to the square magnitude of the Fourier transform of the
envelope function only

PSDxs ,int

(
~ξ, f
)
=
∣∣∣S(~ξ, f

)∣∣∣2. (18)

In a locked-in sensor the signal is modulated with a spatial modulation period Λ
and/or temporal period f0. Yet, only spatial modulation is important for environmental
temperature and non-specific binding noise rejection. For algebraic simplicity, we assume
a sinusoidal spatial modulation along the vector ~ξg =

(
1
Λ , 0, 0

)
of the form f (~r, t) =

sin
(

2π~r ·~ξg

)
, with Fourier transform F

(
~ξ, f
)
= 1

2i

(
δ
(
~ξ −~ξg

)
+ δ
(
~ξ +~ξg

))
, where δ

(
~ξ
)

is the Dirac delta function. If one performs the convolution in Equation (17) it is obvious
that the action of the modulation is merely a splitting and a shift of the original signal input
to the spatial frequencies ξx = ± 1

Λ while its envelope and bandwidth remains unchanged.
Mathematically, the PSD of the signal reads

PSDxs ,lock-in

(
~ξ, f
)
=

1
2

∣∣∣S(~ξ −~ξg, f
)∣∣∣2 + 1

2

∣∣∣S(~ξ +~ξg, f
)∣∣∣2. (19)

The smaller the modulation period the further the signal power is shifted away from
zero frequency. Since the environmental noise decreases with increasing spatial frequency
the signal-to-noise ratio is higher at high spatial frequencies, i.e., for small modulation
periods. More figuratively speaking, interdigitated signal and reference regions should be
together as closely and as numerous as possible within a given sensor.

2.3. Ingredients and Analogies of Temporal and Spatial Lock-In Amplifiers

We have seen in the last two sections that modulation shifts the PSD of the signal to the
modulation frequency while preserving its bandwidth. Environmental noise is generally
lower at these higher frequencies (Figure 1). However, this alone does not yet give a better
signal-to-noise ratio of the molecular sensor. One effectively needs to construct a sensor
transfer function such that it overlaps precisely with the signal bandwidth. In general,
a lock-in can therefore be broken down into two essential operations. First, modulation
shifts the signal power away from zero frequency to a frequency where noise is lower. In a
second step, a bandpass filter that ideally matches the signal bandwidth is applied. The
remaining Fourier components are then integrated both in the frequency domain and the
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space domain. The exact way how the bandpass filtering is accomplished depends on
the implementation of the lock-in amplifier. There is, however, one essential difference
between a lock-in and a traditional bandpass filter. In its essence, a lock-in is a tracking
bandpass filter. It uses a reference wave to track the frequency (and depending on the
implementation also the phase) of a signal of interest.

In the time domain this is achieved in an elegant way. By mixing (multiplying) signal
and reference wave, the two signal sidelobes as well as the noise are shifted and one of the
signal lobes is locked precisely to DC (Figure 2a,b) (The reference and the signal are usually
taken from the same source and therefore have no mutual drift). On the other hand, due to
the mixing, the noise has been shifted to the mixing frequency (Figure 2b). The second step
is to use a filter to match the sensor transfer function to the signal bandwidths. Because
half of the signal is located at DC, one can employ a very narrow bandwidth low-pass filter.
The bandwidth is narrower than any bandpass filter that can be implemented by active RC
(or LC) circuitry, where frequency stability problems limit the bandwidth [45]. In the time
domain, the main motivation of the mixing with low-pass filtering over simple bandpass
filtering is that one can construct a sensor transfer function that matches more precisely the
signal bandwidths (at the cost of discarding half of the signal power).

Figure 2. Analogies between a temporal (a,b) and a spatial lock-in (c,d) illustrated at simplified schematics a) The temporal
lock-in uses a reference wave δ( f ± f1) from the same source as the signal (frequency f1) that is mixed (multiplied) with
the modulated and enveloped signal S( f ± f1). This produces the sum and the difference of the two frequencies f1 and
locks one of the lobes of the signal to DC. A low-pass filter then isolates the DC component and produces an output that is
proportional to the signal amplitude. (b) schematic depiction how the signal and the noise are shifted by the mixing and
filtered by the low-pass filter. (c) In the spatial lock-in system a reference wave with momentum ~βin is mixed (diffracted)

with the grating/crystal momentum of ordered matter (enveloped because of finite spatial extent S
(
~ξ ±~ξg

)
) and produces

two diffracted waves ~βout. A spatial filter in a Fourier plane is then used to isolate one of these diffracted waves. (d)
Schematic depiction how the modulated input and noise are mapped onto different angular directions by diffraction.
The low frequency environmental noise is primarily scattered in the forward direction. A spatial filter isolates the signal
component of interest.

In the spatial domain the basic ingredient for the most common implementation of a
lock-in (analog lock-in) is the diffraction of a reference wave at ordered matter. Therefore,
any kind of propagating wave phenomenon can be used for the implementation of a
lock-in, e.g., electromagnetic or acoustic waves. A wave has a certain momentum ~βin that,
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if it is mixed with the grating/crystal momentum of ordered matter, can achieve a lock-in
in reciprocal space (Figure 2c). Conservation of momentum manifests in the diffraction
condition and leads to two diffracted waves that have a well-defined propagation direction
relative to the one of the reference wave for every possible grating momentum vector ~ξg

(Figure 2d). The selection of one of the two diffracted waves with propagation vector ~βout
is mediated by a spatial filter at a Fourier plane (in the far field) that acts as a bandpass
filter. The noise is also filtered out because its lower spatial frequencies primarily diffract
in the forward direction (Figure 2d) [11]. In contrast to the temporal lock-in, the spatial
lock-in cannot be locked to DC, because it is a vector lock-in and only the direction but not
the magnitude of the reference wave momentum is changed. The direction is fixed by the
diffraction condition. However, it is difficult to hit a fixed pinhole in space, especially since
thermal and mechanical effects might change the diffraction condition slightly. Therefore,
the spatial filter needs to track the diffracted signal. Although the pinhole could be
moved in the Fourier plane, it is much easier to use an array detector and to track the
signal by image registration. The spatial filter can then be applied digitally [11]. The
tracking/registration operation therefore has the same effect as the DC lock of the signal
in the time domain. More fundamentally, the lock-in in time is a one-dimensional energy
lock-in whereas in space it is a three-dimensional momentum lock-in. This has some
implications on the performance of spatial lock-ins of different dimensionality.

2.4. Performance of Spatial Lock-Ins of Different Dimensionality

To continue our discussion on the performance of spatial lock-ins of different dimen-
sionality it is helpful to consider a concrete transfer function. For simplicity, we assume
that the filter function perfectly overlaps with one of the lobes of the PSD of the signal and
its squared Fourier magnitude has the same functional form. The bandwidth will therefore
be determined by the envelope function of the sensor only. The envelope function is unity
inside the sensor volume and the time span of interest:

s(~r, t) =
1, inside volume/time of interest
0, outside volume/time of interest

(20)

We assume a rectangular truncated sensor with spatial dimensions Lx, Ly, Lz and
the sensor output being suddenly switched on and being switched off again after a time
period τexp

s(~r, t) = rect
(

x
Lx

)
rect

(
y
Ly

)
rect

(
z
Lz

)
rect

(
t

τexp

)
. (21)

Here we have used the definition of the rect function as described in Appendix A. We
have chosen the time axis such that the middle of the experiment corresponds to t = 0. The
transfer function of such an integrative sensor is therefore a product of four sinc functions
centered at the origin along every coordinate

Hint

(
~ξ, f
)
= LxLyLzτexpsinc(Lxξx)sinc

(
Lyξy

)
sinc(Lzξz)sinc

(
τexp f

)
. (22)

(In the case that the sensor was circular, LxLysinc(Lxξx)sinc
(

Lyξy
)

would need to be

replaced by D
2

J1(Dπξr)
ξr

, where J1 is the Bessel function of the first kind order 1, D the

diameter and ξr =
√

ξ2
x + ξ2

y.) The transfer function of a spatially locked-in sensor locked

to the spatial frequency ~ξg =
(

1
Λ , 0, 0

)
is simply the shifted version of Equation (22)

Hlock-in

(
~ξ, f
)
= LxLyLzτexpsinc

(
Lx

(
ξx −

1
Λ

))
sinc

(
Lyξy

)
sinc(Lzξz)sinc

(
τexp f

)
. (23)

It is important to stress again that the transfer function is merely shifted by the lock-
in and its bandwidth remains unaffected. Indirectly, the noise rejection depends on the
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ratio of the referencing length scale to the sensor dimension. Sub-micron referencing
allows for roughly 1000 oscillations of the sine before its truncation. Therefore, its satellite
peaks are well separated in k-space (Figure 1d) and resemble delta-distributions. Yet,
if the sine is truncated after one oscillation only (a classical macroscopically referenced
sensor) the sinc functions are very broad compared to their separation distance and even
overlap (Figure 1c). Substantially more noise is picked up. In the time domain, this
property is usually quantified as the quality factor Q as it measures the shift in frequency
space relative to the FWHM around the center frequency and reflects the noise rejection
capabilities of the system. One should also notice that the argument of the sinc function
depends on the sensor/experiment extent along the corresponding direction and hence

the full width half maximum (FWHM) of the power transfer function
∣∣∣H(~ξ, f

)∣∣∣2 along

one dimension is FWHM = 2.78
Li

with Li =
{

Lx, Ly, Lz, τexp
}

. Therefore, the concentration
of the signal in reciprocal space and hence the noise rejection capabilities increase with
experiment duration and the volume of the sensor. However, we cannot really influence
the temporal extent/frequency content of Equation (22), since this is determined by the
temporal characteristics of the molecular interaction to be investigated. (If kinetics are not
important and we just perform an endpoint measurement τ is essentially how long we
can average.) For the following discussion, we only consider the spatial dependency of
Equations (22) and (23).

Figure 3. Transfer functions of spatial lock-ins and schematic 1/ξ (environmental) noise (a) Transfer
functions of 1D, 2D and 3D sensors. The volume of the envelope function in reciprocal space decreases
with increasing dimensionality of the sensor. For a given lock-in frequency, the amount of picked up
noise decreases from 1D to 3D sensors. (b) 2D sensor transfer functions with equal signal-to-noise

ratio and the same lock-in momentum magnitude
∣∣∣~ξ∣∣∣ form a circle in the ξx, ξy plane (c) 1D sensor

transfer functions with equal SNR and the same lock-in momentum magnitude are just two points in
reciprocal space. (d) 3D sensor transfer functions with the same SNR and same lock-in momentum
represent an entire sphere in reciprocal space. This allows for many possible sensor realizations.

The performance of the spatial lock-in depends on five design variables, the spatial
dimensions Lx, Ly, Lz as well as the norm and direction of ~ξ. The norm and direction of
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~ξ in the sensor volume are important for the suppression of environmental noise (a shift
does not change the bandwidth). Lx, Ly, Lz affect the volume in reciprocal space (i.e., the
bandwidth) and therefore influence the contributions of both environmental and white
noise sources on the output (PN ∝ 1

Lx Ly Lz
). The lock-in is always in three dimensions but

the envelope might exhibit unequal lengths Lx, Ly, Lz. In general, the envelope function
of a sensor could resemble a 1D (e.g., fiber-based or strip waveguide-based [46]), 2D (e.g.,
classical surface-based biosensors [47]) or 3D function (e.g., photonic crystal sensors [48]).
The shape of the envelope function in reciprocal space also depends on its dimensionality
in real space (Figure 3a). Ultimately, the signal-to-noise ratio improves inversely with the
sensor volume in real space. In other words, a higher signal-to-noise ratio comes at the
expense of spatial resolution of the binding event. The dependence on the sensor volume
also implies that a one-dimensional sensor needs to be much longer than the edge length

of a 3D sensor to have the same performance L1D =
L3

3D
∆y∆z . To give some numbers, for

typical penetration depths of optical evanescent waves (∆y, ∆z = 100 nm) and an edge
length of 10 µm of the 3D sensor, the one-dimensional sensor needs to be 10 cm long.
This assumes that the entire evanescent field volume of the 1D sensor contains binding
sites, which implies that it is of crucial importance that in 1D and 2D sensors most of the
evanescent field volume is patterned with binding sites. Most biosensors are surface-based
and hence two-dimensional (Lx, Ly � Lz). As long as the grating vector is in the ξx, ξy
plane, all locked-in sensors have the same signal-to-noise ratio (Figure 3b). This is because
the sensor transfer function is symmetrical in ξx, ξy. However, if the grating vector points
along the z-direction (orthogonal to the sensor surface) the environmental noise rejection
is severely compromised. The sensor transfer function is elongated along ξz to such an
extent that it now largely overlaps with the environmental noise. More figuratively, if the
grating vector is along z in a 2D sensor, it is essentially not referenced anymore. For a 1D
sensor this is even more restricted with only 2 points in reciprocal space that display the
same signal-to-noise ratio (Figure 3c) because the sensor transfer function is elongated in
two reciprocal spatial directions. On the other hand, in 3D the sensor transfer function
is perfectly symmetric and every point on a sphere with radius

∣∣∣~ξ∣∣∣ = 1
Λ has the same

signal-to-noise ratio (Figure 3d). Since there are many possible independent reciprocal
volumes on the surface of this sphere, 3D sensors can easily be multiplexed. In real space,
this would correspond to multiple overlayed affinity gratings with different grating vectors
each giving rise to its own distinct Bragg reflection. In a way this represents an artificial
crystal that can detect binding, i.e., a coherent molecular system. However, this shall not
signify that 3D sensors are superior to 2D or 1D sensors, since other factors such as ease
of readout or accessibility of binding sites by diffusion also influence the choice of sensor
design. For instance, a 3D sensor would need to be rotated relative to the incident beam to
read out all the different Bragg reflections.

To summarize, the following rules of thumb to maximize the separation of signal
and noise can be stated: First, use the highest lock-in frequency possible for most efficient
environmental noise rejection. The ultimate limit is a lock-in period that is twice as long as
the largest molecule size because the signal and reference regions cannot be smaller than
the molecule, otherwise already one molecule would lead to crosstalk (signal contribution
to both signal and reference region at the same time). Since most solvated biological
macromolecules have dimensions of 5–10 nm, this limit will be around 10–20 nm. Second,
the grating vector should ideally point along the longest spatial direction of the sensor.
Third, the sensing volume should be as large as possible to maximally constrain the signal
in reciprocal space.

2.5. Implementations and Readout Modes of Spatial Lock-In Amplifiers

As for time-domain lock-ins, there are also many possible implementations of spatial
lock-ins. Nevertheless, important distinctions for the signal-to-noise ratio is the nature of
the wave that is modulated by the ordered matter and whether the lock-in is analog or
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digital. Furthermore, it is also relevant whether the lock-in is just in spatial frequency or in
frequency and phase.

Provided that the sensor can be patterned with a sufficiently high spatial frequency,
ultimately, the spatial lock-in frequency is limited by the wavelength of the wave that
is used to probe the ordered matter. The short wavelength and gentle interaction with
molecular matter make electromagnetic waves at optical frequencies especially suited
to build high spatial frequency lock-ins with reasonable diffraction angles. Even higher
lock-in frequencies could be achieved with electromagnetic waves in the UV and X-ray
range or electron beams, but these waves are too energetic and therefore damaging to
macromolecules. Besides optics, acoustics is also widely applied in label-free biosensing
(quartz crystal microbalance (QCM), surface acoustic wave devices) [49,50]. However,
acoustic waves have roughly 3 orders of magnitude longer wavelength than electromag-
netic waves at optical frequencies. In addition, they exhibit high damping in water [51].
In conclusion, electromagnetic waves at optical frequencies are the wave phenomena of
choice to build spatial lock-ins for molecular sensing.

We now briefly discuss analog and digital lock-in amplifier implementations and then
provide a summary of their advantages and disadvantages. Analog lock-in amplifiers use
the coherence of a reference wave and the Fourier transformation properties of free space
propagation or lenses to acquire an image of a Fourier plane. (Fourier planes are always

curved in reciprocal space and constitute a subset of the surface of a sphere with radius
~βout
2π .

The origin is such that it overlaps with the start of the incident beam momentum vector
whereas the end of the incident beam momentum vector is located at the origin of k-space
(Appendix B and Figure A1). Every point in the Fourier plane contains information about all
the binding sites in the sensor volume [52]. Thus, by observing it, the entire sensor volume
is monitored at this specific spatial frequency [11,36,53]. (One could also think of an analog
lock-in that does not use coherence for the reference subtraction but somehow manages
to readout all interdigitated signal and reference regions collectively in one measurement
each. The measurement noise of such an implementation would still be higher because
two measurement instead of one need to be performed. (The measurement noise would be
uncorrelated, and its variance would be σsig + σref.) A convenient way to create a Fourier
plane without any additional optical components is to order the molecules in the shape
of a focusing hologram (diffractive lens) [11,36]. The relevant Fourier component is then
spread over an Airy disk of diameter dAiry = 1.22λ

NA , where NA is the numerical aperture
(NA = Dn

2F , D is the diameter of the lens/sensor, n the refractive index and F the focal
distance) of the focusing diffractive sensor and λ the wavelength. The further away the
Fourier plane from the sensor the lower are the resolution requirements of the acquired
image to isolate the relevant Fourier component.

A digital or also non-coherent spatial lock-in is essentially the acquisition of a high-
resolution image of the entire sensor volume. From this image one then performs a digital
Fourier transform and applies a digital bandpass filter (as in the time domain [18]). In
biosensors, the digital lock-in approach has been demonstrated with sensors based on
labeled molecules (e.g., the signal is mediated by a fluorophore) and the authors have
reported significantly improved detection limits with the digital lock-in compared to
integrative sensors [54]. In addition, any surface plasmon resonance imaging sensor using
distributed referencing is essentially a digitally locked-in sensor [15]. Other options for a
digital spatial lock-in could include arrays of LSPR (localized surface plasmon resonance)
sensors [55] or arrays of slot waveguides [56]. These would need to be functionalized in an
alternating manner and being separated at sufficient mutual distance to avoid coupling
(crosstalk) between the sensing elements. For 2D sensors, one could also think of acquiring
a high spatial frequency image with scanning probe techniques. However, due to their
operation principles they are not really suited for the monitoring of ensemble properties of
molecular interactions.

In summary, analog and digital lock-ins differ in that an analog lock-in samples the
Fourier space representation of the sensor whereas the digital lock-in samples the sensor
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in real space and performs the Fourier transformation digitally (Figure 4). In real space
the signal as well as the noise are distributed over the entire volume of the sensor. In
Fourier space, the signal is not only concentrated to a small region but in addition noise
and signal are separated. Due to these significant differences, analog lock-in amplifiers
(diffractometric biosensors) have numerous advantages over digital lock-in amplifiers
(refractometric biosensors using distributed referencing):

Figure 4. Advantages and disadvantages of digital and analog spatial lock-in amplifiers. Digital lock-in amplifiers such as
surface plasmon resonance sensors using distributed referencing acquire the signal in real space whereas analog lock-in
amplifiers (diffractometric sensor) sample directly reciprocal space. Due to this simple difference analog lock-in amplifiers
have numerous advantages over digital lock-ins.

First, a digital lock-in needs to sample the entire sensing volume with a high spatial
frequency such that the Nyquist criterion for the signal is met. Only then there is no
aliasing, and the entire signal power is collected. On the other hand, the analog lock-in
simply needs to integrate a small volume in Fourier space, because the entire signal power
is localized there. The rest of Fourier space does not need to be acquired. As mentioned
above, by adjusting the focal distance, the resolution requirements for detecting the relevant
Fourier component can be rendered arbitrarily low. Thus, analog lock-ins can construct a
sensor transfer function at high spatial frequency without the need for sampling the spatial
domain with high resolution.

To put this into perspective, let us consider a 2D sensor of dimensions 1 mm × 1
mm with a lock-in period of 200 nm. To resolve the spatial modulation in real space a
resolution of at least 100 nm is required (due to measurement noise it is even a bit smaller).
To image the entire sensor 10,000 × 10,000 data points need to be acquired in a digital
lock-in vs. 1 data point in the analog lock-in. This fact has multiple implications. First,
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imaging at optical frequencies at 200 nm resolution is challenging even with the best
microscopes. Therefore, the spatial frequency of the digital lock-in will be at least one order
of magnitude lower than in the coherent (analog) readout. In addition, current label-free
optical biosensor face other constraints than the diffraction limit. Even with commercial
instruments, the splitting factor in SPR cannot be increased below a few tens of microns
due to constraints of the physical transduction principle, namely diffraction blurring by
imaging the surface and the surface plasmon propagation length [15,57,58]. In other words,
the free space propagator that enables the Fourier transformation in the analog lock-in
works against the performance of the digital lock-in. The second implication is acquisition
speed. With the current standard scientific sensor format of 1–10 megapixel, one ultimately
requires stitching and refocusing to scan large sensor areas and therefore the acquisition
will be considerable slower. The third drawback is dynamic range (digital versions of
temporal lock-ins have the same issue (Section 6.3 in [18])). This drawback arises because
the noise is measured as well. To give an example, consider a 12-bit camera: To acquire
the signal in real space and a noise 1000 times higher than the signal we will lose 10 bits
to the noise and can only measure the signal with the remaining two bits. This only gives
an extremely coarse measurement output. On the other hand, in analog lock-ins the noise
is spatially separated from the detector and is not acquired. Almost all the bits available
can be used to digitize the signal. Fourth, there will be a measurement error for every
data point. Therefore, a digital lock-in will have much higher measurement noise if the
same detector is used as in the analog case. In addition, there is a fundamental difference
in measurement error tolerance between refractometric and diffractometric biosensors as
shown in part II [38]. Fifth, the readout system of an analog lock-in is considerable simpler.
No high-resolution optical setups are required. In the simplest case one only needs a stable
laser, an aperture and an integrative detector.

It is obvious that all these advantages must come at a cost. Yet, as it turns out the
cost is actually information that is not required in label-free biosensors. Specifically, the
exact location of one single binding event. Label-free interaction studies usually aim at
determining ensemble properties of the interaction between two ensembles of biomolecules
(affinity, concentration etc.) [59]. Thus, they rely on the determination of an average
receptor occupancy (what fraction of receptors has bound a target) on the sensor surface.
Usually, receptor occupancy is low in diagnostic applications because the concentration is
2–3 orders of magnitude lower than the affinity (dissociation constant KD) of the molecular
interaction [36,59]. Therefore, biosensors must collectively monitor the average occupation
of millions of receptors at the same time without requiring knowledge of the exact state of
an individual receptor. Another small disadvantage is that depending on the arrangement,
the analog lock-in might require tuning to fulfill the diffraction condition. Yet, whenever
the diffracted signal is a free space mode and the sensor is 2D, a simple array detector with
digital tracking will be sufficient. The diffraction condition is automatically met at a slightly
different angle that still hits the detector. In conclusion, analog lock-in amplifiers are more
promising than digital ones when it comes to ease of instrumentation and environmental
and measurement noise susceptibility.

Lastly, we want to investigate the difference between frequency and phase lock-
ins. This is important because spatial lock-in amplifiers based on optical diffraction are
only frequency lock-ins. A narrow sensor transfer function assures that only the carrier
frequency and the frequency components in its vicinity are transduced. For simplicity, we
now assume that we have a perfect frequency lock and that only the carrier frequency
is transduced. Furthermore, we write the Fourier component of the carrier frequency of
the sensor output after filtering in phasor notation. The resultant phasor Ar still has two
components: a signal phasor Asig and a remaining noise phasor AN that have an arbitrary
phase relationship φ to each other.

Ar = Asig + ANeiφ (24)
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This is best visualized in the complex plane (Figure 5). Without loss of generality, we
have assumed the signal phasor to be aligned with the real axis. The difference between a
frequency and phase lock-in is that a frequency lock-in only measures the magnitude of
the resultant whereas the phase lock-in measures both magnitude and phase. To achieve
a phase measurement, an external reference signal is required. The reference signal must
be in a well-defined phase relationship with the signal and not pass through the system.
The action of mixing is essentially a projection of the resultant phasor along the reference
signal direction. By shifting the reference signal by 90◦ both the in-phase and quadrature
components of the resultant can be measured. In general, the signal-to-noise ratio will
depend on how the measurement is performed and the noise properties. Under the
assumption that the noise is time dependent and that the signal-to-noise ratio is the ratio
between the signal power A2

sig divided by the mean noise power A2
Ncos2(φ), a phase

sensitive lock-in amplifier has the following signal-to-noise ratio: SNR =
A2

sig

A2
Ncos2(φ)

. This

scheme is not easily accomplished in the spatial domain. In a spatial lock-in amplifier the
spatial filter restricts the number of phasors that can pass through the detector. However,
at optical frequencies only detectors that measure the light intensity, which is proportional
to the squared amplitude, are readily available. The resultant phasor is therefore self-
mixed and only its squared magnitude can be measured. The magnitude of the phasor

is:
∣∣Asig + AN

∣∣ = √∣∣∣A2
sig + 2Asig AN cos(φ) + A2

N

∣∣∣ From the second term it is obvious that

interference between signal and noise is present. Thus, signal and noise are no longer
statistically independent, and one cannot define a proper signal-to-noise ratio for the
frequency lock-in. As an approximation one can take the ratio between original signal

and noise power without the interference term SNR =
A2

sig

A2
N

. Thus, the performance of a

phase lock-in is not much better than a frequency lock-in if the phase angle is arbitrary
and the noise is time dependent. However, the phase lock-in has significant advantages
when the noise phasor is mostly static and can be measured before the signal is applied.
This is the case for the speckle background of diffractometric biosensors in real time
measurements [11]. A detailed noise analysis would involve concepts from speckle physics;
however, this is beyond the scope of this paper. Yet briefly, the speckle background due
to surface roughness is the noise phasor. Since it arises from a random phasor sum its
length is Rayleigh distributed and its phase is uniform over (−π, π) [38,52]. If the phase
information is unknown, the resultant phasor (signal + noise) has a length that is Rician
distributed. The statistics of the Rician distribution determines the uncertainty of the pure
frequency lock-in. In the phase lock-in, the noise phasor length and phase uncertainty will
only be limited by the precision of the readout instrumentation and the stability of the
illumination. In part II, we discuss this point more in depth [38].
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Figure 5. Difference between phase lock-in and pure frequency lock-in (a) A phase lock-in requires a reference signal with a
fixed phase relationship to the signal. By mixing the signal with the reference and a 90◦ shifted reference one can obtain the
in-phase and quadrature components of the resulting phasor. This allows both magnitude and phase of the resultant to be
determined. (b) A frequency lock-in such as a diffractometric biosensor loses the phase information because only the square
magnitude of the resultant phasor can be detected (square law detection).

3. Conclusions

Environmental noise due to temperature, buffer changes and non-specific binding is
the limiting noise source in integrative molecular sensors that measure molecular recogni-
tion through the detection of binding. Integrative molecular sensor designs are sub-optimal
because their sensor transfer function is situated at the origin of reciprocal space where
most of the power of environmental noise is situated. In this paper, we introduced the “spa-
tial affinity lock-in amplifier” as an effective design principle to reject environmental noise.
Sensors employing the spatial affinity lock-in principle show better noise performance than
traditional sensors because they shift the signal power to higher spatial frequencies where
the noise is lower. In general, the higher the spatial modulation frequency the better the
signal to environmental noise ratio. High spatial modulation frequencies are achieved by
analog lock-ins based on diffraction of electromagnetic waves at optical frequencies, i.e.,
diffractometric biosensors. The diffractometric readout principle has intrinsic advantages
because the wave nature and coherence of light does all the necessary computation. Coher-
ence performs the reference subtraction, because the phase naturally oscillates over one
signal and reference region. It performs the Fourier transform via free space propagation
such that global correlation properties, i.e., all signal and reference regions, can be observed
conveniently in a single point of a Fourier plane of an optical system by one detector [60–62].
On the other hand, digital lock-ins based on distributed referenced refractometric sensing
principles (e.g., surface plasmon resonance imaging) have lower lock-in frequencies, lower
dynamic range, higher measurement errors and need to sample the entire sensor volume
with high resolution [38]. Further improvements in the signal to environmental noise
ratio of diffractometric spatially locked-in sensors might be possible by employing 3D
sensor designs and developing a spatial phase lock-in. In summary, the results in this
paper suggest that robust label-free sensors should employ a spatially locked-in design to
enable clean transmission of chemical signals in noisy, biologically complex environments.
This fact already enabled novel applications such as the label-free observation of specific
GPCR activation in living cells, simply because the lock-in frequency is higher than the
characteristic inverse length scale of the cell, i.e., its size [33,34]. Therefore, dominant
sources of noise induced by the cell such as adhesion changes, cell shape changes, mass
redistributions etc. are efficiently filtered out. Despite this, we believe that such novel
drug screening applications are just the beginning and the potential application scope of
spatially locked-in sensors is vast as further outlined in part II [38].
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Appendix A. Definition

Rectangle Function

rect(x) =


1 |x| < 1

2
1
2 |x| = 1

2
0 otherwise

(A1)

Appendix B. Fourier Planes of Imaging Systems in Reciprocal Space

Figure A1 depicts the sampling of reciprocal space by a finite size array detector at a
Fourier plane of an imaging system.

Figure A1. Schematic of a Fourier plane (red) in reciprocal space as it can be sampled by for instance
an image detector that is placed at a Fourier plane of an optical system. The violet circle is the set
of possible outgoing modes ~βout and the vector that is depicted fulfills the diffraction condition.
The schematic is a slice of reciprocal space along the ξx, ξz direction and must be imagined in 3D.
Furthermore, equal momentum of incoming and outgoing mode were assumed, which is only the
case if they propagate in media with equal refractive indices.
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