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Abstract

The Patterson F- and D-statistics are commonly used measures for quantifying population relationships and for testing hypotheses about
demographic history. These statistics make use of allele frequency information across populations to infer different aspects of population
history, such as population structure and introgression events. Inclusion of related or inbred individuals can bias such statistics, which may
often lead to the filtering of such individuals. Here, we derive statistical properties of the F- and D-statistics, including their biases due to
the inclusion of related or inbred individuals, their variances, and their corresponding mean squared errors. Moreover, for those statistics
that are biased, we develop unbiased estimators and evaluate the variances of these new quantities. Comparisons of the new unbiased
statistics to the originals demonstrates that our newly derived statistics often have lower error across a wide population parameter space.
Furthermore, we apply these unbiased estimators using several global human populations with the inclusion of related individuals to
highlight their application on an empirical dataset. Finally, we implement these unbiased estimators in open-source software package
funbiased for easy application by the scientific community.
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Introduction
The recently introduced F- and D-statistics (Huson et al. 2005;
Kulathinal et al. 2009; Reich et al. 2009; Green et al. 2010; Patterson
et al. 2012) have transformed the way geneticists measure popu-
lation differentiation. These statistics have been instrumental in
many major recent discoveries, including testing which
Neanderthal populations are closest to the populations that
admixed with modern humans (Hajdinjak et al. 2018), and detect-
ing which population is likely the admixing source for European
admixture in modern Ethiopian populations (Molinaro et al.
2019). Iterating through different combinations of populations
using the F4- and D-statistics has allowed reconstruction of popu-
lation histories in diverse groups such as Native Americans and
South Asians (Reich et al. 2012; Moorjani et al. 2013). In addition,
the D-statistics have been used extensively to provide evidence of
introgression and hybridization among species of Drosophila fruit
flies and Heliconius butterflies (Martin et al. 2015; Turissini and
Matute 2017).

In many cases, however, the populations tested by these sta-
tistics are small, and proper random sampling may include data
from related individuals. It is common to remove one or more of
the relatives from a group of related individuals because includ-
ing them might provide a bias in the value of a particular statistic
being measured (Rosenberg 2006; DeGiorgio and Rosenberg 2009;
DeGiorgio et al. 2010; Harris and DeGiorgio 2017a; Waples and
Anderson 2017). For this reason, we explore whether the current
estimators for these statistics are biased with the inclusion of

related or inbred individuals and if so, then develop unbiased
estimators under such scenarios.

These statistics are flexible and relatively simple to compute, as
they measure genetic drift along branches of a population tree by
contrasting allele frequencies between different combinations of
populations. Using allele frequency data from two, three, or four
populations, these statistics measure shared variation along
specific branches of the tree relating the populations. We begin by
providing intuitive descriptions and formal definitions of each of
the F- and D-statistics that we evaluate. Specifically, consider that
we have allele frequency data at J biallelic loci from each of four
populations, denoted A, B, C, and D. We denote the parametric pop-
ulation frequencies of the reference allele at locus j as aj, bj, cj, and dj

in populations A, B, C, and D, respectively, which are unknown
quantities that we will ultimately need to estimate prior to comput-
ing the F- and D-statistics from data. We begin by defining the true
parametric population F- and D-statistics (Reich et al. 2009;
Patterson et al. 2012) and then proceed in the Theory section to de-
fine sample estimators of these quantities, and show that our new
estimators that account for related and inbred individuals reduce to
the unbiased estimators in Appendix A of Patterson et al. (2012)
when samples contain unrelated and noninbred individuals.

We first examine the F2 statistic, which measures the amount
of genetic drift separating a pair of populations, and is thus a test
for differentiation between them, and is akin to the widely used
fixation index FST (Weir and Cockerham 1984). For a pair of popu-
lations A and B, we define the F2 statistic as
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F2ðA;BÞ ¼
1
J

XJ

j¼1

F2ðAj;BjÞ; (1)

where for locus j

F2ðAj;BjÞ ¼ ðaj � bjÞ2: (2)

It is clear from this definition that F2 takes values between
zero, when the populations have identical allele frequencies, and
one, when the populations are fixed for different alleles
(F1 Figure 1).

The F3 statistic employs allele frequencies from three popula-
tions, and measures the amount of genetic drift along the branch
leading to a target population, given allele frequency data from
two reference populations. For a target population A and two ref-
erence populations B and C, we define the F3 statistic as

F3ðA; B;CÞ ¼ 1
J

XJ

j¼1

F3ðAj; Bj;CjÞ; (3)

where for locus j

F3ðAj; Bj;CjÞ ¼ ðaj � bjÞðaj � cjÞ: (4)

Because it measures genetic drift along a branch leading to a tar-
get population, its value is expected to be nonnegative. However,
an interesting property of the F3 statistic is that it can be negative
if the target population experienced admixture, and therefore a
negative value directly indicates admixture in the history of the
target population (Reich et al. 2009; Patterson et al. 2012).
However, though F3 can detect admixture if its value is negative,

admixture is not guaranteed to lead to negative values (Reich
et al. 2009; Patterson et al. 2012), and it is therefore an inconclu-
sive test for admixture if F3 is nonnegative. Moreover, because
loci with higher minor allele frequencies may affect F3 more than
loci with lower minor allele frequencies, the F3 statistic is some-
times normalized (Reich et al. 2009; Patterson et al. 2012) based on
levels of diversity of the target population. Formally, this normal-
ized F3 statistic has definition

F3ðA; B;CjAÞ ¼ F3ðA; B;CÞ
2GðAÞ ; (5)

where we define for population P (here P¼A)

GðPÞ ¼ 1
J

X
j¼1

GðPjÞ (6)

such that for locus j

GðPjÞ ¼ pjð1� pjÞ: (7)

The F4 statistic, on the other hand, is a test of “treeness”
among a set of four populations, examining whether the
unrooted tree relating four populations is supported by the allele
frequencies within the set of populations. For a pair of sister
populations A and B and a pair of sister populations C and D,
we define the F4 statistic as

F4ðA; B; C;DÞ ¼ 1
J

XJ

j¼1

F4ðAj; Bj; Cj;DjÞ; (8)

where for locus j

F4ðAj;Bj; Cj;DjÞ ¼ ðaj � bjÞðcj � djÞ: (9)

If the unrooted relationship is true, then F4 takes the value of
zero, and is nonzero otherwise. If it is known a priori that the
unrooted relationship should be true, then a nonzero F4 statistic
can be indicative of admixture, and the sign of the statistic will
suggest which set of populations may be violating the assumed
unrooted tree topology (Figure 1). As with the F3 statistic, a nor-
malized version (Reich et al. 2009; Patterson et al. 2012) of the F4

statistic is sometimes used, with normalization based on the di-
versity of one of the four populations. Formally, this normalized
F4 statistic has definition

F4ðA;B; C;DjPÞ ¼ F4ðA;B; C;DÞ
GðPÞ (10)

where we normalize by diversity in population P 2 fA; B;C;Dg.
Finally, the D-statistic is a special version of the F4 statistic

that is a test of treeness for a particular asymmetric rooted tree
relating four populations, with the tree topology containing a pair
of sister populations, together with a close and a distant outgroup
population (Figure 1). For sister populations A and B, close out-
group population C, and distant outgroup population D, we define
the D statistic as

DðA;B;C;DÞ ¼ � F4ðA;B; C;DÞ
HðA;B;C;DÞ ; (11)

F2

D

A B

F3

AB C

F4

A B C D A B C D

Figure 1 Trees showing the different relationships the F- and D-statistics
are designed to test. F2ðA;BÞ can test the differentiation of two
populations A and B. F3ðA; B;CÞ can test for introgression or relatedness
between populations A and B or populations A and C. The placement of
population A as an ingroup branch is arbitrary, because the F3ðA; B;CÞ
statistic measures the amount of genetic drift along branch A, and thus
assumes the three-population tree is unrooted. However, because we are
also showing how F3ðA; B;CÞ can be employed to detect admixture in
population A, we depict population A as an ingroup for visual
convenience. F4ðA;B; C;DÞ can test the hypothesis of whether two
populations are closer to each other than they are to two other
populations, in this case are A and B closer to each other than they are to
C and D. The DðA;B;C;DÞ statistic can test whether there has been
admixture between population C and either populations A or B.
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where

HðA;B;C;DÞ ¼ 1
J

XJ

j¼1

HðAj;Bj;Cj;DjÞ (12)

is a normalizing factor to constrain the D statistic to take values
between negative one and one, such that for locus j

HðAj;Bj;Cj;DjÞ ¼ ðaj þ bj � 2ajbjÞðcj þ dj � 2cjdjÞ: (13)

If the rooted relationship is true, then D takes the value of zero,
and is nonzero otherwise. A nonzero D value can be used to de-
tect admixture between the close outgroup population and one
of the two sister populations based on its sign (Figure 1).

Theory
The F- and D-statistic equations presented in the Introduction
employ population allele frequencies, and are thus parameters of
the set of populations. To estimate them, we first need to build an
estimator of allele frequencies based on samples. We denote esti-
mates of the reference allele frequencies at locus j, j ¼ 1; 2; . . . ; J, in
populations A, B, C, and D by âj; b̂j; ĉ j, and d̂j, respectively.

As used previously (e.g., McPeek et al. 2004; DeGiorgio and
Rosenberg 2009; DeGiorgio et al. 2010; Harris and DeGiorgio
2017a), a linear unbiased estimator of population reference allele
frequency p at a biallelic locus can be defined as

p̂ ¼
XNðPÞ
k¼1

/kðPÞXk; (14)

where N(P) is the number of individuals sampled at the locus, Xk

is the frequency of the reference allele in individual k at the locus,
and /kðPÞ is the weight of individual k in population P at the locus.
McPeek et al. (2004) discussed the impact of various weighting
schemes on allele frequency estimation, and Harris and
DeGiorgio (2017a) examined the effects of weighting scheme on
estimation of expected heterozygosity.

Plugging the sample estimate of allele frequencies in place of
parametric population allele frequencies, estimators of the F-
and D-statistics can be computed as

F̂2ðA;BÞ ¼
1
J

XJ

j¼1

F̂2ðAj;BjÞ (15)

F̂3ðA; B;CÞ ¼ 1
J

XJ

j¼1

F̂3ðAj; Bj;CjÞ (16)

F̂4ðA;B; C;DÞ ¼ 1
J

XJ

j¼1

F̂4ðAj;Bj; Cj;DjÞ (17)

F̂3ðA; B;CjAÞ ¼ F̂3ðA; B;CÞ
2ĜðAÞ

(18)

F̂4ðA; B; C;DjPÞ ¼ F̂4ðA;B; C;DÞ
ĜðPÞ

(19)

D̂ðA; B;C;DÞ ¼ � F̂4ðA;B;C;DÞ
ĤðA;B;C;DÞ

; (20)

where

F̂2ðAj; BjÞ ¼ ðâj � b̂jÞ2 (21)

F̂3ðAj; Bj;CjÞ ¼ ðâj � b̂jÞðâj � ĉ jÞ (22)

F̂4ðAj; Bj; Cj;DjÞ ¼ ðâj � b̂jÞðĉ j � d̂jÞ; (23)

and where

ĜðPÞ ¼ 1
J

XJ

j¼1

ĜðPjÞ (24)

ĤðA;B;C;DÞ ¼ 1
J

XJ

j¼1

ĤðAj; Bj;Cj;DjÞ (25)

with

ĜðPjÞ ¼ p̂jð1� p̂jÞ (26)

ĤðAj;Bj;Cj;DjÞ ¼ ðâj þ b̂j � 2âjb̂jÞðĉ j þ d̂j � 2ĉ jd̂ jÞ: (27)

In the following, we discuss properties of these estimators, and
where appropriate, develop unbiased estimators for the statistics
that are biased due to the inclusion of related or inbred individu-
als in the sample.

To begin, we define the kinship coefficient Uxy between indi-
viduals x and y, as the probability that a pair of sampled alleles,
one from x and one from y are identical by descent if x 6¼ y, and
as the probability that a pair of alleles sampled with replacement
from individual x are identical by descent if x¼ y (Lange 2002). A
pair of unrelated individuals x and y have kinship coefficient
Uxy ¼ 0 (Lange 2002). Moreover, an individual x with ploidy mx

has kinship coefficient Uxx ¼ 1=mx þ ð1� 1=mxÞfx ¼ ð1=mxÞ
½1þ ðmx � 1Þfx�, where fx is the inbreeding coefficient of individual
x, and is defined as the probability that a pair of alleles sampled
without replacement in individual x are identical by descent
(DeGiorgio et al. 2010). A noninbred individual x has inbreeding
coefficient fx ¼ 0, and so if x is noninbred, then their kinship coef-
ficient is Uxx ¼ 1=mx. If an individual is haploid for regions of their
genome, then by definition at those loci Uxx ¼ 1. Directly account-
ing for the ploidy of individuals is especially pertinent for
X-linked loci, as sampled male individuals will be haploid and
sampled females will be diploid, thereby leading to noninbred
male individuals to have self-kinship coefficients mirroring
completely inbred individuals (Uxx ¼ 1), whereas noninbred
females at the same loci will have self-kinship coefficients con-
sistent with noninbred diploids (Uxx ¼ 1=2). As in DeGiorgio et al.
(2010) and Harris and DeGiorgio (2017a), we define the weighted
mean kinship coefficients across sets of individuals sampled in
population P 2 fA;B;C;Dg at locus j as

U2ðPjÞ ¼
XNðPjÞ

w¼1

XNðPjÞ

x¼1

/wðPjÞ/xðPjÞUwx (28)

U3ðPjÞ ¼
XNðPjÞ

w¼1

XNðPjÞ

x¼1

XNðPjÞ

y¼1

/wðPjÞ/xðPjÞ/yðPjÞUwxy (29)

U4ðPjÞ ¼
XNðPjÞ

w¼1

XNðPjÞ

x¼1

XNðPjÞ

y¼1

XNðPjÞ

z¼1

/wðPjÞ/xðPjÞ/yðPjÞ/zðPjÞUwxyz (30)

U2;2ðPjÞ ¼
XNðPjÞ

w¼1

XNðPjÞ

x¼1

XNðPjÞ

y¼1

XNðPjÞ

z¼1

/wðPjÞ/xðPjÞ/yðPjÞ/zðPjÞUwx;yz; (31)

which are the weighted mean kinship coefficients for the NðPjÞ
individuals sampled at locus j in population P for pairs, triples,
quadruples, and pairs of pairs of individuals, respectively.
Here, Uwxy; Uwxyz, and Uwx;yz are kinship coefficients respec-
tively defining the probabilities that a trio of alleles from
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individuals w, x, and y, a quadruple of alleles from individuals
w, x, y, and z, and a pair of alleles from w and x and a pair of
alleles from y and z are identical by descent (Harris 1964;
Cockerham 1971). In particular, Uwx; Uwxy; Uwxyz, and Uwx;yz are
identical to the Cockerham (1971) coefficients denoted by h, c,
d, and D, respectively.

These Cockerham (1971) pairwise and extended kinship coeffi-
cients for measuring identity-by-descent probabilities among
individuals are computed from sets of alleles sampled from two,
three, or four individuals within the same population, whereas
the F2, F3, and F4 statistics respectively are computed from sets of
alleles sampled from two, three, or four distinct populations.
Harris (1964) derived the genotypic covariances between individ-
uals within a population, which are related to these kinship coef-
ficients. In an interesting connection, F2ðA; BÞ measures the
covariance (variance) in the frequency difference between alleles
sampled from populations A and B, F3ðA; B;CÞ the covariance in
the frequency difference between alleles sampled from popula-
tions A and B and the difference between alleles sampled from
populations A and C, and F4ðA;B; C;DÞ the covariance in the fre-
quency difference between alleles sampled from populations A
and B and the difference between alleles sampled from popula-
tions C and D (Peter 2016). For this reason, we may expect that
these covariances (F-statistics) will depend on the identity-by-
descent probabilities defined by the Cockerham (1971) kinship
coefficients, which we show is the case based on our derivations
of the theoretical properties of the F-statistics.

From our definitions of kinship, we know that unrelated indi-
viduals have kinship coefficients of zero, but noninbred individu-
als still have positive values of their self-kinship coefficient,
thereby causing the mean kinship coefficients to necessarily be
positive quantities. It is for this reason that some F-statistic esti-
mators will be biased even without related or inbred individuals,
and this bias would be due to finite sample size. The estimators
presented in Appendix A of Patterson et al. (2012) correct this bias
due to finite sample sizes, and our goal is to further correct for
the biases induced by related and inbred individuals. For accurate
estimates of the drift quantities, it is therefore important to
obtain unbiased estimators.

A number of quantities (particularly variances and covarian-
ces involving the F- and D-statistics) will be mathematically
complex, as they will involve linear combinations of higher order
mean kinship coefficients. For this reason, we follow prior studies
(DeGiorgio et al. 2010; Harris and DeGiorgio 2017a) and make the
simplifying assumption that no individual in a sample from
population P is related to more than one other individual in the
sample, such that terms U3ðPjÞ; U4ðPjÞ; U2;2ðPjÞ, and U2ðPjÞ2 negli-
gible to U2ðPjÞ. Moreover, we assume that individuals sampled
in different populations are unrelated to each other, as well as
assume that the different populations in general are indepen-
dent so that alleles sampled in different populations cannot be
identical by descent. Furthermore, in the cases referred to in
this article, sampling is defined as statistical sampling, where
the expectation is averaging over repeated sampling. Under
these assumptions, we approximate a few key results from
prior studies (DeGiorgio et al. 2010; Harris and DeGiorgio 2017a)
that will ultimately make derivations easier. Given that p̂j is
an estimate of the frequency of a reference allele at locus j in
population P, we have the following expectations (approximate
notation when not exact)

E½p̂j� ¼ pj (32)

E½p̂2
j � ¼ p2

j þ U2ðPjÞpjð1� pjÞ (33)

E½p̂3
j � � p3

j þ 3U2ðPjÞp2
j ð1� pjÞ (34)

E½p̂4
j � � p4

j þ 6U2ðPjÞp3
j ð1� pjÞ: (35)

From prior studies (Nei and Roychoudhury 1974; Weir 1989;
DeGiorgio and Rosenberg 2009; DeGiorgio et al. 2010; Harris and
DeGiorgio 2017a), we know that 2p̂ð1� p̂Þ is a downwardly biased
estimator of expected heterozygosity at a locus, with the bias due
to finite sample size (Nei and Roychoudhury 1974) and exacer-
bated by the inclusion of inbred (Weir 1989) and related
(DeGiorgio and Rosenberg 2009; DeGiorgio et al. 2010; Harris and
DeGiorgio 2017a) individuals in the sample. Based on this defini-
tion, 2GðPÞ ¼ 2pð1� pÞ is expected heterozygosity, and its estima-
tor 2ĜðPÞ ¼ 2p̂ð1� p̂Þ therefore biased. We begin by developing an
unbiased estimator for G(P), as it is a key normalization quantity
in the F3 and F4 statistics.

Lemma 1. Consider J polymorphic loci in a population P
with parametric reference allele frequencies pj 2 ð0; 1Þ, and
suppose we take a random sample of NðPjÞ individuals at
locus j, some of which may be related or inbred. The estimator
ĜðPÞ has downward bias

Bias½ĜðPÞ� ¼ � 1
J

XJ

j¼1

U2ðPjÞGðPjÞ (36)

and an unbiased estimator of G(P) is

~GðPÞ ¼ 1
J

XJ

j¼1

~GðPjÞ; (37)

where

~GðPjÞ ¼
ĜðPjÞ

1� U2ðPjÞ
(38)

is an unbiased estimator of GðPjÞ.

Though this result is also given based on work in page 153 of
Weir (1996), we provide the proof of Lemma 1 in the Appendix for
completeness. Intuitively though, because ĜðPÞ involves the prod-
uct of frequencies for two alleles drawn from population P, there
is a chance of having the two alleles being identical by descent by
sampling the same allele twice, and is therefore a biased estima-
tor with and without related or inbred individuals. As a corollary,
we next provide the bias of ĜðPÞ due to finite sample size, and use
it to construct the unbiased estimator G

^

ðPÞ of G(P) in samples of
unrelated and noninbred individuals (proof of this corollary given
in the Appendix). Note that this estimator is identical to the one
provided in Appendix A of Patterson et al. (2012).

Corollary 2. Consider J polymorphic loci in a population P with
parametric reference allele frequencies pj 2 ð0; 1Þ, and
suppose we take a random sample of NðPjÞ unrelated and
noninbred individuals at locus j where individual
k 2 f1; 2; . . . ;NðPjÞ} has ploidy mk. Assuming allele frequencies
are estimated using the sample proportion, the estimator ĜðPÞ
has downward bias

Bias½ĜðPÞ� ¼ � 1
J

XJ

j¼1

1PNðPjÞ
k¼1 mk

GðPjÞ (39)
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and an unbiased estimator of G(P) is

G
^

ðPÞ ¼ 1
J

XJ

j¼1

G
^

ðPjÞ; (40)

where

G
^

ðPjÞ ¼

PNðPjÞ

k¼1
mk

PNðPjÞ
k¼1 mk � 1

ĜðPjÞ (41)

is an unbiased estimator of GðPjÞ. Here, G
^

ðPjÞ is equivalent to
the unbiased estimator termed ĥA in Appendix A of Patterson
et al. (2012).

We next consider examining the bias of the estimator F̂2ðA;BÞ. As
with ĜðPÞ, because F̂2ðA;BÞ requires sampling two alleles from
population A and two alleles from population B, we find it is
biased due to the inclusion of related or inbred individuals. We
present the formal result for F2 next (Proposition 3), and prove
the result in the Appendix.

Proposition 3. Consider J polymorphic loci in populations A
and B with respective parametric reference allele frequencies
aj; bj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
individuals at locus j in population P 2 fA; Bg, some of which
may be related or inbred. The estimate F̂2ðA;BÞ has upward
bias

Bias½F̂2ðA; BÞ� ¼
1
J

XJ

j¼1

½U2ðAjÞGðAjÞ þ U2ðBjÞGðBjÞ� (42)

and an unbiased estimator of F2ðA;BÞ is

~F2ðA; BÞ ¼
1
J

XJ

j¼1

½F̂2ðAj;BjÞ � U2ðAjÞ~GðAjÞ � U2ðBjÞ~GðBjÞ�: (43)

As one can see, the estimator F̂2ðA;BÞ is upwardly biased due to re-
latedness and inbreeding, and that sampling within both popula-
tions A and B contributes proportionally to this bias. The new
unbiased estimator ~F2ðA; BÞ corrects this bias by adjusting the com-
putation to account for the kinship coefficients and diversity within
each population, with the adjustment of diversity using the unbi-
ased estimator ~GðPÞ presented in Lemma 1. As a corollary, we next
provide the bias of F̂2ðA;BÞ due to finite sample size, and use it to
construct the unbiased estimator F

^

2ðA;BÞ of F2ðA;BÞ in samples of
unrelated and noninbred individuals (proof of this corollary given in
the Appendix). Note that this estimator is identical to the one de-
rived in Appendix A of Patterson et al. (2012), and we provide an ad-
ditional corollary highlighting its bias in samples containing related
or inbred individuals, which we prove in the Appendix.

Corollary 4. Consider J polymorphic loci in populations A and
B with respective parametric reference allele frequencies
aj; bj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
unrelated and noninbred individuals at locus j in population
P 2 fA;Bg where individual k 2 f1; 2; . . . ;NðPjÞ} has ploidy mk.
Assuming allele frequencies are estimated using the sample
proportion, the estimate F̂2ðA;BÞ has upward bias

Bias½F̂2ðA;BÞ� ¼
1
J

XJ

j¼1

1PNðAjÞ
k¼1 mk

GðAjÞ þ
1PNðBjÞ

k¼1 mk

GðBjÞ
" #

(44)

and an unbiased estimator of F2ðA;BÞ is

F
^

2ðA; BÞ ¼
1
J

XJ

j¼1

F̂2ðAj; BjÞ �
1PNðAjÞ

k¼1 mk � 1
ĜðAjÞ �

1PNðBjÞ
k¼1 mk � 1

ĜðBjÞ
" #

:

(45)

Here, F
^

2ðAj;BjÞ is equivalent to the unbiased estimator termed
F̂2ðA;BÞ in Appendix A of Patterson et al. (2012).

Corollary 5. Consider J polymorphic loci in populations A and
B with respective parametric reference allele frequencies
aj; bj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
individuals at locus j in population P 2 fA;Bg, some of which
may be related or inbred. The estimate F

^

2ðA;BÞ described in
Corollary 4 [also in Appendix A of Patterson et al. (2012)] has
upward bias

Bias½F
^

2ðA; BÞ� ¼
1
J

XJ

j¼1

"
U2ðAjÞ

PNðAjÞ
k¼1 mk � 1PNðAjÞ

k¼1 mk � 1
GðAjÞ

þ
U2ðBjÞ

PNðBjÞ
k¼1 mk � 1PNðBjÞ

k¼1 mk � 1
GðBjÞ

#
: (46)

Similarly to F̂2ðA; BÞ, the original estimator F̂3ðA; B;CÞ is also
upwardly biased because it requires the sampling of two
alleles from the target population A. We show the formal
results for F3 next (Proposition 6), and prove the result in the
Appendix.

Proposition 6. Consider J polymorphic loci in populations A, B,
and C with respective parametric reference allele frequencies
aj; bj; cj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
individuals at locus j in population P 2 fA;B;Cg, some of
which may be related or inbred. The estimate F̂3ðA; B;CÞ has
upward bias

Bias½F̂3ðA; B;CÞ� ¼ 1
J

XJ

j¼1

U2ðAjÞGðAjÞ (47)

and an unbiased estimator of F3ðA; B;CÞ is

~F3ðA; B;CÞ ¼ 1
J

XJ

j¼1

½F̂3ðAj; Bj;CjÞ � U2ðAjÞ~GðAjÞ�: (48)

The bias of the original estimator is proportional to the related-
ness and diversity within the target population A. The new
unbiased estimator ~F3ðA; B;CÞ corrects the bias by adjusting the
computation to account for the kinship and diversity within the
target population, with the adjustment of diversity using the un-
biased estimator ~GðAÞ. Moreover, it is important to note that the
reference populations B and C do not contribute to bias, as only a
single allele is sampled from each of these populations. As a cor-
ollary, we next provide the bias of F̂3ðA; B;CÞ due to finite sample
size, and use it to construct the unbiased estimator F

^

3ðA; B;CÞ of
F3ðA; B;CÞ in samples of unrelated and noninbred individuals
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(proof of this corollary given in the Appendix). Note that this esti-
mator is identical to the one derived in Appendix A of Patterson
et al. (2012), and we provide an additional corollary highlighting
its bias in samples containing related or inbred individuals, which
we prove in the Appendix.

Corollary 7. Consider J polymorphic loci in populations A, B,
and C with respective parametric reference allele frequencies
aj; bj; cj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
unrelated and noninbred individuals at locus j in population
P 2 fA;B;Cg where individual k 2 f1; 2; . . . ;NðPjÞ} has ploidy mk.
Assuming allele frequencies are estimated using the sample
proportion, the estimate F̂3ðA; B;CÞ has upward bias

Bias½F̂3ðA; B;CÞ� ¼ 1
J

XJ

j¼1

1PNðAjÞ
k¼1 mk

GðAjÞ (49)

and an unbiased estimator of F3ðA; B;CÞ is

F
^

3ðA; B;CÞ ¼ 1
J

XJ

j¼1

½F̂3ðAj; Bj;CjÞ �
1PNðAjÞ

k¼1 mk � 1
ĜðAjÞ�: (50)

Here, F
^

3ðAj; Bj;CjÞ is equivalent to the unbiased estimator
termed F̂3ðA; B;CÞ in Appendix A of Patterson et al. (2012).

Corollary 8. Consider J polymorphic loci in populations A, B,
and C with respective parametric reference allele frequencies
aj; bj; cj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
individuals at locus j in population P 2 fA; B;Cg, some of
which may be related or inbred. The estimate F

^

3ðA; B;CÞ
described in Corollary 7 [also in Appendix A of Patterson et al.
(2012)] has upward bias

Bias½F
^

3ðA; B;CÞ� ¼ 1
J

XJ

j¼1

U2ðAjÞ
PNðAjÞ

k¼1 mk � 1PNðAjÞ
k¼1 mk � 1

GðAjÞ: (51)

Given that F̂3ðA; B;CjAÞ uses the biased estimators F̂3ðA; B;CÞ and
ĜðAÞ in its definition, we can expect that it would be biased as its
component estimators are biased, and these components have
different biases that are also in different directions. However,
F̂3ðA; B;CjAÞ is a ratio estimator, and we can therefore not directly
take its expectation to evaluate bias. Instead, we will make some
simplifying assumptions and compute the approximate bias of
F̂3ðA; B;CjAÞ. We show the formal results next (Proposition 9), and
prove the result in the Appendix.

Proposition 9. Consider J polymorphic loci in populations A, B,
and C with respective parametric reference allele frequencies
aj; bj; cj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
individuals at locus j in population P 2 fA; B;Cg, some of
which may be related or inbred. The ratio estimator
F̂3ðA; B;CjAÞ is approximately upwardly biased, assuming that
its mean is well-approximated by the ratio of means of
F̂3ðA; B;CÞ and 2ĜðAÞ that it uses in its definition, with its
upward approximate bias

Bias½F̂3ðA; B;CjAÞ� �
ð1=JÞ

PJ
j¼1 U2ðAjÞGðAjÞ

GðAÞ � ð1=JÞ
PJ

j¼1 U2ðAjÞGðAjÞ
F3ðA; B;CjAÞ þ 1

2

� �
:

(52)

Moreover, an approximately unbiased estimator of
F3ðA; B;CjAÞ is

~F3ðA; B;CjAÞ ¼
~F3ðA; B;CÞ

2~GðAÞ
: (53)

There is an upward approximate bias of the original normal-
ized F3 estimator, and the bias is, as with the standard estimator
of F3, due partially to the diversity and sampling in the target
population. The new approximately unbiased estimator
~F3ðA; B;CjAÞ is based simply on the ratio of unbiased estimators
of its components ~F3ðA; B;CÞ and ~GðAÞ. As a corollary, we next
provide the approximate bias of F̂3ðA; B;CjAÞ due to finite sample
size, and use it to construct the approximately unbiased estima-
tor F

^

3ðA; B;CjAÞ of F3ðA; B;CjAÞ in samples of unrelated and nonin-
bred individuals (proof of this corollary given in the Appendix).
We provide an additional corollary highlighting its bias in sam-
ples containing related or inbred individuals, which we prove in
the Appendix.

Corollary 10. Consider J polymorphic loci in populations A, B,
and C with respective parametric reference allele frequencies
aj; bj; cj 2 ð0; 1Þ, and suppose we take a random sample of NðPjÞ
unrelated and noninbred individuals at locus j in population
P 2 fA;B;Cg where individual k 2 f1; 2; . . . ;NðPjÞ} has ploidy mk.
The ratio estimator F̂3ðA; B;CjAÞ is approximately upwardly
biased, assuming that its mean is well-approximated by the
ratio of means of F̂3ðA; B;CÞ and 2ĜðAÞ that it uses in its
definition, with its upward approximate bias

Bias½F̂3ðA; B;CjAÞ� �
ð1=JÞ

PJ
j¼1½1=

PNðAjÞ
k¼1 mk�GðAjÞ

GðAÞ � ð1=JÞ
PJ

j¼1½1=
PNðAjÞ

k¼1 mk�GðAjÞ
F3ðA; B;CjAÞ þ 1

2

� �
:

(54)

Moreover, an approximately unbiased estimator of
F3ðA; B;CjAÞ is

F
^

3ðA; B;CjAÞ ¼ F
^

3ðA; B;CÞ
2G

^

ðAÞ
: (55)

Corollary 11. Consider J polymorphic loci in populations A,
B, and C with respective parametric reference allele
frequencies aj; bj; cj 2 ð0; 1Þ, and suppose we take a random
sample of NðPjÞ individuals at locus j in population
P 2 fA;B;Cg, some of which may be related or inbred. The
ratio estimate F

^

3ðA; B;CjAÞ described in Corollary 10 is
approximately upwardly biased, assuming that its mean is
well-approximated by the ratio of means of F

^

3ðA; B;CÞ and
2G

^

ðAÞ that it uses in its definition, with its upward
approximate bias

Bias½F
^

3ðA; B;CjAÞ� � 1
2

1
YðAÞ �

1
GðAÞ

� �
F3ðA; B;CÞ þ XðAÞ

2YðAÞ ; (56)

where

XðAÞ ¼ 1
J

XJ

j¼1

U2ðAjÞ
PNðAjÞ

k¼1 mk � 1PNðAjÞ
k¼1 mk � 1

GðAjÞ (57)
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YðAÞ ¼ 1
J

XJ

j¼1

½1� U2ðAjÞ�
PNðAjÞ

k¼1 mkPNðAjÞ
k¼1 mk � 1

GðAjÞ: (58)

Finally, we move to the four population statistics F4 and D.
Note that the F4 statistic by definition only samples a single allele
per population, and therefore the original estimator F̂4ðA; B; C;DÞ
is intuitively unbiased. We show the formal results next
(Proposition 12), and prove the result in the Appendix.

Proposition 12. Consider J polymorphic loci in populations A, B,
C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 ð0; 1Þ, and suppose we take a random
sample of NðPjÞ individuals at locus j in population
P 2 fA;B;C;Dg, some of which may be related or inbred. The
estimator F̂4ðA; B; C;DÞ is unbiased.

Though the original F4 estimator is unbiased, the normalized
F4 and D statistics are more complicated as they are ratio estima-
tors, meaning their biases cannot be directly assessed. However,
intuitively, because both estimators have F̂4ðA; B; C;DÞ as their
numerator, bias would seemingly derive from their denominator
component. Next, we show formally in Proposition 13 that the
normalized F̂4ðA;B; C;DjPÞ estimator is approximately upwardly
biased, and prove the result in the Appendix.

Proposition 13. Consider J polymorphic loci in populations A, B,
C and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 ð0; 1Þ, and suppose we take a random sample of
NðPjÞ individuals at locus j in population P 2 fA;B;C;Dg, some of
which may be related or inbred. The ratio estimator
F̂4ðA;B; C;DjPÞ is approximately upwardly biased, assuming that
its mean is well-approximated by the ratio of means of
F̂4ðA;B; C;DÞ and ĜðPÞ for any population P 2 fA;B;C;Dg that it
uses in its definition, with its upward approximate bias

Bias½F̂4ðA; B; C;DjPÞ� �
ð1=JÞ

PJ
j¼1 U2ðPjÞGðPjÞ

GðPÞ � ð1=JÞ
PJ

j¼1 U2ðPjÞGðPjÞ
F4ðA;B; C;DjPÞ:

(59)

Moreover, an approximately unbiased estimator of
F4ðA; B; C;DjPÞ is

~F4ðA; B; C;DjPÞ ¼ F̂4ðA;B; C;DÞ
~GðPÞ

: (60)

The reasoning that the F̂4ðA; B; C;DjPÞ estimator has upward
approximate bias is that its estimator ĜðPÞ used in its denomina-
tor is downwardly biased. By using the unbiased estimator ~GðPÞ
in its place within the denominator, we find a new estimator
~F4ðA;B; C;DjPÞ is approximately unbiased. As a corollary, we next
provide the approximate bias of F̂4ðA; B; C;DjPÞ due to finite sam-
ple size, and use it to construct the approximately unbiased esti-
mator F

^

4ðA;B; C;DjPÞ of F4ðA;B; C;DjPÞ in samples of unrelated
and noninbred individuals (proof of this corollary given in the
Appendix). We provide an additional corollary highlighting its
bias in samples containing related or inbred individuals, which
we prove in the Appendix.

Corollary 14. Consider J polymorphic loci in populations A, B,
C, and D with respective parametric reference allele

frequencies aj; bj; cj; dj 2 ð0; 1Þ, and suppose we take a random
sample of NðPjÞ unrelated and noninbred individuals at locus j
in population P 2 fA;B;C;Dg where individual
k 2 f1; 2; . . . ;NðPjÞ} has ploidy mk. The ratio estimator
F̂4ðA;B; C;DjPÞ is approximately upwardly biased, assuming
that its mean is well-approximated by the ratio of means of
F̂4ðA;B; C;DÞ and ĜðPÞ that it uses in its definition, with its
upward approximate bias

Bias½F̂4ðA;B; C;DjPÞ� �
ð1=JÞ

PJ
j¼1½1=

PNðPjÞ
k¼1 mk�GðPjÞ

GðPÞ � ð1=JÞ
PJ

j¼1½1=
PNðPjÞ

k¼1 mk�GðPjÞ
F4ðA;B; C;DÞ:

(61)

Moreover, an approximately unbiased estimator of
F4ðA;B; C;DjPÞ is

F
^

4ðA;B; C;DjPÞ ¼ F̂4ðA; B; C;DÞ
G
^

ðPÞ
: (62)

Corollary 15. Consider J polymorphic loci in populations A, B, C,
and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 ð0; 1Þ, and suppose we take a random sample of
NðPjÞ individuals at locus j in population P 2 fA; B;C;Dg, some
of which may be related or inbred. The ratio estimate
F
^

4ðA;B; C;DjPÞ described in Corollary 14 is approximately
upwardly biased, assuming that its mean is well-approximated
by the ratio of means of F̂4ðA;B; C;DÞ and G

^

ðPÞ that it uses in its
definition, with its upward approximate bias

Bias½F
^

4ðA; B; C;DjPÞ� � 1
YðPÞ �

1
GðPÞ

� �
F4ðA;B; C;DÞ; (63)

where

YðPÞ ¼ 1
J

XJ

j¼1

½1� U2ðPjÞ�
PNðPjÞ

k¼1 mkPNðPjÞ
k¼1 mk � 1

GðPjÞ: (64)

The bias property of the D statistic is different than the nor-
malized F4 statistic, as the estimator ĤðA;B;C;DÞ of its denomina-
tor is unbiased (Lemma 17 of the Appendix). Intuitively, this
result is due to the denominator not having a product of frequen-
cies for two alleles sampled from the same population. Because
both its numerator and denominator are unbiased, we next show
that the ratio estimator D̂ðA;B;C;DÞ is approximately unbiased in
Proposition 16, and prove the result in the Appendix.

Proposition 16. Consider J polymorphic loci in populations A, B,
C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 ð0; 1Þ, and suppose we take a random sample of
NðPjÞ individuals at locus j in population P 2 fA; B;C;Dg, some
of which may be related or inbred. The ratio estimator
D̂ðA;B;C;DÞ is approximately unbiased, assuming that its
mean is well-approximated by the ratio of means of
�F̂4ðA;B; C;DÞ and ĤðA; B;C;DÞ that it uses in its definition.

In addition to bias, variance is an important property of an es-
timator, as both bias and variance are components of mean
squared error (MSE). Because the formulas and derivations for
the variances of the F- and D-statistics are not particularly in-
sightful, we relegate these results to the Appendix. Specifically,

M. R. Mughal and M. DeGiorgio | 7



we provide the variances for F̂2ðA;BÞ; ~F2ðA; BÞ, F
^

2ðA;BÞ,
F̂3ðA; B;CÞ; ~F3ðA; B;CÞ, F

^

3ðA; B;CÞ, F̂3ðA; B;CjAÞ; ~F3ðA; B;CjAÞ,
F
^

3ðA; B;CjAÞ, F̂4ðA;B; C;DÞ; F̂4ðA;B; C;DjPÞ; ~F4ðA;B; C;DjPÞ,
F
^

4ðA;B; C;DjPÞ, and D̂ðA;B;C;DÞ in Propositions 20, 21, 22, 23, 25,
26, 28, 31, 32, 27, 34, 37, 38, and 41 of the Appendix, respectively.

Results
In the Theory and Appendix, we introduced new unbiased estima-
tors of F2 and F3 statistics, and derived biases and variances
(and hence MSEs) for the original and new estimators of F- and D-
statistics. In this section, we theoretically evaluate the relative
performances of the old biased estimators and the new unbiased
estimators under an array of settings, including different mix-
tures of relatedness, inbreeding, sample sizes, and population
parameters.

For all of our results we require the kinship coefficients for
each pair of individuals. To acquire these values, we need to
know if each individual is related to any other in the population
and also whether they are inbred, and if so, how these values are
quantified through the use of kinship coefficients (Uxy). To sum-
marize how an entire sample from a population P is related to
each other at a locus, we use

U2ðPÞ ¼
XNðPÞ
w¼1

XNðPÞ
x¼1

/wðPÞ/xðPÞUwx; (65)

where /wðPÞ and /xðPÞ are weights of individuals w and x in popu-
lation P, and in this study we use weights corresponding to the
proportion of alleles contributed by individual x to the sample
from population P, which is computed as

/xðPÞ ¼
mxPNðPÞ

k¼1
mk

: (66)

Here mx is the ploidy of individual x. Moreover, using this weight-
ing scheme, we also estimate the frequency of the reference al-
lele at a biallelic locus as the sample proportion (McPeek et al.
2004; DeGiorgio et al. 2010; Harris and DeGiorgio, 2017a)

p̂ ¼
XNðPÞ
k¼1

/kðPÞXk ¼
XNðPÞ
k¼1

mkPNðPÞ
j¼1 mj

Xk: (67)

Effect of population F-statistic value on mean
squared error
The relationship between the population parameter for a statistic
and the estimate based on a sample from the population is im-
portant to evaluate. We compare the difference in the MSE be-
tween the biased F̂ estimators, the F

^

estimators, which are
unbiased in samples not containing related or inbred individuals,
and our unbiased ~F estimators to the true value of each statistic
in the cases for which both estimators exist. The F2, F3, and F4 sta-
tistics require allele frequency information from either two,
three, or four populations, respectively.

For our F2 comparisons, we use the sample allele frequencies
from the YRI (sub-Saharan African) and CEU (central Europeans)
from the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015) as the true population allele frequencies to ob-
tain the true F2ðA;BÞ statistic by using the population definition
from the Introduction, with populations A ¼ CEU and B ¼ YRI. We

use populations from the 1000 Genomes Project, as the released
dataset of genotype calls across the 2504 worldwide samples
does not include related individuals. To evaluate the relative per-
formances of F2 estimators over a range of true F2 values, we ran-
domly sample 20 independent loci from both populations for
1000 independent replicates of J¼ 20 loci, yielding 1000 indepen-
dent draws of the true F2 statistic, which ranged across the set of
values F2 2 ½0:02; 0:12�. Using these allele frequencies, along with
the sample size and relatedness information, we also calculate
the difference in MSE between the F̂2 and ~F2 estimators by using
Propositions 3, 20, and 21 and the difference in MSE between the
F̂ and F

^

estimators by using Corollary 5 and Proposition 22.
We calculate the MSE by summing the variance and
squared bias. We note that the MSEs of the unbiased estimators
are equal to their variances. We repeat this process for
F3ðA; B;CÞ; F3ðA; B;CjAÞ, and F4ðA; B; C;DjAÞ as these are the esti-
mators that are biased in their F̂ forms.

We use Propositions 6, 23, 25, and 26 and Corollary 8 to deter-
mine the MSE for all three F3 estimators by including allele fre-
quency information from the JPT (Japanese) population where
A ¼ JPT; B ¼ CEU, and C ¼ YRI, with true range for
F3 2 ½0:00; 0:08�. For the normalized F3ðA; B;CjAÞ estimators, we
compare MSE between the biased and unbiased versions by using
bias and variances derived in Propositions 9, 28, 31, and 32 and
Corollary 11 with true range for normalized F3 2 ½0:00; 0:30�.
Finally, we estimate the MSE for the normalized F4ðA;B; C;DjAÞ
estimators by including GIH (Gujurati Indian) allele frequency
data and using the derivations in Propositions 13, 34, 37, and 38
and Corollary 15. In this case, we set A ¼ YRI; B ¼ CEU; C ¼ JPT,
and D ¼ GIH for a true range of normalized F4 2 ½�0:3; 0:2�.

For each analysis, we estimate MSE for instances when sam-
ples of 60 diploid individuals from each population include 30 rel-
ative pairs, including 10 avuncular relationships, 10 inbred full
siblings, and 10 outbred full siblings. We also assumed every indi-
vidual was related to exactly one other individual. In these esti-
mates, all populations contain the same composition of related
individuals.

The difference in log 10ðMSEÞ between F̂ and ~F estimators for
F2ðA; BÞ; F3ðA; B;CÞ; F3ðA; B;CjAÞ, and F4ðA; B; C;DjAÞ show similar
trends with respect to the true F-statistic values. Similar trends
emerge when examining the difference between F̂ and F

^

estima-
tors. Specifically, the difference in log 10ðMSEÞ decreases as the
true F-statistic value approaches zero ( F2Figure 2). In our evaluation
of F4ðA; B; C;DjAÞ, we considered both positive and negative val-
ues for its true value, which shows that the difference in
log 10ðMSEÞ of F̂4 and ~F4 exhibits a quadratic shaped trend as a
function of true F4. Overall, we notice that the difference in MSE
between biased and unbiased estimators is dependent on the
true value of the F-statistic, with the least difference occurring
when the true F-statistic is closest to zero.

Effect of sample size on mean squared error
To probe how sample size within each population affects the dif-
ference in estimator error rate, we theoretically computed the
MSE for both F̂ and ~F estimators when different numbers of indi-
viduals are sampled, with the constraint that every sampled indi-
vidual is related to exactly one other individual in the sample
from that population. Specifically, we evaluate the impact on
these estimators when sampling from one pair to 50 pairs of re-
lated individuals, with relationships of inbred full sibling pairs
(Uxy ¼ 3=8), outbred full sibling pairs (Uxy ¼ 1=4), parent-offspring

8 | GENETICS, 2022, Vol. 220, No. 1



pairs (Uxy ¼ 1=4), and avuncular pairs (Uxy ¼ 1=8). We compute
the MSE as in Effect of population F-statistic value on MSE section
above.

In almost all cases, the biased F̂ and the unbiased F
^

estimators
always displayed elevated MSE compared to their corresponding
unbiased ~F estimators (F3 Figure 3 and Supplementary Figures S1–S3),
with the F

^

estimators always having values between the F̂ and ~F
estimators, and usually being closer to ~F than to F̂. For all estima-
tors, we see a clear decrease in the MSE as the number of sampled
individuals increases, with the greatest error observed when two
individuals are sampled. As expected, a greater sample size allows
one to better estimate allele frequencies, and ultimately reduces
the mean pairwise kinship coefficient within the sample, as the
number of pairs in the sample grows quadratically but the number
of relative pairs grows linearly. We also find that the difference in
the MSE at larger sample sizes is not as pronounced for normalized
F4 as it is for F2, F3, and normalized F3, as the difference in bias
among the biased and unbiased estimators is much smaller for
normalized F4 (Supplementary Figure S3).

Effect of sample composition on mean squared
error
Different types of relatives have different proportions of their
alleles shared identical by descent, and thus have different pair-
wise kinship coefficients. Because we have demonstrated that
bias and variance (and hence MSE) of estimators are influenced
by within-population mean pairwise kinship coefficient across
sampled individuals, the distribution of relative types within a
sample will impact overall F-statistic estimation error. For this
reason, it is important to examine how our F-statistics are af-
fected by samples containing diverse mixtures of relative types.
Specifically, to accurately assess the impact of relative composi-
tion, we hold sample sizes, number of relative pairs, and true
population F-statistic values constant.

We computed the theoretical MSE when samples of 50 pairs of
relatives (100 diploid individuals sampled) contain relative pairs

of three different types as in Harris and DeGiorgio (2017a). In ad-
dition, each individual is related to exactly one other individual
in the sample from the same population. For each statistic we
vary the number of pairs related by each of three types of rela-
tionships between zero and 50, with 1326 combinations for each.
We repeat this process for three configurations of relationships
to probe estimator error as a function of the mixture of relative
types. We also provide comparisons among inclusion of male–
male full siblings (Uxy ¼ 1=2), male–female full siblings
(Uxy ¼ 3=8) and female–female full siblings (Uxy ¼ 1=4) at mixed-
ploidy loci such as on the X chromosome (DeGiorgio et al. 2010),
with results showing elevated MSE for both estimators for higher
male–male sibling proportions, when compared to male–female
or female–female full siblings. To investigate the effects of inbred
individuals, we also provide a comparison between inbred full
siblings (Uxy ¼ 3=8) with inbreeding coefficient fx ¼ fy ¼ 1=4, and
outbred full-siblings (Uxy ¼ 1=4) at a autosomal diploid loci. We
see that MSE is higher for inbred full-siblings than for outbred
full-siblings in all cases examined ( F4Figure 4 and Supplementary
Figures S4–S6).

We also note that the value of MSE for the biased F̂ estimators
is always greater than the value for their corresponding unbiased
~F statistics, which is true in part due to the values of the true F-
statistics for the loci we chose to use. In addition, the values for
the F

^

estimators are also higher than the corresponding ~F estima-
tors, but are lower than respective F̂ estimators for all combina-
tions of individuals. Though the MSE is higher for the biased
estimators, the variation in MSE values is similar for all estima-
tors. For example, the data point with the highest proportion of
avuncular relatives has the lowest MSE when compared to
parent-offspring relationships and outbred full siblings. In all
tested settings (Figure 4 and Supplementary Figures S4–S6), we
notice similar patterns of MSE variation when comparing F̂ esti-
mators with F

^

and ~F estimators. This pattern is again shared
when comparing MSE variation among the estimators for F2, F3,
normalized F3, and normalized F4. We can conclude that in all of
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Figure 2 Difference in theoretically calculated log 10ðMSEÞ of F̂ and ~F (A–D) and F̂ and F
^

(E–H) estimators when including relatives or inbred individuals.
The MSE is estimated for instances when samples of 60 individuals include individuals related to exactly one other in the sample, with 10 pairs of
avuncular relationships, 10 pairs of inbred full siblings and 10 pairs of outbred full siblings. Each point represents calculations from J¼20 randomly
sampled loci from the 1000 Genomes Project dataset for CEU, European, YRI African, JPT Japanese, and GIH Indian populations. For F2ðA;BÞ we use
A ¼ CEU and B ¼ YRI, while for F3ðA; B;CÞ and F3ðA; B;CjAÞ we use A ¼ JPT; B ¼ CEU, and C ¼ YRI and for F4ðA; B; C;DjAÞ we assign
A ¼ YRI; B ¼ CEU; C ¼ JPT, and D ¼ GIH.
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Figure 4 Theoretically calculated MSE of F̂2ðA;BÞ (A), F
^

2ðA;BÞ (B), and ~F2ðA;BÞ (C) when including relatives or inbred individuals for J¼ 20 loci. The MSE
is estimated for instances when samples of 100 individuals include individuals related to exactly one other in the sample. The first column shows MSE
for samples with different combinations of parent-offspring (PO), full sibling (FS), and avuncular (AV) relationships, the second includes full siblings
that are male–male (MM), male–female (MF), and female–female (MF). The last column includes AV relationships as well as inbred (FSi) and outbred
(FSo) full siblings. The true value of F2ðA;BÞ is 0.071.
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Figure 3 Mean squared error theoretically calculated for F̂2ðA;BÞ, F
^

2ðA;BÞ, and ~F2ðA;BÞ across different sample sizes or related pairs of individuals,
including avuncular relationships (A), parent-offspring relationships (B), outbred full siblings (C), and inbred full siblings (D). The number of sampled
individuals ranges from 2 to 100 with the number of relative pairs equaling half the total sampled, all computed using J¼ 20 loci. The true value of
F2ðA;BÞ is 0.071.
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these cases, the value of the mean kinship coefficient is most im-
portant in determining MSE when sample size and true F-statistic
value are fixed.

Simulations to evaluate theoretical MSE
approximations
To verify that our theoretical approximations for MSE are reason-
able, we simulate samples containing related individuals and use
them to compute the biased F̂- and unbiased ~F-statistics as well
as calculate their biases, variances, and MSEs. For each popula-
tion (CEU, YRI, GIH, and JPT), we simulate 10 noninbred parent-
offspring pairs with each individual related to exactly one other
individual in the sample. Genotypes for each individual are simu-
lated by first sampling two alleles with replacement according to
their respective population allele frequencies from each of the
populations (CEU, YRI, GIH, and JPT) to create a set of 20 unre-
lated individuals per population. Individuals x and y that form
one of the 10 relative pairs have the genotype of individual y
modified according to their relationship type. Specifically, for
each relative type, there are probabilities D0; D1, and D2 that the
two individuals will share zero, one, or two alleles identical by de-
scent, respectively. The first allele of individual y is copied from
the first allele from individual x with probability D1 and the entire
genotype of individual x is copied over to individual y with proba-
bility D2. This process is repeated across 20 independent loci to
generate a sample of 20 individuals with 10 relative pairs in each
population with genotypes taken at J¼ 20 independent loci. To
generate 20 independent loci from the four 1000 Genomes Project
populations, we used loci either on separate chromosomes, or at
least one megabase away from each other.

For each of our new unbiased estimators we compute the bias,
variance, and MSE along with the same values for the original
estimators (F5 Figure 5 and Supplementary Figures S7–S9).
Comparing the bias measurements in these figures, we observe a
clear reduction in bias when applying the ~F and F

^

estimators as
opposed to the F̂ estimators. Importantly, the bias measurements
for the F

^

estimators are always higher than the bias measures for
~F estimates, as the F

^

estimators do not account for relatives.
However, the variances are highly similar for F̂, F

^

, and ~F in all
cases. As the value of variance is much larger than the magni-
tude of the bias (by an order of magnitude) and hence the
squared bias, the resulting MSE is consequently similar as well.
Because F4 is quantifying the relationship among four popula-
tions, more simulations may be required to converge to the pat-
tern seen by theoretical simulations. For this reason, we
increased the number of simulations used to compute the bias,
variance, and MSE to 104 for each data point in Supplementary
Figure S9, whereas 103 simulation replicates were used for F2, and
both versions of F3.

To compare the accuracy of our theoretical approximations to
simulation results across a spectrum of relatedness between
individuals in a sample, we simulate combinations of parent off-
spring, outbred full sibling, and avuncular relationships. In a
manner similar to described above (first paragraph of Simulations
to evaluate theoretical MSE approximations), we simulate a total of 10
relative pairs made up of a combination of each of the three rela-
tive types, with the number of each relative type ranging from 0
to 10. We simulate each of these 66 distinct settings of relative
type combinations with genotypes sampled at J¼ 20 independent
loci, and completed 1000 independent replicates of each setting
to obtain accurate measurements of bias, variance, and MSE for
each simulation setting, with each simulation using true F-statis-
tic values specified in (Figure 5 and Supplementary Figures S7–

S9). We compute the bias, variance, and MSE for simulations, and
compare these values to theoretically calculated computations
for each relative combination (Supplementary Figures S11–S14).
We find that although noisier, the bias, variance, and MSE pat-
terns in our simulation results match theoretical calculations,
suggesting that our theoretical computations are accurate. For
all cases, the simulated bias measurements for the ~F estimators
are close to zero, whereas the F̂ estimators display bias measure-
ments matching the theoretically calculated F̂ bias values.

Utility and applications of unbiased estimators
In previous sections, we have shown through simulations that
our theoretical results produced expected patterns and evaluated
the performance of our unbiased estimators under varying com-
binations of relatives, true F-statistic values, and sample sizes. In
this section, we show some potential applications of these esti-
mators, using both simulated and empirical data. As discussed
previously in the Introduction, the value of F3ðA; B;CÞ can be used
to identify whether population A is the result of admixture be-
tween populations related to B and C (Figure 1). A negative value
of F3 indicates the presence of this process, whereas a nonnega-
tive value is inconclusive and means that further tests may be re-
quired to verify a history of admixture. However, because F̂3 is
upwardly biased and because ~F3 corrects for this bias, ~F3 might
allow us to detect admixture in cases where F̂3 would be incon-
clusive, even without the presence of related or inbred individu-
als.

To explore this hypothesis, we first examine an admixture sce-
nario in which F3ðA; B;CÞ might provide marginally negative val-
ues. We simulate two populations (B and C) with effective
population size of 104 diploid individuals (Takahata 1993) that di-
verged 2000 generations prior to sampling using SLiM (Haller and
Messer, 2019). This simple divergence model has parameters in-
spired by the history relating African and non-African human
populations (Gravel et al. 2011). These populations then merge
with admixture proportions 0.4 and 0.6 for B and C, respectively,
to form population A 400 generations prior to sampling. Using
these parameters, the expected value is F3ðA; B;CÞ ¼ �0:0568. To
generate genetic data from this model, we evolved sequences
with a per-site per-generation mutation rate of l ¼ 1:25� 10�8

(Scally and Durbin 2012) and a uniform per-site per-generation
recombination rate of r ¼ 10�8 (Payseur and Nachman 2000). We
output 20 two megabase chromosomal regions containing allele
frequency information for all three populations. Using allele fre-
quency information from the three populations (A, B, and C) we
generate 50 individuals for each population, in which there are 25
parent-offspring pairs. We then compute ~F3ðA; B;CÞ, F

^

3ðA; B;CÞ,
and F̂3ðA; B;CÞ across J¼ 20 loci, either on separate chromosomes
or at least one megabase away from each other to ensure inde-
pendence.

F6Figure 6 illustrates that ~F3 values are lower than F̂3, with F
^

3

values falling in between F̂3 and ~F3. ~F3 values are almost always
negative while F̂3 and F

^

3 values are almost always positive.
Because this statistic is used to test for admixture and a negative
result indicates the presence of admixture, the use of biased esti-
mators when related individuals are included in the sample leads
to a different conclusion than when using the unbiased estima-
tor. However, we notice that there is almost no correlation be-
tween the true F3 values and the estimates of F3 in Figure 6. This
lack of correlation is due to the fact that the F3 values we simu-
lated for this experiment are drawn from a particularly small
range, and correlations in estimated versus true F3 are unable to
be observed over the estimation noise. To ensure that this is
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indeed the case, we conduct simulations across a larger range of
true F3 values and estimate ~F3; F̂3, and F

^

3. We notice that the
expected trend appears when the range of F3 values is expanded
(Supplementary Figure S15).

Finally, we test the performance of our statistics on empirical
data. We use populations from the HGDP SNP dataset (Li et al.
2008) that include related individuals (Rosenberg 2006).
Specifically, we use genotype information from Colombian, Lahu,
Melanesian, Mandenka, San, and Druze populations, and we
sample 20 independent loci that are at least one megabase apart
from all populations for 1000 independent replicates of J¼ 20 loci,
yielding 1000 independent draws. Each of these populations con-
tains between two and 14 pairs of inferred related individuals,

according to Rosenberg (2006). Using distinct pairs for F2, triples
for F3, and quadruples for F4 of these populations and the rela-
tionships from Rosenberg (2006), we estimate F̂2ðA; BÞ; ~F2ðA; BÞ,
F
^

2ðA; BÞ, F̂3ðA; B;CjAÞ; ~F3ðA; B;CjAÞ, F
^

3ðA; B;CjAÞ, F̂4ðA; B; C;D
jAÞ; ~F4ðA;B; C;DjAÞ, and F

^

4ðA;B; C;DjAÞ, and compare the mean
and standard deviation of the biased and unbiased estimators
( F7Figure 7). In all cases shown, the biased estimator has higher
mean than the unbiased estimator, although the standard devia-
tions are similar for both. This indicates that correcting the bias
generated by related individuals yields more accurate F-statistic
estimates with minimal cost in precision of the estimates. In ad-
dition, the unbiased F

^

estimators presented in Appendix A of
Patterson et al. (2012) all have lower means than the biased F̂
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^

2ðA;BÞ, and ~F2ðA;BÞ from simulated data
including 60 parent offspring relative pairs. Each estimate was computed from J¼ 20 randomly sampled loci using A ¼ CEU and B ¼ YRI.
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estimators, and are more similar to our unbiased ~F estimators,
while having standard deviation measures that are a lower than
both other estimators. This could indicate that Patterson’s unbi-
ased estimators have slightly higher precision, while having
slightly lower accuracy than the unbiased estimators introduced
in this article when samples contain related individuals.

Discussion
We have introduced the unbiased estimators ~F2ðA;BÞ; ~F3

ðA; B;CÞ; ~F3ðA; B;CjAÞ, and ~F4ðA;B; C;DjPÞ as well as shown that
the estimators F̂4ðA; B; C;DÞ and D̂ðA;B;C;DÞ are unbiased with
the inclusion of related and inbred individuals. In addition, we
have demonstrated that the variance of ~F2ðA;BÞ is similar to that
of F̂2ðA;BÞ, as are the variances of ~F3ðA; B;CÞ and F̂3ðA; B;CÞ. We
have also provided variance calculations for all other F- and D-
statistic estimators included in this study. Using these calcula-
tions, we have compared the performance of the biased and
newly derived unbiased estimators, and shown that in most
cases the unbiased estimators have lower MSE values than the
biased estimators of the same statistic.

Interestingly, the two statistics that sample from each ana-
lyzed population only once per locus—F̂4ðA; B; C;DÞ and
D̂ðA;B;C;DÞ—are unbiased with the inclusion of related or inbred
individuals, whereas F̂2ðA;BÞ, which samples from each popula-
tion A and B twice, and F̂3ðA; B;CÞ, which samples from popula-
tion A twice, are biased. This process of sampling more than once
from a single population per locus is responsible for creating bias
due the inclusion of related or inbred individuals within the
twice-sampled population.

The development of these unbiased statistics, and the proofs
showing other statistics are unbiased is beneficial for anthropolo-
gists interested in populations such as hunter-gatherers, some of
which are often small and widely dispersed yet retain high ge-
netic diversity (Kim et al. 2014). Small population sizes may ne-
cessitate the sampling of close relatives, such as parents and
offspring, or siblings. Along with small human populations, these
statistics are often applied to nonhuman species. Some, such as
elephants, rhinoceros, and cheetahs are close to extinction or

have extremely small and inbred populations due to human ac-
tivity. The F- and D-statistics may prove important in conserva-
tion efforts to test how (and whether) different populations of
these animals are interacting. For these reasons, having estima-
tors that are unbiased under such conditions is imperative in
making accurate inferences about the relationships of such small
populations with others. Although it may not be possible to iden-
tify relatives through the sampling process, especially in the case
of wild animals, there are methods available to identify related
individuals and estimate their likely degree of relatedness once
the samples have been sequenced (Epstein et al. 2000). The infer-
ences from these methods will allow users to identify pairwise
kinship coefficients necessary to apply the unbiased statistics of
this study.

A key consideration when evaluating the importance unbiased
estimators of F- and D-statistics is their potential use.
Specifically, a number of applications of these statistics do not
employ the raw estimates, but instead standardized estimates
(Soraggi et al. 2018; Zheng and Janke 2018), where a particular F-
or D-statistic has its genomewide mean subtracted, and is nor-
malized by the standard error using a genomic block jackknife
procedure (Reich et al. 2009). Indeed, subtracting out this genome-
wide mean may circumvent bias issues. However, this assumes
that all genomic blocks have similar sample properties, yet
blocks with reduced sample size (e.g., in regions with difficult
to call genotypes) may still deviate from the genomewide expec-
tation. In contrast, accounting for this bias due to relatedness
would provide estimates closer to the genomewide mean.
Because the variance for these biased and unbiased estimators is
approximately the same (compare Propositions 20 vs 21 and 23
vs 25), the standard errors used for normalizing these statistics
are expected to be comparable, and thus, the unbiased estima-
tors of the F-statistics derived here represent a more robust alter-
native to the original biased estimators, regardless of whether
the raw or standardized values of the statistics are used.
Furthermore, the raw value of some statistics, such as using the
F3 statistic to detect population admixture, is important, and
without correcting the bias of such statistics (Figure 6), key his-
torical events relating populations could be missed. In addition,
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3ðA; B;CÞ, and ~F3ðA; B;CÞ calculated for simulations where populations B and C merge with admixture proportions of 0.4 and 0.6,
respectively, 400 generations ago (0.02 coalescent units) to form population A (tree shown in panel A). Panel (B) shows results for a sample containing
25 parent-offspring pairs.
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applying these statistics to genomic regions that are likely to be
evolving non-neutrally (e.g., protein-coding regions) may lead to
skewed estimates due to selection. For this reason, it is recom-
mended that these statistics be applied to intergeneic regions.

The F- and D-statistics evaluated here are the most commonly
used. However, since their development by Reich et al. (2009) and
Patterson et al. (2012), other D-statistic type tests have been for-
mulated to not only detect admixture, but also to identify the di-
rection of gene flow—namely the partitioned D-statistics of Eaton
and Ree (2013) and the DFOIL statistics of Pease and Hahn (2015).
Specifically, the DFOIL statistics as originally formulated by Pease
and Hahn (2015) sampled a single lineage (or allele) from each of
a set of five populations A, B, C, D, and O, with a symmetric
rooted topology ððABÞðCDÞÞ relating populations A, B, C, and D,

and with O an outgroup to these populations used to polarize the
ancestral allelic state. Subsequently, Harris and DeGiorgio
(2017b) derived allele frequency formulas for the DFOIL statistics,
and showed that allele frequency information for the outgroup
population O is not needed for computation. The DFOIL statistics
are a set of four quantities (Harris and DeGiorgio 2017b)

DFOðA;B; C;DÞ ¼
PJ

j¼1ð1� 2ajÞðdj � cjÞPJ
j¼1ðcj þ dj � 2cjdjÞ

(68)

DILðA;B; C;DÞ ¼
PJ

j¼1ð1� 2bjÞðdj � cjÞPJ
j¼1ðcj þ dj � 2cjdjÞ

(69)
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DFIðA; B; C;DÞ ¼
PJ

j¼1ð1� 2cjÞðbj � ajÞPJ
j¼1ðaj þ bj � 2ajbjÞ

(70)

DOLðA;B; C;DÞ ¼
PJ

j¼1ð1� 2djÞðbj � ajÞPJ
j¼1ðaj þ bj � 2ajbjÞ

; (71)

each of which does not have the frequencies for two alleles sam-
pled from a single population multiplying each other. Hence, us-
ing sample allele frequencies in place of the population
quantities would still yield approximately unbiased estimators of
the DFOIL statistics, regardless of whether related or inbred indi-
viduals were included in the sample. Though we chose to focus
on the more classic F- and D-statistics, variance quantities for
these partitioned D and DFOIL statistics can be readily computed
as we have done for other ratio estimators in this study.

Though we have only shown results when all populations con-
tain samples with the same relative pair composition, it is trivial to
include different relative types in different populations within
these statistics. In addition, a key assumption of our theoretical
formulas is that pairwise relative contributions to the bias and var-
iance are so much larger in magnitude than higher-order relative
contributions, that the inclusion of kinship terms for trios, quadru-
ples, or pairs of pairs of relatives would minimally affect results.
For this reason, and to avoid highly unwieldy formulas for variance
calculations, we made approximations to the variance formulas
using this assumption. We briefly explore the accuracy of such
approximations under simulations with 20 full sibling trios, and
calculate the bias, variance, and MSE over a range of F2 values. We
compare these simulated results to theoretically calculated bias,
variance, and MSE for ~F2 across identical F2 values (Supplementary
Figure S16), where the theoretical variance (and hence MSE) formu-
las are approximations that only consider pairwise kinship coeffi-
cients. We see that though the trends in variance (and hence MSE)
values are similar between the simulated and theoretical quanti-
ties, there is a slight difference between the simulated and theoret-
ical variance (and hence MSE), where the theoretical values are
consistently lower than the simulated. Therefore, our theoretical
approximate variance calculations have underestimated the true
variance values, which can be expected as we drop a number of
terms that would be in the exact variance calculation, while still
being useful for understanding the overall trends of the variances
(and hence MSEs) across estimators.

In addition, it is also possible to apply our new unbiased estima-
tors when only some or none of the populations contain related or
inbred individuals. Moreover, though we have demonstrated results
for allele frequencies estimated as the sample proportion, we could
have instead used the best linear unbiased estimator (BLUE) of
McPeek et al. (2004), as all derivations in this article are based on a
general form of a linear unbiased estimator. The BLUE allele fre-
quency estimator would have superior properties to the sample pro-
portion discussed here, as it has smallest variance (McPeek et al.
2004), and this reduction in variance translates to functions of the
allele frequency as highlighted by improvements in both expected
heterozygosity and FST by Harris and DeGiorgio (2017a). To apply the
BLUE estimator, we would simply alter the weight /xðPÞ of an indi-
vidual x in population P at a particular locus with the equation

/xðPÞ ¼
PNðPÞ

k¼1 ðK
�1Þkx

1TK�11
; (72)

where K 2 R
NðPÞ�NðPÞ is the matrix of pairwise kinship coefficients,

with element in row j and column k given by Kjk ¼ Ujk; 1 2 R
NðPÞ is

a column vector of ones, and superscript T indicates transpose.
To facilitate easy application of these statistics, we have devel-
oped open-source software funbiased for use by the scientific
community, which is available at https://github.com/Mehreen
Ruhi/funbiased.

Data availability
Supplementary data are available at Genetics online. The 1000
Genomes Project data used in this publication is available at
http://www.1000genomes.org/. Relatedness information used to
generate Figure 7 is available online within Supplementary
Tables S7–S15 of Rosenberg (2006).
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Huson D, Klöpper T, Lockhart P, Steel M. 2005. Reconstruction of re-

ticulate networks from gene trees. RECOMB. 2005. 3500:233–249.

Kim HL, Ratan A, Perry GH, Montenegro A, Miller W, et al. 2014.

Khoisan hunter-gatherers have been the largest population

throughout most of modern-human demographic history. Nat

Commun. 5:5692–5692.

Kulathinal RJ, Stevison LS, Noor MAF. 2009. The genomics of specia-

tion in drosophila: diversity, divergence, and introgression esti-

mated using low-coverage genome sequencing. PLoS Genet. 5:

e1000550.

Lange K. 2002. Mathematical and Statistical Methods for Genetic

Analysis. New York, NY:Springer.

Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, et al. 2008.

Worldwide human relationships inferred from genome-wide pat-

terns of variation. Science. 319:1100–1104.

Martin SH, Davey JW, Jiggins CD. 2015. Evaluating the use of

ABBA–BABA statistics to locate introgressed loci. Mol Biol Evol.

32:244–257.

McPeek MS, Wu X, Ober C. 2004. Best linear unbiased

allele-frequency estimation in complex pedigrees. Biometrics. 60:

359–367.

Molinaro L, Montinaro F, Yelmen B, Marnetto D, Behar DM, et al.

2019. West Asian sources of the Eurasian component in

Ethiopians: a reassessment. Sci Rep. 9:18811.

Moorjani P, Thangaraj K, Patterson N, Lipson M, Loh P-R, et al. 2013.

Genetic evidence for recent population mixture in India. Am J

Hum Genet. 93:422–438.

Nei M, Roychoudhury AK. 1974. Sampling variances of heterozygos-

ity and genetic distance. Genetics. 76:379–390.

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, et al. 2012.

Ancient admixture in human history. Genetics. 192:1065–1093.

Payseur BA, Nachman MW. 2000. Microsatellite variation and re-

combination rate in the human genome. Genetics. 156:

1285–1298.

Pease JB, Hahn MW. 2015. Detection and polarization of introgres-

sion in a five-taxon phylogeny. Syst Biol. 64:651–662.

Peter BM. 2016. Admixture, population structure, and f-statistics.

Genetics. 202:1485–1501.

Reich D, Patterson N, Campbell D, Tandon A, Mazieres S, et al. 2012.

Reconstructing native American population history. Nature. 488:

370–374.

Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009.

Reconstructing Indian population history. Nature. 461:489–494.

Rosenberg NA. 2006. Standardized subsets of the HGDP-CEPH

Human Genome Diversity Cell Line Panel, accounting for atypical

and duplicated samples and pairs of close relatives. Ann Hum

Genet. 70:841–847.

Scally A, Durbin R. 2012. Revising the human mutation rate: implica-

tions for understanding human evolution. Nat Rev Genet. 13:

745–753.

Soraggi S, Wiuf C, Albrechtsen A. 2018. Powerful inference with the

D-statistic on low-coverage whole-genome data. G3 (Bethesda). 8:

551–566.

Takahata N. 1993. Allelic genealogy and human evolution. Mol Biol

Evol. 10:2–22.

The 1000 Genomes Project Consortium. 2015. A global reference for

human genetic variation. Nature. 526:68–74.

Turissini DA, Matute DR. 2017. Fine scale mapping of genomic intro-

gressions within the Drosophila yakuba clade. PLoS Genet. 13:

e1006971.

Waples RS, Anderson EC. 2017. Purging putative siblings from popu-

lation genetic data sets: a cautionary view. Mol Ecol. 26:

1211–1224.

Weir B. 1996. Genetic Data Analysis II. Sunderland, Massachusetts:

Sinauer Associates.

Weir BS. 1989. Sampling properties of gene diversity. In: Plant

Population Genetics, Breeding and Genetic Resources. p. 23–42.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis

of population structure. Evolution. 38:1358–1370.

Wolter KM. 2007. Introduction to Variance Estimation. 2nd ed. New

York, NY: Springer.

Zheng Y, Janke A. 2018. Gene flow analysis method, the D-statistic, is

robust in a wide parameter space. BMC Bioinformatics. 19:10.

Communicating editor: S. Browning

16 | GENETICS, 2022, Vol. 220, No. 1



Appendix
In this section, we provide proofs of key lemmas and propositions from the Theory section, and also develop and prove other important
results.

Proof of Lemma 1. We first calculate (result in Weir 1996, page 153)

E Ĝ Pj
� �h i

¼ E p̂j 1� p̂j

� �h i
¼ E p̂j

h i
� E p̂2

j

h i
¼ pj � 1� U2 Pj

� �� 	
p2

j � U2 Pj
� �

pj

¼ 1� U2 Pj
� �� 	

pj 1� pj
� �

¼ 1� U2 Pj
� �� 	

G Pj
� �

;

which gives

E Ĝ Pð Þ
� 	

¼ 1
J

XJ

j¼1

E Ĝ Pj
� �h i

¼ 1
J

XJ

j¼1

1� U2 Pj
� �� 	

G Pj
� �

¼ G Pð Þ þ D Pð Þ;

where we define the downward bias of Ĝ Pð Þ as

D Pð Þ ¼ E Ĝ Pð Þ
� 	

� G Pð Þ

¼ � 1
J

XJ

j¼1

U2 Pj
� �

G Pj
� �

:

It follows that ~G Pð Þ is an unbiased estimator of G(P) because

E ~G Pð Þ
� 	

¼ 1
J

XJ

j¼1

1
1� U2 Pj

� � Ĝ Pj
� �

¼ 1
J

XJ

j¼1

1
1� U2 Pj

� � 1� U2 Pj
� �� 	

G Pj
� �

¼ 1
J

XJ

j¼1

Ĝ Pj
� �

¼ G Pð Þ: u

Proof of Corollary 2. When using the sample proportion to estimate allele frequencies, the weight of individual x in population P at
locus j is (Harris and DeGiorgio 2017a)

/x Pj
� �
¼ mx

PN Pjð Þ

k¼1
mk

:

Plugging into the definition of U2 Pj
� �

, we have

U2 Pj
� �
¼
XN Pjð Þ

w¼1

XN Pjð Þ

x¼1

/w Pj
� �

/x Pj
� �

Uwx

¼ 1

XN Pjð Þ

k¼1

mk

0
@

1
A

2

XN Pjð Þ

w¼1

XN Pjð Þ

x¼1

mwmxUwx:
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Because the sample contains unrelated individuals, then Uwx ¼ 0 for w 6¼ x and Uxx ¼ 1=mx resulting in

U2 Pj
� �
¼ 1

XN Pjð Þ

k¼1

mk

0
@

1
A

2

XN Pjð Þ

w¼1

m2
w

1
mw

¼ 1

XN Pjð Þ

k¼1

mk

:

Plugging U2 Pj
� �

into the definitions of Bias Ĝ Pð Þ
� 	

and ~G Pj
� �

within Lemma 1 gives the desired result. h

Proof of Proposition 3. We first calculate

E F̂2 Aj;Bj
� �h i

¼ E âj � b̂j

� �2
� �

¼ E â2
j

h i
þ E b̂

2

j

h i
� 2E âj

� 	
E b̂j

h i
¼ 1� U2 Aj

� �� 	
a2

j þ U2 Aj
� �

aj þ 1� U2 Bj
� �� 	

b2
j þ U2bj � 2ajbj

¼ aj � bj
� �2 þ U2 Aj

� �
aj 1� aj
� �

þ U2 Bj
� �

bj 1� bj
� �

¼ F2 Aj;Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

;

which gives

E F̂2 A; Bð Þ
h i

¼ 1
J

XJ

j¼1

E F̂2 Aj;Bj
� �h i

¼ 1
J

XJ

j¼1

F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

¼ F2 A;Bð Þ þ D A; Bð Þ;

where we define the upward bias of F̂2 A; Bð Þ as

D A; Bð Þ ¼ E F̂2 A;Bð Þ
h i

� F2 A;Bð Þ

¼ 1
J

XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

:

It follows that ~F2 A;Bð Þ is an unbiased estimator of F2 A;Bð Þ because

E ~F2 A;Bð Þ
� 	

¼ 1
J

XJ

j¼1

E F̂2 Aj;Bj
� �h i

� U2 Aj
� �

E ~G Aj
� �h i

� U2 Bj
� �

E ~G Bj
� �h i
 �

¼ 1
J

XJ

j¼1

½F2 Aj;Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �
� U2 Aj

� �
G Aj
� �

�U2 Bj
� �

G Bj
� �
�

¼ 1
J

XJ

J¼1

F2 Aj;Bj
� �

¼ F2 A;Bð Þ: u
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Proof of Corollary 4. Plugging the definition of U2 Pj
� �

; P 2 fA;Bg, derived in the proof of Corollary 2 as well as

G
^

Pj
� �
¼

PN Pjð Þ

k¼1
mk

PN Pjð Þ

k¼1
mk � 1

Ĝ Pj
� �

of Corollary 2 into the definitions of Bias F̂2 A;Bð Þ
h i

and ~F2 A;Bð Þ within Proposition 3 gives the desired result. h

Proof of Corollary 5. From Corollary 4, we have

F
^

2 A;Bð Þ ¼ 1
J

XJ

j¼1

F̂2 Aj;Bj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

� 1

PN Bjð Þ

k¼1
mk � 1

Ĝ Bj
� �2

664
3
775:

Because populations A or B may have related or inbred individuals within them, from the proofs of Lemma 1 and Proposition 3, we

have

E F̂2 Aj;Bj
� �h i

¼ F2 Aj;Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

E Ĝ Pj
� �h i

¼ 1� U2 Pj
� �� 	

G Pj
� �

yielding

E F
^

2 A; Bð Þ
h i

¼ 1
J

XJ

j¼1

F2 Aj;Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �
�

1� U2 Aj
� �

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

�
1� U2 Bj

� �
XN Bjð Þ

k¼1

mk � 1

G Bj
� �2

6664
3
7775

¼ 1
J

XJ

j¼1

F2 Aj;Bj
� �

þ
U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

þ
U2 Bj
� �XN Bjð Þ

k¼1

mk � 1

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

2
66666664

3
77777775

¼ F2 A;Bð Þ þ 1
J

XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

þ
U2 Bj
� �XN Bjð Þ

k¼1

mk � 1

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

2
66666664

3
77777775
:

It follows that the bias is

Bias F
^

2 A;Bð Þ
h i

¼ E ~F2 A; Bð Þ
� 	

� F2 A;Bð Þ

¼ 1
J

XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

þ
U2 Bj
� �XN Bjð Þ

k¼1

mk � 1

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

2
66666664

3
77777775
;

and because U2 Pj
� �
� 1=

PN Pjð Þ

k¼1
mk, this is an upward bias. h
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Proof of Proposition 6. We first calculate

E F̂3 Aj; Bj;Cj
� �h i

¼ E âj � b̂j

� �
âj � ĉ j
� �h i

¼ E â2
j

h i
� E âj

� 	
E ĉ j
� 	
� E âj

� 	
E b̂j

h i
þ E b̂j

h i
E ĉ j
� 	

¼ 1� U2 Aj
� �� 	

a2
j þ U2 Aj

� �
aj � ajcj � ajbj þ bjcj

¼ a2
j � ajcj � ajbj þ bjcj

� �
þ U2 Aj

� �
aj 1� aj
� �

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

;

which gives

E F̂3 A; B;Cð Þ
h i

¼ 1
J

XJ

j¼1

E F̂3 Aj; Bj;Cj
� �h i

¼ 1
J

XJ

j¼1

F3 A; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �h i

¼ F3 A; B;Cð Þ þ D A; B;Cð Þ;

where we define the upward bias of F̂3 A; B;Cð Þ as

D A; B;Cð Þ ¼ E F̂3 A; B;Cð Þ
h i

� F3 A; B;Cð Þ

¼ 1
J

XJ

j¼1

U2 Aj
� �

G Aj
� �

:

It follows that ~F3 A; B;Cð Þ is an unbiased estimator of F3 A; B;Cð Þ because

E ~F3 A; B;Cð Þ
� 	

¼ 1
J

XJ

j¼1

E F̂3 Aj; Bj;Cj
� �h i

� U2 Aj
� �

E ~G Aj
� �h i
 �

¼ 1
J

XJ

j¼1

F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

� U2 Aj
� �

G Aj
� �h i

¼ 1
J

XJ

J¼1

F3 Aj; Bj;Cj
� �

¼ F3 A; B;Cð Þ: u

Proof of Corollary 7. Plugging the definition of U2 Aj
� �

derived in the proof of Corollary 2 as well as

G
^

Aj
� �

¼

PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

of Corollary 2 into the definitions of Bias F̂3 A; B;Cð Þ
h i

and ~F3 A; B;Cð Þ within Proposition 6 gives the desired result. h

Proof of Corollary 8. From Corollary 7, we have

F
^

3 A; B;Cð Þ ¼ 1
J

XJ

j¼1

F̂3 Aj; Bj;Cj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �2

664
3
775:
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Because population A may have related or inbred individuals within it, from the proofs of Lemma 1 and Proposition 6, we have

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

E Ĝ Aj
� �h i

¼ 1� U2 Aj
� �� 	

G Aj
� �

yielding

E F
^

3 A; B;Cð Þ
h i

¼ 1
J

XJ

j¼1

F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

�
1� U2 Aj

� �
XN Ajð Þ

k¼1

mk � 1

G Aj
� �2

6664
3
7775

¼ 1
J

XJ

j¼1

F3 Aj; Bj;Cj
� �

þ
U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

2
66666664

3
77777775

¼ F3 A; B;Cð Þ þ 1
J

XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

:

It follows that the bias is

Bias F
^

3 A; B;Cð Þ
h i

¼ E ~F3 A; B;Cð Þ
� 	

� F3 A; B;Cð Þ

¼ 1
J

XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

;

and because U2 Aj
� �

� 1=
PN Ajð Þ

k¼1
mk, this is an upward bias. h

Proof of Proposition 9. Assuming that the expectation of F̂3 A; B;CjAð Þ is approximately equal to the ratio of expectations of F̂3 A; B;Cð Þ
and 2Ĝ Að Þ, we find that

E F̂3 A; B;CjAð Þ
h i

¼ E
F̂3 A; B;Cð Þ

2Ĝ Að Þ

" #

�
E F̂3 A; B;Cð Þ
h i
2E Ĝ Að Þ
� 	

¼

1=Jð Þ
XJ

j¼1

F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �h i

2=Jð Þ
XJ

j¼1

1� U2 Aj
� �� 	

G Aj
� �

¼

F3 A; B;Cð Þ þ 1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Að Þ � 2=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �

¼ F3 A; B;Cð Þ
2G Að Þ

þ D A; B;CjAð Þ

¼ F3 A; B;CjAð Þ þ D A; B;CjAð Þ;
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where we define the upward bias of F̂3 A; B;CjAð Þ as

D A; B;CjAð Þ ¼ E F̂3 A; B;CjAð Þ
h i

� F3 A; B;CjAð Þ

¼

F3 A; B;Cð Þ þ 1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Að Þ � 2=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� � � F3 A; B;Cð Þ

2G Að Þ

¼

F3 A; B;Cð Þ þ G Að Þ
� 	

1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Að Þ G Að Þ � 1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �2

4
3
5

¼

1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� �

G Að Þ � 1=Jð Þ
XJ

j¼1

U2 Aj
� �

G Aj
� � F3 A; B;CjAð Þ þ 1

2

� �
:

We can also see that ~F3 A; B;CjAð Þ is an approximately unbiased estimator of F3 A; B;CjAð Þ because

E ~F3 A; B;CjAð Þ
� 	

¼ E
~F3 A; B;Cð Þ

2~G Að Þ

" #

�E ~F3 A; B;Cð Þ
� 	
2E ~G Að Þ
� 	

¼ F3 A; B;Cð Þ
2G Að Þ

¼ F3 A; B;CjAð Þ: u

Proof of Corollary 10. Plugging the definition of U2 Aj
� �

derived in the proof of Corollary 2 as well as

G
^

Aj
� �

¼

PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

of Corollary 2 into the definitions of Bias F̂3 A; B;CjAð Þ
h i

and ~F3 A; B;CjAð Þ within Proposition 9 gives the desired result. h

Proof of Corollary 11. From Corollaries 2, 7, and 10, we have

F
^

3 A; B;CjAð Þ ¼ F
^

3 A; B;Cð Þ

2G
^

Að Þ
;

where

G
^

Að Þ ¼ 1
J

XJ

j¼1

G
^

Aj
� �

¼ 1
J

XJ

j¼1

XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �

F
^

3 A; B;Cð Þ ¼ 1
J

XJ

j¼1

F̂3 Aj; Bj;Cj
� �

� 1

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �2

664
3
775
:
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Because population A may have related or inbred individuals within it, from the proofs of Lemma 1 and Proposition 6, we have

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

E Ĝ Aj
� �h i

¼ 1� U2 Aj
� �� 	

G Aj
� �

yielding

E F
^

3 A; B;CjAð Þ
h i

�
E F

^

3 A; B;Cð Þ
h i
2E G

^

Að Þ
h i

¼

F3 A; B;Cð Þ þ 1=Jð Þ
XJ

j¼1

G Aj
� �

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

2
4

3
5= XN Ajð Þ

k¼1

mk � 1

2
4

3
5

2=Jð Þ
XJ

j¼1

1� U2 Aj
� �� 	 XN Ajð Þ

k¼1

mk

2
4

3
5

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

¼ F3 A; B;Cð Þ þ X Að Þ
2Y Að Þ

:

It follows that the approximate bias is

Bias F
^

3 A; B;CjAð Þ
h i

¼ E ~F3 A; B;CjAð Þ
� 	

� F3 A; B;CjAð Þ

� 1
2

1
Y Að Þ

� 1
G Að Þ

� �
F3 A; B;Cð Þ þ X Að Þ

2Y Að Þ
;

and because U2 Aj
� �

� 1=
PN Ajð Þ

k¼1
mk, then 0 < Y Að Þ � G Að Þ and X Að Þ � 0 making this is an upward approximate bias. h

Proof of Proposition 12. We first calculate

E½F̂4ðAj;Bj; Cj;DjÞ� ¼ E½ðâj � b̂jÞðĉ j � d̂j�

¼ E½âj � b̂j�E½̂cj � d̂j�

¼ ðE½âj� � E½b̂j�ÞðE½̂cj� � E½d̂j�Þ

¼ ðaj � bjÞðcj � djÞ

¼ F4ðAj; Bj; Cj;DjÞ:

We show that F̂4 A; B; C;Dð Þ is unbiased estimator of F4 A; B; C;Dð Þ because

E F̂4 A;B; C;Dð Þ
h i

¼ 1
J

XJ

j¼1

E F̂4 Aj;Bj; Cj;Dj
� �h i

¼ 1
J

XJ

j¼1

F4 Aj;Bj; Cj;Dj
� �

¼ F4 A;B; C;Dð Þ: u
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Proof of Proposition 13. Assuming that the expectation of F̂4 A;B; C;DjPð Þ is approximately equal to the ratio of expectations of

F̂4 A;B; C;Dð Þ and Ĝ Pð Þ for some P 2 fA;B;C;Dg, we find that

E F̂4 A;B; C;DjPð Þ
h i

¼ E
F̂4 A;B; C;Dð Þ

Ĝ Pð Þ

" #

�
E F̂4 A;B; C;Dð Þ
h i

E Ĝ Pð Þ
� 	

¼ F4 A;B; C;Dð Þ

1=Jð Þ
XJ

j¼1

1� U2 Pj
� �� 	

G Pj
� �

¼ F4 A;B; C;Dð Þ

G Pð Þ � 1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� �

¼ F4 A;B; C;Dð Þ
G Pð Þ

þ D A;B; C;DjPð Þ

¼ F4 A;B; C;DjPð Þ þ D A;B; C;DjPð Þ;

where we define the approximate upward bias of F̂4 A;B; C;DjPð Þ as

D A;B; C;DjPð Þ ¼ E F̂ A;B; C;DjPð Þ
h i

� F4 A;B; C;DjPð Þ

¼ F4 A;B; C;Dð Þ

G Pð Þ � 1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� ��

F4 A;B; C;Dð Þ
G Pð Þ

¼

F4 A;B; C;Dð Þ 1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� �

G Pð Þ G Pð Þ � 1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� �2

4
3
5

¼

1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� �

G Pð Þ � 1=Jð Þ
XJ

j¼1

U2 Pj
� �

G Pj
� � F4 A;B; C;DjPð Þ:

We can also see that ~F4 A; B; C;DjPð Þ is an approximately unbiased estimator of F4 A;B; C;DjPð Þ because

E ~F4 A;B; C;DjPð Þ
� 	

¼ E
F̂4 A;B; C;Dð Þ

~G Pð Þ

" #

�
E F̂4 A;B; C;Dð Þ
h i

E ~G Pð Þ
� 	

¼ F4 A;B; C;Dð Þ
G Pð Þ

¼ F4 A;B; C;DjPð Þ: u

Proof of Corollary 14. Plugging the definition of U2 Pj
� �

; P 2 fA;B;C;Dg, derived in the proof of Corollary 2 as well as

G
^

Pj
� �
¼

PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

Ĝ Pj
� �

of Corollary 2 into the definitions of Bias F̂4 A;B; C;DjPð Þ
h i

and ~F4 A;B; C;DjPð Þ within Proposition 13 gives the desired result. h
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Proof of Corollary 15. From Corollaries 2 and 14, we have

F
^

4 A;B; C;DjPð Þ ¼ F̂4 A;B; C;Dð Þ

G
^

Pð Þ
;

where

G
^

Pð Þ ¼ 1
J

XJ

j¼1

G
^

Pj
� �
¼ 1

J

XJ

j¼1

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

Ĝ Pj
� �

F̂4 A;B; C;Dð Þ ¼ 1
J

XJ

j¼1

F̂4 Aj; Bj; Cj;Dj
� �

:

Because population P may have related or inbred individuals within it, from the proofs of Lemma 1 and Proposition 12, we have

E½F̂4ðA;B; C;D� ¼ F4ðA; B; B;DÞ

E½ĜðPjÞ� ¼ ½1� U2ðPjÞ�GðPjÞ

yielding

E F
^

4 A;B; C;DjPð Þ
h i

�
E F̂4 A; B; C;Dð Þ
h i

E G
^

Pð Þ
h i

¼ F4 A;B;C;Dð Þ

1=Jð Þ
XJ

j¼1

1� U2 Pj
� �� 	 XN Pjð Þ

k¼1

mk

2
4

3
5

XN Pjð Þ

k¼1

mk � 1

G Pj
� �

¼ F4 A;B;C;Dð Þ
Y Pð Þ

:

It follows that the approximate bias is

Bias F
^

4 A;B; C;DjPð Þ
h i

¼ E F
^

4 A;B; C;DjPð Þ
h i

� F4 A;B; C;DjPð Þ

� 1
Y Pð Þ

� 1
G Pð Þ

� �
F4 A;B; C;Dð Þ;

and because U2 Pj
� �
� 1=

PN Pjð Þ

k¼1
mk, then 0 < Y Pð Þ � G Pð Þmaking this is an upward approximate bias. h

Lemma 17. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;C;Dg, some of which

may be related or inbred. The estimator Ĥ A; B;C;Dð Þ is unbiased.

Proof. We first calculate

E Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E âj þ b̂j � 2âjb̂j

� �
ĉ j þ d̂j � 2ĉ jd̂ j

� �h i

¼ E âj þ b̂j � 2âjb̂j

� �h i
E ĉ j þ d̂j � 2ĉ jd̂ j

� �h i

¼ E âj
� 	
þ E b̂j

h i
� 2E âj

� 	
E b̂j

h i� �
E ĉ j
� 	
þ E d̂j

h i
� 2E ĉ j

� 	
E d̂j

h i� �
¼ aj þ bj � 2ajbj
� �

cj þ dj � 2cjdj
� �

¼ H Aj;Bj;Cj;Dj
� �

:
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We show that Ĥ A;B;C;Dð Þ is unbiased estimator of H A;B;C;Dð Þ because

E Ĥ A;B;C;Dð Þ
h i

¼ 1
J

XJ

j¼1

E Ĥ Aj;Bj;Cj;Dj
� �h i

¼ 1
J

XJ

j¼1

H Aj;Bj;Cj;Dj
� �

¼ H A;B;C;Dð Þ: u

Proof of Proposition 16. Assuming that the expectation of D̂ A; B;C;Dð Þ is approximately equal to the ratio of expectations of

�F̂4 A; B; C;Dð Þ and Ĥ A;B;C;Dð Þ; D̂ A;B;C;Dð Þ is an approximately unbiased estimator of D A;B;C;Dð Þ because

E D̂ A;B;C;Dð Þ
h i

¼ �E F̂4 A;B; C;Dð Þ
Ĥ A;B;C;Dð Þ

" #

��
E F̂4 A;B; C;Dð Þ
h i

E Ĥ A;B;C;Dð Þ
h i

¼ � F4 A;B; C;Dð Þ
H A;B;C;Dð Þ

¼ D A; B;C;Dð Þ: u

Lemma 18. Consider J independent polymorphic loci in a population P with parametric reference allele frequencies pj 2 0; 1ð Þ, and

suppose we take a random sample of N Pj
� �

individuals at locus j, some of which may be related or inbred, where individual

k 2 f1; 2; . . . ;N Pj
� �

} has ploidy mk. Moreover, assume that no individual is related to more than one other individual, which makes the

terms U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

, and U2 Pj
� �2 negligible to U2 Pj

� �
. Based on this simplifying assumption, the estimator Ĝ Pð Þ has an

approximate variance

Var Ĝ Pð Þ
� 	

� 1
J2
XJ

j¼1

U2 Pj
� �

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

G Pj
� �2:

Moreover, the respective approximate variance for the unbiased estimator ~G Pð Þ and the estimator G
^

Pð Þ are

Var ~G Pð Þ
� 	

� 1
J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �
� 4

J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �2

Var G
^

Pð Þ
h i

� 1
J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �2:

Proof. From the proof of Lemma 1, we have

E Ĝ Pj
� �h i

¼ 1� U2 Pj
� �� 	

G Pj
� �
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and we calculate

E Ĝ Pj
� �2

h i
¼ E p̂2

j 1� p̂j

� �2
� �

¼ E p̂2
j

h i
� 2E p̂3

j

h i
þ E p̂4

j

h i
�p2

j þ U2 Pj
� �

pj 1� pj
� �

� 2 p3
j þ 3U2 Pj

� �
p2

j 1� pj
� �h i

þ p4
j þ 6U2 Pj

� �
p3

j 1� pj
� �

¼ p2
j � 2p3

j þ p4
j þ U2 Pj

� �
pj 1� pj
� �

1� 6pj þ 6p2
j

h i
¼ p2

j 1� pj
� �2 þ U2 Pj

� �
pj 1� pj
� �

1� 6pj 1� pj
� �� 	

¼ G Pj
� �2 þ U2 Pj

� �
G Pj
� �

1� 6G Pj
� �� 	

¼ U2 Pj
� �

G Pj
� �
þ 1� 6U2 Pj

� �� 	
G Pj
� �2:

Therefore, we have that

Var Ĝ Pj
� �h i

¼ E Ĝ Pj
� �2

h i
� E Ĝ Pj

� �h i2

�U2 Pj
� �

G Pj
� �
þ 1� 6U2 Pj

� �� 	
G Pj
� �2 � 1� U2 Pj

� �� 	2G Pj
� �2

¼ U2 Pj
� �

G Pj
� �
þ 1� 6U2 Pj

� �� 	
G Pj
� �2 � 1� 2U2 Pj

� �
þ U2 Pj

� �2
h i

G Pj
� �2

�U2 Pj
� �

G Pj
� �
þ 1� 6U2 Pj

� �� 	
G Pj
� �2 � 1� 2U2 Pj

� �� 	
G Pj
� �2

¼ U2 Pj
� �

G Pj
� �
� 4U2 Pj

� �
G Pj
� �2;

which gives

Var Ĝ Pð Þ
� 	

¼ Var
1
J

XJ

j¼1

Ĝ Pj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var Ĝ Pj
� �h i

� 1
J2
XJ

j¼1

U2 Pj
� �

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

G Pj
� �2:

Recall that

~G Pð Þ ¼ 1
J

XJ

j¼1

~G Pj
� �

G
^

Pð Þ ¼ 1
J

XJ

j¼1

G
^

Pj
� �

;

where

~G Pj
� �
¼ 1

1� U2 Pj
� � Ĝ Pj

� �

G
^

Pj
� �
¼

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

Ĝ Pj
� �

:
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It follows that

Var ~G Pð Þ
� 	

¼ Var
1
J

XJ

j¼1

~G Pj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var ~G Pj
� �h i

¼ 1
J2
XJ

j¼1

1

1� U2 Pj
� �� 	2 Var Ĝ Pj

� �h i

� 1
J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �
� 4

J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �2

and similarly

Var G
^

Pð Þ
h i

¼ Var
1
J

XJ

j¼1

G
^

Pj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var G
^

Pj
� �h i

¼ 1
J2
XJ

j¼1

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

�

2

Var Ĝ Pj
� �h i

� 1
J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �2: u

2
666666664

Lemma 19. Consider J independent polymorphic loci in populations A and B with respective parametric reference allele frequencies

aj; bj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA;Bg, some of which may be

related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms

U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

, and U2 Pj
� �2 negligible to U2 Pj

� �
. Based on this simplifying assumption, the estimators F̂2 A;Bð Þ and Ĝ Bð Þ have

an approximate covariance

Cov F̂2 A; Bð Þ; Ĝ Bð Þ
h i

� 2
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �2 � 2

J2
XJ

j¼1

U2 Bj
� �

G Aj
� �

G Bj
� �

� 2
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

:

Proof. From the proofs of Lemma 1 and Proposition 3, we have

E Ĝ Bj
� �h i

¼ 1� U2 Bj
� �� 	

G Bj
� �

and

E F̂2 Aj; Bj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

;
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yielding

E F̂2 Aj;Bj
� �h i

E Ĝ Bj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

1� U2 Bj
� �� 	

G Bj
� �

¼ F2 Aj;Bj
� �

G Bj
� �
þ U2 Aj

� �
G Aj
� �

G Bj
� �
þ U2 Bj

� �
G Bj
� �2

�U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �
� U2 Aj

� �
U2 Bj
� �

G Aj
� �

G Bj
� �

�U2 Bj
� �2G Bj

� �2

�F2 Aj;Bj
� �

G Bj
� �
þ U2 Aj

� �
G Aj
� �

G Bj
� �
þ U2 Bj

� �
G Bj
� �2

�U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �
� U2 Aj

� �
U2 Bj
� �

G Aj
� �

G Bj
� �

;

where we used the fact that U2 Bj
� �2 is negligible compared to U2 Bj

� �
as an approximation. We also calculate

E F̂2 Aj;Bj
� �

Ĝ Bj
� �h i

¼ E âj � b̂j

� �2
b̂j 1� b̂j

� �� �

¼ E â2
j � 2âjb̂j þ b̂

2

j

� �
b̂j � b̂

2

j

� �h i

¼ E â2
j b̂ j � b̂

2
j

� �
� 2âj b̂

2
j � b̂

3
j

� �
þ b̂

3
j � b̂

4
j

h i

¼ E â2
j

h i
E b̂j

h i
� E b̂

2
j

h i
 �
� 2E âj

� 	
E b̂

2
j

h i
� E b̂

3
j

h i� �
þ E b̂

3
j

h i
� E b̂

4
j

h i

� a2
j þ U2 Aj

� �
aj 1� aj
� �h i

bj � b2
j � U2 Bj

� �
bj 1� bj
� �h i

�2aj b2
j þ U2 Bj

� �
bj 1� bj
� �

� b3
j � 3U2 Bj

� �
b2

j 1� bj
� �h i

þb3
j þ 3U2 Bj

� �
b2

j 1� bj
� �

� b4
j � 6U2 Bj

� �
b3

j 1� bj
� �

:

Recognizing that G Aj
� �

¼ aj 1� aj
� �

; G Bj
� �

¼ bj 1� bj
� �

, and F2 Aj;Bj
� �

¼ a2
j � 2ajbj þ b2

j , we have

E F̂2 Aj;Bj
� �

Ĝ Bj
� �h i

� a2
j þ U2 Aj

� �
G Aj
� �h i

1� U2 Bj
� �� 	

G Bj
� �

�2aj U2 Bj
� �
þ 1� 3U2 Bj

� �� 	
bj

h i
G Bj
� �

þ 3U2 Bj
� �

bj þ 1� 6U2 Bj
� �� 	

b2
j

h i
G Bj
� �

¼ G Bj
� �

a2
j � U2 Bj

� �
a2

j þ U2 Aj
� �

G Aj
� �

� U2 Aj
� �

U2 Bj
� �

G Aj
� �

� 2U2 Bj
� �

aj � 2ajbj þ 2 3ð ÞU2 Bj
� �

ajbj þ 3U2 Bj
� �

bj þ b2
j � 6U2 Bj

� �
b2

j

h i
¼ G Bj

� �
F2 Aj;Bj
� �

� U2 Bj
� �

3a2
j � 2 3ð Þajbj þ 3b2

j � 2a2
j þ 3b2

j

h i
� 2U2 Bj

� �
aj þ 3U2 Bj

� �
bj þ U2 Aj

� �
� U2 Aj

� �
U2 Bj
� �� 	

G Aj
� �h i

¼ G Bj
� �

F2 Aj;Bj
� �

� 3U2 Bj
� �

a2
j � 2ajbj þ b2

j

h i
� 2U2 Bj

� �
aj � a2

j

h i
þ 3U2 Bj

� �
bj � b2

j

h i
þ U2 Aj

� �
� U2 Aj

� �
U2 Bj
� �� 	

G Aj
� �h i

¼ G Bj
� �

F2 Aj;Bj
� �

� 3U2 Bj
� �

F2 Aj;Bj
� �

� 2U2 Bj
� �

G Aj
� �

þ 3U2 Bj
� �

G Bj
� �
þ U2 Aj

� �
� U2 Aj

� �
U2 Bj
� �� 	

G Aj
� �� 	

¼ 1� 3U2 Bj
� �� 	

F2 Aj;Bj
� �

G Bj
� �
þ 3U2 Bj

� �
G Bj
� �2

þ U2 Aj
� �

� 2U2 Bj
� �
� U2 Aj

� �
U2 Bj
� �� 	

G Aj
� �

G Bj
� �

:

Therefore, we have that

Cov F̂2 Aj; Bj
� �

; Ĝ Bj
� �h i

¼ E F̂2 Aj;Bj
� �

Ĝ Bj
� �h i

� E F̂2 Aj; Bj
� �h i

E Ĝ Bj
� �h i

� 1� 3U2 Bj
� �� 	

F2 Aj;Bj
� �

G Bj
� �
þ 3U2 Bj

� �
G Bj
� �2

þ U2 Aj
� �

� 2U2 Bj
� �
� U2 Aj

� �
U2 Bj
� �� 	

G Aj
� �

G Bj
� �

� F2 Aj;Bj
� �

G Bj
� �
þ U2 Aj

� �
G Aj
� �

G Bj
� �
þ U2 Bj

� �
G Bj
� �2 � U2 Bj

� �
F2 Aj; Bj
� �

G Bj
� �
� U2 Aj

� �
U2 Bj
� �

G Aj
� �

G Bj
� �h i

¼ 2U2 Bj
� �

G Bj
� �2 � 2U2 Bj

� �
G Aj
� �

G Bj
� �
� 2U2 Bj

� �
F2 Aj;Bj
� �

G Bj
� �

¼ 2U2 Bj
� �

G Bj
� �

G Bj
� �
� G Aj

� �
� F2 Aj;Bj

� �� 	
;
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which gives

Cov F̂2 A;Bð Þ; Ĝ Bð Þ
h i

¼ Cov
1
J

XJ

j¼1

F̂2 Aj;Bj
� �

;
1
J

XJ

j¼1

Ĝ Bj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov F̂2 Aj; Bj
� �

; Ĝ Bj
� �h i

� 2
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �2 � 2

J2
XJ

j¼1

U2 Bj
� �

G Aj
� �

G Bj
� �

� 2
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

: u

Proposition 20. Consider J independent polymorphic loci in a populations A and B with respective parametric reference allele
frequencies aj; bj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;Bg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the
terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2, and U2 Aj
� �

U2 Bj
� �

negligible to U2 Pj
� �

. Based on this simplifying assumption, the estimator
F̂2 A;Bð Þ has approximate variance

Var F̂2 A; Bð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

þ 4
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

:

Proof. From the proof of Proposition 3, we have

E F̂2 Aj; Bj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

;

which gives

E F̂2 Aj; Bj
� �h i2

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	2

¼ F2 Aj;Bj
� �2 þ 2U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �

þ 2U2 Bj
� �

F2 Aj; Bj
� �

G Bj
� �

þ2U2 Aj
� �

U2 Bj
� �

G Aj
� �

G Bj
� �
þ U2 Aj

� �2G Aj
� �2 þ U2 Bj

� �2G Bj
� �

�F2 Aj;Bj
� �2 þ 2U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �

þ 2U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

;

where we used the fact that U2 Aj
� �2; U2 Bj

� �
, and U2 Aj

� �
U2 Bj
� �

are negligible compared to U2 Aj
� �

and U2 Bj
� �

as an approximation. We
also calculate

E F̂2 Aj;Bj
� �2

h i
¼ E âj � b̂j

� �4
� �

¼ E â4
j

h i
� 4E â3

j

h i
E b̂j

h i
þ 6E â2

j

h i
E b̂

2

j

h i
� 4E âj

� 	
E b̂

3

j

h i
þ E b̂

4

j

h i
�a4

j þ 6U2 Aj
� �

a3
j 1� aj
� �

� 4 a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �h i

bj

þ6 a2
j þ U2 Aj

� �
aj 1� aj
� �h i

b2
j þ U2 Bj

� �
bj 1� bj
� �h i

�4aj b3
j þ 3U2 Bj

� �
b2

j 1� bj
� �h i

þ b4
j þ 6U2 Bj

� �
b3

j 1� bj
� �

¼ a4
j � 4a3

j bj þ 6a2
j b2

j � 4ajb3
j þ b4

j þ 6U2 Aj
� �

aj 1� aj
� �

a2
j � 2ajbj þ b2

j

h i
þ6U2 Bj

� �
bj 1� bj
� �

a2
j � 2ajbj þ b2

j

h i
þ 6U2 Aj

� �
U2 Bj
� �

aj 1� aj
� �

bj 1� bj
� �

¼ aj � bj
� �4 þ 6U2 Aj

� �
aj 1� aj
� �

aj � bj
� �2 þ 6U2 Bj

� �
bj 1� bj
� �

aj � bj
� �2

þ6U2 Aj
� �

U2 Bj
� �

aj 1� aj
� �

bj 1� bj
� �

¼ F2 Aj;Bj
� �2 þ 6U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �

þ 6U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

þ6U2 Aj
� �

U2 Bj
� �

G Aj
� �

G Bj
� �

�F2 Aj; Bj
� �2 þ 6U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �

þ 6U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

:
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Therefore, we have that

Var F̂2 Aj;Bj
� �h i

¼ E F̂2 Aj; Bj
� �2

h i
� E F̂2 Aj; Bj

� �h i2

�F2 Aj; Bj
� �2 þ 6U2 Aj

� �
F2 Aj; Bj
� �

G Aj
� �

þ 6U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

� F2 Aj;Bj
� �2 þ 2U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �

þ 2U2 Bj
� �

F2 Aj; Bj
� �

G Bj
� �h i

¼ 4U2 Aj
� �

F2 Aj; Bj
� �

G Aj
� �

þ 4U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

;

which gives

Var F̂2 A;Bð Þ
h i

¼ Var
1
J

XJ

j¼1

F̂2 Aj; Bj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var F̂2 Aj; Bj
� �h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

þ 4
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

: u

Proposition 21. Consider J independent polymorphic loci in a populations A and B with respective parametric reference allele
frequencies aj; bj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;Bg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the
terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2, and U2 Aj
� �

U2 Bj
� �

negligible to U2 Pj
� �

. Based on this simplifying assumption, the unbiased
estimator ~F2 A;Bð Þ has approximate variance

Var ~F2 A; Bð Þ
� 	

� 4
J2
XJ

j¼1

U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

þ 4
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

:

Proof. Recall that

~F2 Aj;Bj
� �

¼ F̂2 Aj;Bj
� �

� U2 Aj
� �~G Aj

� �
� U2 Bj

� �~G Bj
� �

;

where ~F2 Aj;Bj
� �

is an unbiased estimator for F2 Aj;Bj
� �

and ~G Pj
� �

is an unbiased estimator of G Pj
� �

for P 2 fA;Bg at locus

j 2 f1; 2; . . . ; Jg. Also, from the proof of Proposition 3, we have

E F̂2 Aj; Bj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

:

Therefore, we have that

Var ~F2 Aj;Bj
� �h i

¼ Var F̂2 Aj;Bj
� �

� U2 Aj
� �~G Aj

� �
� U2 Bj

� �~G Bj
� �h i

¼ Var F̂2 Aj;Bj
� �h i

þ U2 Aj
� �2Var ~G Aj

� �h i
þ U2 Bj

� �2Var ~G Bj
� �h i

�2U2 Aj
� �

Cov F̂2 Aj;Bj
� �

; ~G Aj
� �h i

� 2U2 Bj
� �

Cov F̂2 Aj;Bj
� �

; ~G Bj
� �h i

þ2U2 Aj
� �

U2 Bj
� �

Cov ~G Aj
� �

; ~G Bj
� �h i

�Var F̂2 Aj;Bj
� �h i

� 2U2 Aj
� �

Cov F̂2 Aj;Bj
� �

; ~G Aj
� �h i

�2U2 Bj
� �

Cov F̂2 Aj; Bj
� �

; ~G Bj
� �h i

;
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where we used the fact that U2 Aj
� �2 and U2 Bj

� �2 are negligible compared to U2 Aj
� �

and U2 Bj
� �

as an approximation, and where

Cov ~G Aj
� �

; ~G Bj
� �h i

¼ 0 because drawing alleles in population A is independent of population B. Moreover, because

~G Pj
� �
¼ Ĝ Pj

� �
= 1� U2 Pj

� �� 	
, we have

Var ~F2 Aj; Bj
� �h i

� Var F̂2 Aj; Bj
� �h i

�
2U2 Aj

� �
1� U2 Aj

� �Cov F̂2 Aj;Bj
� �

; Ĝ Aj
� �h i

�
2U2 Bj

� �
1� U2 Bj

� �Cov F̂2 Aj;Bj
� �

; Ĝ Bj
� �h i

�4U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

þ 4U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

þ4U2 Aj
� �

U2 Bj
� �

G Aj
� �

G Bj
� �

�
2U2 Aj

� �
1� U2 Aj

� � 2U2 Aj
� �

G Aj
� �2 � 2U2 Aj

� �
G Aj
� �

G Bj
� �
� 2U2 Aj

� �
F2 Aj;Bj
� �

G Aj
� �h i

�
2U2 Bj

� �
1� U2 Bj

� � 2U2 Bj
� �

G Bj
� �2 � 2U2 Bj

� �
G Aj
� �

G Bj
� �
� 2U2 Bj

� �
F2 Aj;Bj
� �

G Bj
� �h i

:

Recalling the assumption that U2 Aj
� �2; U2 Bj

� �2, and U2 Aj
� �

U2 Bj
� �

are negligible compared to U2 Aj
� �

and U2 Bj
� �

, we have

Var ~F2 Aj;Bj
� �h i

� 4U2 Aj
� �

F2 Aj; Bj
� �

G Aj
� �

þ 4U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

�Var F̂2 Aj; Bj
� �h i

;

and it follows that

Var ~F2 A;Bð Þ
� 	

� Var F̂2 A; Bð Þ
h i

: u

Proposition 22. Consider J independent polymorphic loci in a populations A and B with respective parametric reference allele
frequencies aj; bj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;Bg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the
terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2; U2 Aj
� �

U2 Bj
� �

, and other terms of similar order negligible to U2 Pj
� �

. Based on this simplifying
assumption, the estimator F

^

2 A;Bð Þ has approximate variance

Var F
^

2 A; Bð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

þ 4
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

:

Proof. Recall that

F
^

2 Aj;Bj
� �

¼ F̂2 Aj;Bj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

;

where F
^

2 Aj; Bj
� �

and F̂2 Aj;Bj
� �

are estimators for F2 Aj;Bj
� �

and Ĝ Pj
� �

is an estimator of G Pj
� �

for P 2 fA; Bg at locus j 2 f1; 2; . . . ; Jg. Also,
from the proof of Proposition 3, we have

E F̂2 Aj; Bj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

:
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Therefore, we have that

Var F
^

2 Aj; Bj
� �h i

¼ Var F̂2 Aj;Bj
� �

� 1

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �

� 1

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �2

664
3
775

¼ Var F̂2 Aj;Bj
� �h i

þ 1XN Ajð Þ

k¼1

mk � 1

2
64

3
75

2
Var Ĝ Aj

� �h i
þ 1XN Bjð Þ

k¼1

mk � 1

2
64

3
75

2
Var Ĝ Bj

� �h i

�2
1

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Aj
� �h i

� 2
1

XN Bjð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Bj
� �h i

þ2
1

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

1

XN Bjð Þ

k¼1

mk � 1

2
664

3
775

Cov Ĝ Aj
� �

; Ĝ Bj
� �h i

�Var F̂2 Aj;Bj
� �h i

� 2
1

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Aj
� �h i

�2
1

XN Bjð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Bj
� �h i

;

where we used the fact that U2 Aj
� �2 and U2 Bj

� �2 are negligible compared to U2 Aj
� �

and U2 Bj
� �

as an approximation (and hence

1=
PN Pjð Þ

k¼1
mk � 1

2
4

3
5 assuming N Pj

� �
is large enough), and where Cov Ĝ Aj

� �
; Ĝ Bj
� �h i

¼ 0 because drawing alleles in population A is

independent of population B. Moreover, because

Cov F̂2 Aj;Bj
� �

; Ĝ Aj
� �h i

� U2 Aj
� �

F2 Aj;Bj
� �

G Aj
� �

Cov F̂2 Aj;Bj
� �

; Ĝ Bj
� �h i

� U2 Bj
� �

F2 Aj;Bj
� �

G Bj
� �

we have

1

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Aj
� �h i

� 0

1

XN Bjð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂2 Aj;Bj
� �

; Ĝ Bj
� �h i

� 0

by recalling the assumption that U2 Aj
� �2; U2 Bj

� �2, or any other term of similar magnitude (such as the U2 Pj
� �

=
PN Pjð Þ

k¼1
mk � 1

2
4

3
5 terms

that appear for populations P 2 fA; Bg) and U2 Aj
� �

U2 Bj
� �

are negligible compared to U2 Aj
� �

and U2 Bj
� �

. Because of this, we have

Var F
^

2 Aj;Bj
� �h i

� Var F̂2 Aj;Bj
� �h i

;

and it follows that

Var F
^

2 A;Bð Þ
h i

� Var F̂2 A;Bð Þ
h i

: u
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Proposition 23. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele

frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA; B;Cg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the

terms U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2, U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Cj
� �

negligible to U2 Pj
� �

. Based on this simplifying

assumption, the estimator F̂3 A; B;Cð Þ has approximate variance

Var F̂3 A; B;Cð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj;Bj
� �

G Cj
� �

:

Proof. From the proof of Proposition 6, we have

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

;

which gives

E F̂3 Aj; Bj;Cj
� �h i2

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �h i2

¼ F3 Aj; Bj;Cj
� �2 þ 2U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �2G Aj

� �2

�F3 Aj; Bj;Cj
� �2 þ 2U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

;

where we used the fact that U2 Aj
� �2 is negligible compared to U2 Aj

� �
as an approximation. We also calculate

E F̂3 Aj; Bj;Cj
� �2

h i
¼ E âj � b̂j

� �2
âj � ĉ j
� �2

� �

¼ E â4
j � 2â3

j ĉ j þ â2
j ĉ2

j � 2â3
j b̂j þ 4â2

j b̂ j ĉj � 2âjb̂j ĉ
2
j þ â2

j b̂
2

j � 2âjb̂
2

j ĉ j þ b̂
2

j ĉ2
j

h i
�a4

j þ 6U2 Aj
� �

a3
j 1� aj
� �

� 2 a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �h i

cj

þ a2
j þ U2 Aj

� �
aj 1� aj
� �h i

c2
j þ U2 Cj

� �
cj 1� cj
� �h i

� 2 a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �h i

bj

þ4 a2
j þ U2 Aj

� �
aj 1� aj
� �h i

bjcj � 2ajbj c2
j þ U2 Cj

� �
cj 1� cj
� �h i

þ a2
j þ U2 Aj

� �
aj 1� aj
� �h i

b2
j þ U2 Bj

� �
bj 1� bj
� �h i

� 2aj b2
j þ U2 Bj

� �
bj 1� bj
� �h i

cj

þ b2
j þ U2 Bj

� �
bj 1� bj
� �h i

c2
j þ U2 Cj

� �
cj 1� cj
� �h i

¼ aj � bj
� �2 aj � cjð Þ2 þ U2 Aj

� �
6 aj � bj
� �

aj � cjð Þ þ bj � cj
� �2

h i
aj 1� aj
� �

þU2 Bj
� �

aj � cjð Þ2bj 1� bj
� �

þ U2 Cj
� �

aj � bj
� �2cj 1� cj

� �
þU2 Aj

� �
U2 Bj
� �

aj 1� aj
� �

bj 1� bj
� �

þ U2 Aj
� �

U2 Cj
� �

aj 1� aj
� �

cj 1� cj
� �

þU2 Bj
� �

U2 Cj
� �

bj 1� bj
� �

cj 1� cj
� �

¼ F3 Aj; Bj;Cj
� �2 þ 6U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þU2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ U2 Cj

� �
F2 Aj;Bj
� �

G Cj
� �

þ U2 Aj
� �

U2 Bj
� �

G Aj
� �

G Bj
� �

þU2 Aj
� �

U2 Cj
� �

G Aj
� �

G Cj
� �

þ U2 Bj
� �

U2 Cj
� �

G Bj
� �

G Cj
� �

�F3 Aj; Bj;Cj
� �2 þ 6U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þU2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ U2 Cj

� �
F2 Aj;Bj
� �

G Cj
� �

;
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where we used the fact that U2 Aj
� �

U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Cj
� �

are negligible compared to U2 Aj
� �

; U2 Bj
� �

, and U2 Cj
� �

as an ap-
proximation. Therefore, we have that

Var F̂3 Aj; Bj;Cj
� �h i

¼ E F̂3 Aj; Bj;Cj
� �2

h i
� E F̂3 Aj; Bj;Cj

� �h i2

�F3 Aj; Bj;Cj
� �2 þ 6U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þU2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ U2 Cj

� �
F2 Aj;Bj
� �

G Cj
� �

� F3 Aj; Bj;Cj
� �2 þ 2U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �h i

¼ 4U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þU2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ U2 Cj

� �
F2 Aj;Bj
� �

G Cj
� �

;

which gives

Var F̂3 A; B;Cð Þ
h i

¼ Var
1
J

XJ

j¼1

F̂3 Aj; Bj;Cj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var F̂3 Aj; Bj;Cj
� �h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj; Bj
� �

G Cj
� �

: u

Lemma 24. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele

frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA; B;Cg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the

terms U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

, and U2 Pj
� �2 negligible to U2 Pj

� �
. Based on this simplifying assumption, the estimators F̂3 A; B;Cð Þ and

ĝ Að Þ have an approximate covariance

Cov F̂3 A; B;Cð Þ; Ĝ Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Proof. From the proofs of Lemma 1 and Proposition 6, we have

E Ĝ Aj
� �h i

¼ 1� U2 Aj
� �� 	

G Aj
� �

and

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

;

yielding

E F̂3 Aj; Bj;Cj
� �h i

E Ĝ Aj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �h i

1� U2 Aj
� �� 	

G Aj
� �

¼ F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

G Aj
� �2 � U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

�U2 Aj
� �2G Aj

� �2

�F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

G Aj
� �2 � U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

;
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where we used the fact that U2 Aj
� �2 is negligible compared to U2 Aj

� �
as an approximation. We also calculate

E F̂3 Aj; Bj;Cj
� �

Ĝ Aj
� �h i

¼ E âj � b̂j

� �
âj � ĉ j
� �

âj 1� âj
� �h i

¼ E â2
j � âjb̂j � âj ĉj þ b̂jĉ j

� �
âj � â2

j

� �� �

¼ E â3
j

h i
� E â2

j

h i
E b̂j

h i
� E â2

j

h i
E ĉ j
� 	
þ E âj

� 	
E b̂j

h i
E ĉ j
� 	
� E â4

j

h i
þ E â3

j

h i
E b̂j

h i

þE â3
j

h i
E ĉ j
� 	
� E â2

j

h i
E b̂j

h i
E ĉ j
� 	

�a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �

� a2
j þ U2 Aj

� �
aj 1� aj
� �h i

bj

� a2
j þ U2 Aj

� �
aj 1� aj
� �h i

cj þ ajbjcj � a4
j þ 6U2 Aj

� �
a3

j 1� aj
� �h i

þ a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �h i

bj þ a3
j þ 3U2 Aj

� �
a2

j 1� aj
� �h i

cj

� a2
j þ U2 Aj

� �
aj 1� aj
� �h i

bjcj:

Recognizing that G Aj
� �

¼ aj 1� aj
� �

and F3 Aj; Bj;Cj
� �

¼ a2
j � ajbj � ajcj þ bjcj, we have

E F̂3 Aj; Bj;Cj
� �

Ĝ Bj
� �h i

� a3
j � a2

j bj � a2
j cj þ ajbjcj � a4

j þ a3
j bj þ a3

j cj � a2
j bjcj

þU2 Aj
� �

3aj � bj � cj � 6a2
j þ 3ajbj þ 3ajcj � bjcj

h i
G Aj
� �

¼ a2
j � ajbj � ajcj þ bjcj

� �
aj � a2

j

� �
þU2 Aj

� �
3 aj � a2

j

� �
� 3 a2

j � ajbj � ajcj þ bjcj

� �
� bj 1� cj

� �
� 1� bj
� �

cj

h i
G Aj
� �

¼ F3 Aj; Bj;Cj
� �

G Aj
� �

þU2 Aj
� �

3G Aj
� �

� 3F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
G Aj
� �

¼ F3 Aj; Bj;Cj
� �

G Aj
� �

þ 3U2 Aj
� �

G Aj
� �2 � 3U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

�U2 Aj
� �

G Aj
� �

bj 1� cj
� �

� U2 Aj
� �

G Aj
� �

1� bj
� �

cj

¼ 1� 3U2 Aj
� �� 	

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 3U2 Aj
� �

G Aj
� �2

�U2 Aj
� �

G Aj
� �

bj 1� cj
� �

� U2 Aj
� �

G Aj
� �

1� bj
� �

cj:

Therefore, we have that

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

¼ E F̂3 Aj; Bj;Cj
� �

Ĝ Aj
� �h i

� E F̂3 Aj; Bj;Cj
� �h i

E Ĝ Aj
� �h i

� 1� 3U2 Aj
� �� 	

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 3U2 Aj
� �

G Aj
� �2

�U2 Aj
� �

G Aj
� �

bj 1� cj
� �

� U2 Aj
� �

G Aj
� �

1� bj
� �

cj

� F3 Aj; Bj;Cj
� �

G Aj
� �

þ U2 Aj
� �

G Aj
� �2 � U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �h i

¼ 2U2 Aj
� �

G Aj
� �2 � 2U2 Aj

� �
F3 Aj; Bj;Cj
� �

G Aj
� �

�U2 Aj
� �

G Aj
� �

bj 1� cj
� �

� U2 Aj
� �

G Aj
� �

1� bj
� �

cj

¼ U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
;
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which gives

Cov F̂3 A; B;Cð Þ; Ĝ Að Þ
h i

¼ Cov
1
J

XJ

j¼1

F̂3 Aj; Bj;Cj
� �

;
1
J

XJ

j¼1

Ĝ Aj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
: u

Proposition 25. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele

frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA; B;Cg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the

terms U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2; U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Cj
� �

negligible to U2 Pj
� �

. Based on this simplifying

assumption, the unbiased estimator ~F3 A; B;Cð Þ has approximate variance

Var ~F3 A; B;Cð Þ
� 	

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj; Bj
� �

G Cj
� �

:

Proof. Recall that

~F3 Aj; Bj;Cj
� �

¼ F̂3 Aj; Bj;Cj
� �

� U2 Aj
� �~G Aj

� �
;

where ~F3 Aj; Bj;Cj
� �

is an unbiased estimator for F3 Aj; Bj;Cj
� �

and ~G Aj
� �

¼ Ĝ Aj
� �

= 1� U2 Aj
� �� 	

is an unbiased estimator of G Aj
� �

at

locus j 2 f1; 2; . . . ; Jg. Also, from the proof of Proposition 6, we have

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

:

Therefore, we have that

Var ~F3 Aj; Bj; Cj
� �h i

¼ Var F̂3 Aj; Bj;Cj
� �

� U2 Aj
� �~G Aj

� �h i

¼ Var F̂3 Aj; Bj;Cj
� �h i

þ U2 Aj
� �2Var ~G Aj

� �h i

�2U2 Aj
� �

Cov F̂3 Aj; Bj;Cj
� �

; ~G Aj
� �h i

�Var F̂3 Aj; Bj;Cj
� �h i

�
2U2 Aj

� �
1� U2 Aj

� �Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

;

where we used the fact that U2 Aj
� �2 is negligible compared to U2 Aj

� �
as an approximation. Moreover, because

~G Aj
� �

¼ Ĝ Aj
� �

= 1� U2 Aj
� �� 	

, we have

Var ~F3 Aj; Bj; Cj
� �h i

� Var F̂3 Aj; Bj;Cj
� �h i

�
2U2 Aj

� �
1� U2 Aj

� �Cov F̂3 Aj; Bj;Cj
� �

; ĝ Aj
� �h i

¼ Var F̂3 Aj; Bj;Cj
� �h i

�
2U2 Aj

� �2

1� U2 Aj
� �G Aj

� �
2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Recalling the assumption that U2 Aj
� �2 is negligible compared to U2 Aj

� �
, we have

Var ~F3 Aj; Bj;Cj
� �h i

� Var F̂3 Aj; Bj;Cj
� �h i

: u

Proposition 26. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele

frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA; B;Cg, some of
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which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the

terms U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2; U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

; U2 Bj
� �

U2 Cj
� �

and any other terms of similar order negligible to

U2 Pj
� �

. Based on this simplifying assumption, the estimator F
^

3 A; B;Cð Þ has approximate variance

Var F
^

3 A; B;Cð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj;Bj
� �

G Cj
� �

:

Proof. Recall that

F
^

3 Aj; Bj;Cj
� �

¼ F̂3 Aj; Bj;Cj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

;

where F
^

3 Aj; Bj;Cj
� �

and F̂3 Aj; Bj;Cj
� �

are estimators for F3 Aj; Bj;Cj
� �

and Ĝ Aj
� �

is an estimator of G Aj
� �

at locus j 2 f1; 2; . . . ; Jg. Also,

from the proof of Proposition 6, we have

E F̂3 Aj; Bj;Cj
� �h i

¼ F3 Aj; Bj;Cj
� �

þ U2 Aj
� �

G Aj
� �

:

Therefore, we have that

Var F
^

3 Aj; Bj; Cj
� �h i

¼ Var F̂3 Aj; Bj;Cj
� �

� 1

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �2

664
3
775

¼ Var F̂3 Aj; Bj;Cj
� �h i

þ 1XN Ajð Þ

k¼1

mk � 1

2
64

3
75

2
Var Ĝ Aj

� �h i

�2
1

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

�Var F̂3 Aj; Bj;Cj
� �h i

� 2

XN Ajð Þ

k¼1

mk � 1

2
664

3
775

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

;

where we used the fact that U2 Aj
� �2 is negligible compared to U2 Aj

� �
as an approximation (and hence 1=

PN Ajð Þ

k¼1
mk � 1

2
4

3
5 assuming

N Aj
� �

is large enough). Moreover, because

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

¼ U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i

we have

2

PN Ajð Þ

k¼1
mk � 1

2
664

3
775Cov F̂3 Aj; Bj;Cj

� �
; Ĝ Aj
� �h i

� 0

by recalling the assumption that U2 Aj
� �2 or any other term of similar magnitude (such as the U2 Aj

� �
=

PN Ajð Þ

k¼1
mk � 1

2
4

3
5 term) are

negligible compared to U2 Aj
� �

. Because of this, we have

Var F
^

3 Aj; Bj;Cj
� �h i

� Var F̂3 Aj; Bj;Cj
� �h i
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and it follows that

Var F
^

3 A; B;Cð Þ
h i

� Var F̂3 A; B;Cð Þ
h i

: u

Proposition 27. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which
makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2; U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Dj
� �

negligible to U2 Pj
� �

.
Based on this simplifying The unbiased estimator F̂4 A;B; C;Dð Þ has approximate variance

Var F̂4 A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj; Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

:

Proof. From the proofs of Propositions 3 and 12, we have

E F̂2 Aj;Bj
� �h i

¼ F2 Aj;Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �

and

E F̂4 Aj; Bj; Cj;Dj
� �h i

¼ F4 Aj;Bj; Cj;Dj
� �

:

We calculate

E F̂4 Aj; Bj; Cj;Dj
� �2

h i
¼ E âj � b̂j

� �2
ĉ j � d̂j

� �2
� �

¼ E F̂2 Aj;Bj
� �

F̂2 Cj;Dj
� �h i

¼ E F̂2 Aj;Bj
� �h i

E F̂2 Cj;Dj
� �h i

¼ F2 Aj; Bj
� �

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

� F2 Cj;Dj
� �

þ U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

¼ F4 Aj; Bj; Cj;Dj
� �2 þ F2 Aj;Bj

� �
U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

þF2 Cj;Dj
� �

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

;

where we use the identity that

F4 Aj;Bj; Cj;Dj
� �2 ¼ aj � bj

� �2 cj � dj
� �2

¼ F2 Aj;Bj
� �

F2 Cj;Dj
� �

:
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Therefore, we have that

Var F̂4 Aj;Bj; Cj;Dj
� �h i

¼ E F̂4 Aj;Bj; Cj;Dj
� �2

h i
� E F̂4 Aj;Bj; Cj;Dj

� �h i2

¼ F4 Aj;Bj; Cj;Dj
� �2 þ F2 Aj;Bj

� �
U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

þF2 Cj;Dj
� �

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

�F4 Aj;Bj; Cj;Dj
� �2

¼ F2 Aj;Bj
� �

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

þF2 Cj;Dj
� �

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

þ U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

�F2 Aj;Bj
� �

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

þF2 Cj;Dj
� �

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

;

where we used the fact that U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

, and U2 Cj
� �

U2 Dj
� �

are negligible compared to

U2 Aj
� �

; U2 Bj
� �

; U2 Cj
� �

and U2 Dj
� �

as an approximation. It follows that

Var F̂4 A;B; C;Dð Þ
h i

¼ Var
1
J

XJ

j¼1

F̂4 Aj;Bj; Cj;Dj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var F̂4 Aj;Bj; Cj;Dj
� �h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj;Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

: u

Following Wolter (2007), we have that an approximation to the variance of the ratio estimator X/Y is

Var
X
Y

� �
� E X½ �2

E Y½ �2
Var X½ �
E X½ �2

þ Var Y½ �
E Y½ �2

� 2
Cov X;Y½ �
E X½ �E Y½ �

" #

Proposition 28. Consider J polymorphic loci in populations A, B, and C with respective parametric reference allele frequencies

aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj
� �

individuals at locus j in population P 2 fA;B;Cg, some of which may

be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms

U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2; U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Cj
� �

negligible to U2 Pj
� �

. Based on this simplifying

assumption, the ratio estimator F̂3 A; B;CjAð Þ has approximate variance

Var F̂3 A; B;CjAð Þ
h i

�
E F̂3 A; B;Cð Þ
h i2

4E Ĝ Að Þ
� 	2 Var F̂3 A; B;Cð Þ

h i
E F̂3 A; B;Cð Þ
h i2 þ

Var Ĝ Að Þ
� 	

E Ĝ Að Þ
� 	2 � 2

Cov F̂3 A; B;Cð Þ; Ĝ Að Þ
h i

E F̂3 A; B;Cð Þ
h i

E Ĝ Að Þ
� 	

2
64

3
75;

where the expectations are

E F̂3 A; B;Cð Þ
h i

¼ F3 A; B;Cð Þ þ 1
J

XJ

j¼1

U2 Aj
� �

G Aj
� �

E Ĝ Að Þ
� 	

¼ G Að Þ � 1
J

XJ

j¼1

U2 Aj
� �

G Aj
� �
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the variances are

Var F̂3 A; B;Cð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj;Bj
� �

G Cj
� �

Var Ĝ Að Þ
� 	

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

� 4
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �2

and the covariance is

Cov F̂3 A; B;Cð Þ; Ĝ Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Proof. Recall that

F̂3 A; B;C; jAð Þ ¼ F̂3 A; B;Cð Þ
2Ĝ Að Þ

:

Assuming that X ¼ F̂3 A; B;Cð Þ and Y ¼ 2Ĝ Að Þ, following the approximation in Wolter (2007) we have

Var F̂3 A; B;CjAð Þ
h i

�
E F̂3 A; B;Cð Þ
h i2

4E Ĝ Að Þ
� 	2 Var F̂3 A; B;Cð Þ

h i
E F̂3 A; B;Cð Þ
h i2 þ

Var Ĝ Að Þ
� 	

E Ĝ Að Þ
� 	2 � 2

Cov F̂3 A; B;Cð Þ; Ĝ Að Þ
h i

E F̂3 A; B;Cð Þ
h i

E Ĝ Að Þ
� 	

2
64

3
75;

where E F̂3 A; B;Cð Þ
h i

is given in Proposition 6, E Ĝ Að Þ
� 	

in Lemma 1, Var F̂3 A; B;Cð Þ
h i

in Proposition 23, Var Ĝ Að Þ
� 	

in Lemma 18, and
Cov F̂3 A; B;Cð Þ; Ĝ Að Þ

h i
in Lemma 24. h

Lemma 29. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele
frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;Cg, some of

which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the
terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
, and U2 Pj

� �2 negligible to U2 Pj
� �

. Based on this simplifying assumption, the unbiased estimators
~F3 A; B;Cð Þ and ~G Að Þ have an approximate covariance

Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Proof. Recall that

~F3 Aj; Bj;Cj
� �

¼ F̂3 Aj; Bj;Cj
� �

� U2 Aj
� �~G Aj

� �
;

where ~G Aj
� �

¼ Ĝ Aj
� �

= 1� U2 Aj
� �� 	

. It follows that

Cov ~F3 Aj; Bj;Cj
� �

; ~G Aj
� �h i

¼ Cov F̂3 Aj; Bj;Cj
� �

� U2 Aj
� �~G Aj

� �
; ~G Aj
� �h i

¼ Cov F̂3 Aj; Bj;Cj
� �

; ~G Aj
� �h i

� U2 Aj
� �

Var ~G Aj
� �h i

¼ 1
1� U2 Aj

� �Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

�
U2 Aj
� �

1� U2 Aj
� �� 	2 Var Ĝ Aj

� �h i

� 1
1� U2 Aj

� �Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

�
U2 Aj
� �

1� 2U2 Aj
� �Var Ĝ Aj

� �h i
;

where we used the fact that U2 Aj
� �2 is negligible compared to U2 Aj

� �
as an approximation. From the proofs of Lemmas 18 and 24, we

have

Var Ĝ Aj
� �h i

� U2 Aj
� �

G Aj
� �

� 4U2 Aj
� �

G Aj
� �2
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and

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

¼ U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Assuming that U2 Aj
� �2 is negligible compared to U2 Aj

� �
, we have that

U2 Aj
� �

Var Ĝ Aj
� �h i

� 0:

We therefore have that

Cov ~F3 Aj; Bj;Cj
� �

; ~G Aj
� �h i

� 1
1� U2 Aj

� �Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

;

and thus by independence of loci we have

Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	

¼ Cov
1
J

XJ

j¼1

~F3 Aj; Bj;Cj
� �

;
1
J

XJ

j¼1

~G Aj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov ~F3 Aj; Bj;Cj
� �

; ~G Aj
� �h i

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
: u

Lemma 30. Consider J independent polymorphic loci in populations A, B, and C with respective parametric reference allele
frequencies aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;Cg, some of

which may be related or inbred, where individual k 2 f1; 2; . . . ;N Pj
� �

} has ploidy mk. Moreover, assume that no individual is related to
more than one other individual, which makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2, and any other terms of similar order
negligible to U2 Pj

� �
. Based on this simplifying assumption, the estimators F

^

3 A; B;Cð Þ and G
^

Að Þ have an approximate covariance

Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� � PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Proof. Recall that

F
^

3 Aj; Bj;Cj
� �

¼ F̂3 Aj; Bj;Cj
� �

� 1

PN Ajð Þ

k¼1
mk � 1

Ĝ Aj
� �

;

where

G
^

Aj
� �

¼

PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

G Aj
� �

:
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It follows that

Cov F
^

3 Aj; Bj;Cj
� �

;G
^

Aj
� �h i

¼ Cov F̂3 Aj; Bj;Cj
� �

� 1

XN Ajð Þ

k¼1

mk � 1

Ĝ Aj
� �

;G
^

Aj
� �2

664
3
775

¼ Cov F̂3 Aj; Bj;Cj
� �

;G
^

Aj
� �h i

� 1

XN Ajð Þ

k¼1

mk � 1

Cov Ĝ Aj
� �

;G
^

Aj
� �h i

¼

XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

�

XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

2
4

3
5

2 Var Ĝ Aj
� �h i

:

From the proofs of Lemmas 18 and 24, we have

Var Ĝ Aj
� �h i

� U2 Aj
� �

G Aj
� �

� 4U2 Aj
� �

G Aj
� �2

and

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

¼ U2 Aj
� �

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

By recalling the assumption that U2 Aj
� �2 or any other term of similar magnitude (such as the U2 Aj

� �
=

PN Ajð Þ

k¼1
mk � 1

2
4

3
5 term for N Aj

� �
large enough) is negligible compared to U2 Aj

� �
, we have that

1

PN Ajð Þ

k¼1
mk � 1

Var Ĝ Aj
� �h i

� 0:

We therefore have that

Cov F
^

3 Aj; Bj;Cj
� �

;G
^

Aj
� �h i

�

PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

Cov F̂3 Aj; Bj;Cj
� �

; Ĝ Aj
� �h i

;

and thus by independence of loci we have

Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i

¼ Cov
1
J

XJ

j¼1

F
^

3 Aj; Bj;Cj
� �

;
1
J

XJ

j¼1

G
^

Aj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov F
^

3 Aj; Bj;Cj
� �

;G
^

Aj
� �h i

� 1
J2
XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
: u

Proposition 31. Consider J polymorphic loci in populations A, B, and C with respective parametric reference allele frequencies
aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;Cg, some of which may

be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms
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U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2; U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Cj
� �

negligible to U2 Pj
� �

. Based on this simplifying
assumption, the approximately unbiased ratio estimator ~F3 A; B;CjAð Þ has approximate variance

Var ~F3 A; B;CjAð Þ
� 	

� F3 A; B;Cð Þ2

4G Að Þ2
Var ~F3 A; B;Cð Þ

� 	
F3 A; B;Cð Þ2

þ Var ~G Að Þ
� 	

G Að Þ2
� 2

Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	
F3 A; B;Cð ÞG Að Þ

" #
;

where the variances are

Var ~F3 A; B;Cð Þ
� 	

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj; Bj
� �

G Cj
� �

Var ~G Að Þ
� 	

� 1
J2
XJ

j¼1

U2 Aj
� �

1� 2U2 Aj
� �G Aj

� �
� 4

J2
XJ

j¼1

U2 Aj
� �

1� 2U2 Aj
� �G Aj

� �2

and the covariance is

Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
:

Proof. Recall that

~F3 A; B;C; jAð Þ ¼
~F3 A; B;Cð Þ

2~G Að Þ
;

where ~F3 A; B;Cð Þ is an unbiased estimator for F3 A; B;Cð Þ and ~G Að Þ is an unbiased estimator of G(A). Assuming that X ¼ ~F3 A; B;Cð Þ and

Y ¼ 2~G Að Þ, following the approximation in Wolter (2007) we have

Var ~F3 A; B;CjAð Þ
� 	

� F3 A; B;Cð Þ2

4G Að Þ2
Var ~F3 A; B;Cð Þ

� 	
F3 A; B;Cð Þ2

þ Var ~G Að Þ
� 	

G Að Þ2
� 2

Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	
F3 A; B;Cð ÞG Að Þ

" #
;

where Var ~F3 A; B;Cð Þ
� 	

is given in Proposition 25, Var ~G Að Þ
� 	

in Lemma 18, and Cov ~F3 A; B;Cð Þ; ~G Að Þ
� 	

in Lemma 29. h

Proposition 32. Consider J polymorphic loci in populations A, B, and C with respective parametric reference allele frequencies
aj; bj; cj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;Cg, some of which may

be related or inbred, where individual k 2 f1; 2; . . . ;N Pj
� �

} has ploidy mk. Moreover, assume that no individual is related to more than
one other individual, which makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2; U2 Aj
� �

U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

; U2 Bj
� �

U2 Cj
� �

, and any other
terms of similar order negligible to U2 Pj

� �
. Based on this simplifying assumption, the ratio estimator F

^

3 A; B;CjAð Þ has approximate
variance

Var F
^

3 A; B;CjAð Þ
h i

� X A; B;Cð Þ2

4Y Að Þ2
Var F

^

3 A; B;Cð Þ
h i

X A; B;Cð Þ2
þ

Var G
^

Að Þ
h i

Y Að Þ2
� 2

Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i
X A; B;Cð ÞY Að Þ

2
4

3
5
;

where the variances are

Var F
^

3 A; B;Cð Þ
h i

� 4
J2
XJ

j¼1

U2 Aj
� �

F3 Aj; Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

F2 Bj;Cj
� �

G Aj
� �

þ 1
J2
XJ

j¼1

U2 Bj
� �

F2 Aj;Cj
� �

G Bj
� �
þ 1

J2
XJ

j¼1

U2 Cj
� �

F2 Aj; Bj
� �

G Cj
� �

Var G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Aj
� �

� 4
J2
XJ

j¼1

U2 Aj
� �

XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Aj
� �2
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the covariance is

Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� � PN Ajð Þ

k¼1
mk

PN Ajð Þ

k¼1
mk � 1

G Aj
� �

2G Aj
� �

� 2F3 Aj; Bj;Cj
� �

� bj 1� cj
� �

� 1� bj
� �

cj

h i
;

and where

X A; B;Cð Þ ¼ F3 A; B;Cð Þ þ 1
J

XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk � 1

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

Y Að Þ ¼ 1
J

XJ

j¼1

1� U2 Aj
� �� 	 XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

:

Proof. Recall that

F
^

3 A; B;C; jAð Þ ¼ F
^

3 A; B;Cð Þ

2G
^

Að Þ
;

where F
^

3 A; B;Cð Þ is an estimator for F3 A; B;Cð Þ and G
^

Að Þ is an estimator of G(A). Assuming that X ¼ F
^

3 A; B;Cð Þ and Y ¼ 2G
^

Að Þ,
following the approximation in Wolter (2007) we have

Var F
^

3 A; B;CjAð Þ
h i

� X A; B;Cð Þ2

4Y Að Þ2
Var F

^

3 A; B;Cð Þ
h i

X A; B;Cð Þ2
þ

Var G
^

Að Þ
h i

Y Að Þ2
� 2

Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i
X A; B;Cð ÞY Að Þ

2
4

3
5
;

where Var F
^

3 A; B;Cð Þ
h i

is given in Proposition 26, Var G
^

Að Þ
h i

in Lemma 18, Cov F
^

3 A; B;Cð Þ;G
^

Að Þ
h i

in Lemma 30, X A; B;Cð Þ ¼ E F
^

3 A; B;Cð Þ
h i

in proof of Corollary 8, and Y Að Þ ¼ E G
^

Að Þ
h i

in proof of Corollary 11. h

Lemma 33. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which
makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
, and U2 Pj

� �2 negligible to U2 Pj
� �

. Based on this simplifying assumption, the estimators
F̂4 A;B; C;Dð Þ and Ĝ Pð Þ; P 2 fA; B;C;Dg; have approximate covariances

Cov F̂4 A;B; C;Dð Þ; Ĝ Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

1� 2dj
� �

aj � bj
� �

:

Proof. From the proofs of Lemma 1 and Proposition 12, we that have

E Ĝ Pj
� �h i

¼ 1� U2 Pj
� �� 	

G Pj
� �
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and

E F̂4 Aj; Bj; Cj;Dj
� �h i

¼ F4 Aj;Bj; Cj;Dj
� �

;

yielding

E F̂4 Aj;Bj; Cj;Dj
� �h i

E Ĝ Pj
� �h i

¼ 1� U2 Pj
� �� 	

F4 Aj;Bj; Cj;Dj
� �

G Pj
� �

:

We first calculate

E½F̂4ðAj;Bj; Cj;DjÞĜðAjÞ� ¼ E½ðâj � b̂jÞðĉ j � d̂jÞâjð1� âjÞ�

¼ E½ðâj � b̂jÞðâj � â2
j Þ�E½̂cj � d̂j�

¼ ½E½â2
j � � E½â3

j � � E½âj�E½b̂j� þ E½â2
j �E½b̂j��½E½̂cj� � E½d̂j��

�½a2
j þ U2ðAjÞajð1� ajÞ � ½a3

j þ 3U2ðAjÞa3
j ð1� ajÞ � ajbj

þ½a2
j þ U2ðAjÞajð1� ajÞ�bj�ðcj � djÞ

¼ ða2
j � a3

j � ajbj þ a2
j bjÞðcj � djÞ þ U2ðAjÞajð1� ajÞð1� 3aj þ bjÞðcj � djÞ

¼ ðaj � bjÞðcj � djÞajð1� ajÞ þ U2ðAjÞajð1� ajÞ½1� 2aj � ðaj � bjÞ�ðcj � djÞ

¼ F4ðAj;Bj; Cj;DjÞGðAjÞ � U2ðAjÞF4ðAj;Bj; Cj;DjÞGðAjÞ

þU2ðAjÞGðAjÞð1� 2ajÞðcj � djÞ

¼ ½1� U2ðAjÞ�F4ðAj; Bj; Cj;DjÞGðAjÞ þ U2ðAjÞGðAjÞð1� 2ajÞðcj � djÞ:

Hence, we have that

Cov F̂4 Aj; Bj; Cj;Dj
� �

; Ĝ Aj
� �h i

¼ E F̂4 Aj;Bj; Cj;Dj
� �

Ĝ Aj
� �h i

� E F̂4 Aj;Bj; Cj;Dj
� �h i

E Ĝ Aj
� �h i

� 1� U2 Aj
� �� 	

F4 Aj;Bj; Cj;Dj
� �

G Aj
� �

þ U2 Aj
� �

G Aj
� �

1� 2aj
� �

cj � dj
� �

� 1� U2 Aj
� �� 	

F4 Aj;Bj; Cj;Dj
� �

G Aj
� �

¼ U2 Aj
� �

G Aj
� �

1� 2aj
� �

cj � dj
� �

:

Similarly, we have that

E½F̂4ðAj; Bj; Cj;DjÞĜðBjÞ� ¼ E½ðâj � b̂jÞðĉ j � d̂jÞb̂jð1� b̂jÞ�

¼ E½ðâj � b̂jÞðb̂j � b̂
2
j Þ�E½̂cj � d̂j�

¼ �E½ðb̂j � âjÞðb̂j � b̂
2

j Þ�E½̂cj � d̂j�

¼ �½E½b̂
2

j � � E½b̂
3

j � � E½âj�E½b̂j� þ E½âj�E½b̂
2

j ��½E½̂cj� � E½d̂j��

� � ½b2
j þ U2ðBjÞbjð1� bjÞ � ½b3

j þ 3U2ðBjÞb3
j ð1� bjÞ � ajbj

þaj½b2
j þ U2ðBjÞbjð1� bjÞ��ðcj � djÞ

¼ �ðb2
j � b3

j � ajbj þ ajb2
j Þðcj � djÞ � U2ðBjÞbjð1� bjÞð1� 3bj þ ajÞðcj � djÞ

¼ ðaj � bjÞðcj � djÞbjð1� bjÞ � U2ðBjÞbjð1� bjÞ½1� 2bj þ ðaj � bjÞ�ðcj � djÞ

¼ F4ðAj;Bj; Cj;DjÞGðAjÞ � U2ðBjÞF4ðAj;Bj; Cj;DjÞGðBjÞ

�U2ðBjÞGðBjÞð1� 2bjÞðcj � djÞ

¼ ½1� U2ðBjÞ�F4ðAj;Bj; Cj;DjÞGðBjÞ � U2ðBjÞGðBjÞð1� 2bjÞðcj � djÞ:
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Hence, we have that

Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĝ Bj
� �h i

¼ E F̂4 Aj;Bj; Cj;Dj
� �

Ĝ Bj
� �h i

� E F̂4 Aj;Bj; Cj;Dj
� �h i

E Ĝ Bj
� �h i

� 1� U2 Bj
� �� 	

F4 Aj;Bj; Cj;Dj
� �

G Bj
� �
� U2 Bj

� �
G Bj
� �

1� 2bj
� �

cj � dj
� �

� 1� U2 Bj
� �� 	

F4 Aj;Bj; Cj;Dj
� �

G Bj
� �

¼ �U2 Bj
� �

G Bj
� �

1� 2bj
� �

cj � dj
� �

:

Parallel to the derivation for P¼A, we have

Cov F̂4 Aj; Bj; Cj;Dj
� �

; Ĝ Cj
� �h i

¼ U2 Cj
� �

G Cj
� �

1� 2cj
� �

aj � bj
� �

and parallel to the derivation for P¼B, we have

Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĝ Dj
� �h i

¼ �U2 Dj
� �

G Dj
� �

1� 2dj
� �

aj � bj
� �

:

We know that by independence of loci we have

Cov F̂4 A;B; C;Dð Þ; Ĝ Pð Þ
h i

¼ Cov
1
J

XJ

j¼1

F̂4 Aj;Bj; Cj;Dj
� �

;
1
J

XJ

j¼1

Ĝ Pj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĝ Pj
� �h i

which gives

Cov F̂4 A;B; C;Dð Þ; Ĝ Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

1� 2dj
� �

aj � bj
� �

: u

Proposition 34. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;C;Dg, some of which

may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms
U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

, and U2 Pj
� �2 negligible to U2 Pj

� �
. Based on this simplifying assumption, the ratio estimator F̂4 A;B; C;DjPð Þ has

approximate variance

Var F̂4 A;B; C;DjPð Þ
h i

� F4 A;B; C;Dð Þ2

E Ĝ Pð Þ
� 	2 Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ Var Ĝ Að Þ
� 	

E Ĝ Pð Þ
� 	2 � 2

Cov F̂4 A;B; C;Dð Þ; Ĝ Pð Þ
h i

F4 A;B; C;Dð ÞE Ĝ Pð Þ
� 	

2
4

3
5;

where the expectation is

E Ĝ Pð Þ
� 	

¼ G Pð Þ � 1
J

XJ

j¼1

U2 Pj
� �

G Pj
� �
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the variances are

Var F̂4 A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

g Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj;Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

Var Ĝ Pð Þ
� 	

� 1
J2
XJ

j¼1

U2 Pj
� �

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

G Pj
� �2

and the covariances are

Cov F̂4 A;B; C;Dð Þ; Ĝ Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A;B; C;Dð Þ; Ĝ Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

1� 2dj
� �

aj � bj
� �

:

Proof. Recall that

F̂4 A;B; C;DjPð Þ ¼ F̂4 A;B; C;Dð Þ
Ĝ Pð Þ

;

where F̂4 A;B; C;Dð Þ is an unbiased estimator for F4 A; B; C;Dð Þ. Assuming that X ¼ F̂4 A;B; C;Dð Þ and Y ¼ Ĝ Pð Þ, following the
approximation in Wolter (2007) we have

Var F̂4 A;B; C;DjPð Þ
h i

� F4 A;B; C;Dð Þ2

E Ĝ Pð Þ
� 	2 Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ Var Ĝ Að Þ
� 	

E Ĝ Pð Þ
� 	2 � 2

Cov F̂4 A;B; C;Dð Þ; Ĝ Pð Þ
h i

F4 A;B; C;Dð ÞE Ĝ Pð Þ
� 	

2
4

3
5;

where E Ĝ Pð Þ
� 	

is given in Lemma 1, Var F̂4 A; B; C;Dð Þ
h i

in Proposition 27, Var Ĝ Pð Þ
� 	

in Lemma 18, and Cov F̂4 A;B; C;Dð Þ; Ĝ Pð Þ
h i

in
Lemma 33 for each population P 2 fA;B;C;Dg. h

Lemma 35. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which
makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
, and U2 Pj

� �2 negligible to U2 Pj
� �

. Based on this simplifying assumption, the unbiased
estimators F̂4 A;B; C;Dð Þ and ~G Pð Þ; P 2 fA; B;C;Dg; have approximate covariances

Cov F̂4 A;B; C;Dð Þ; ~G Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
1� 2aj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

1� U2 Bj
� �G Bj

� �
1� 2bj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

1� U2 Cj
� �G Cj

� �
1� 2cj
� �

aj � bj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

1� U2 Dj
� �G Dj

� �
1� 2dj
� �

aj � bj
� �

:
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Proof. Recall that ~G Pj
� �
¼ Ĝ Pj

� �
= 1� U2 Pj

� �� 	
. It follows that

Cov F̂4 Aj; Bj; Cj;Dj
� �

; ~G Pj
� �h i

¼ 1
1� U2 Pj

� �Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĝ Pj
� �h i

:

From the proof of Lemma 33, we have

Cov F̂4 Aj; Bj; Cj;Dj
� �

; ~G Aj
� �h i

�
U2 Aj
� �

1� U2 Aj
� �G Aj

� �
1� 2aj
� �

cj � dj
� �

Cov F̂4 Aj; Bj; Cj;Dj
� �

; ~G Bj
� �h i

� �
U2 Bj
� �

1� U2 Bj
� �G Bj

� �
1� 2bj
� �

cj � dj
� �

Cov F̂4 Aj; Bj; Cj;Dj
� �

; ~G Cj
� �h i

�
U2 Cj
� �

1� U2 Cj
� �G Cj

� �
1� 2cj
� �

aj � bj
� �

Cov F̂4 Aj; Bj; Cj;Dj
� �

; ~G Dj
� �h i

� �
U2 Dj
� �

1� U2 Dj
� �G Dj

� �
1� 2dj
� �

aj � bj
� �

;

yielding

Cov F̂4 A; B; C;Dð Þ; ~G Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
1� 2aj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ; ~G Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

1� U2 Bj
� �G Bj

� �
1� 2bj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ; ~G Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

1� U2 Cj
� �G Cj

� �
1� 2cj
� �

aj � bj
� �

Cov F̂4 A; B; C;Dð Þ; ~G Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

1� U2 Dj
� �G Dj

� �
1� 2dj
� �

aj � bj
� �

: u

Lemma 36. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred, where individual k 2 f1; 2; . . . ;N Pj
� �

} has ploidy mk. Moreover, assume that no individual is
related to more than one other individual, which makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
, and U2 Pj

� �2 negligible to U2 Pj
� �

. Based on
this simplifying assumption, the estimators F̂4 A;B; C;Dð Þ and G

^

Pð Þ; P 2 fA;B;C;Dg; have approximate covariances

Cov F̂4 A; B; C;Dð Þ;G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �XN Bjð Þ

k¼1

mk

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �XN Cjð Þ

k¼1

mk

XN Cjð Þ

k¼1

mk � 1

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� � XN Djð Þ

k¼1

mk

XN Djð Þ

k¼1

mk � 1

G Dj
� �

1� 2dj
� �

aj � bj
� �

:

M. R. Mughal and M. DeGiorgio | 49



Proof. Recall that

G
^

Pj
� �
¼

PN Pjð Þ

k¼1
mk

PN Pjð Þ

k¼1
mk � 1

Ĝ Pj
� �

:

It follows that

Cov F̂4 Aj; Bj; Cj;Dj
� �

;G
^

Pj
� �h i

¼

PN Pjð Þ

k¼1
mk

PN Pjð Þ

k¼1
mk � 1

Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĝ Pj
� �h i

:

From the proof of Lemma 33, we have

Cov F̂4 Aj;Bj; Cj;Dj
� �

;G
^

Aj
� �h i

�
U2 Aj
� � XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 Aj;Bj; Cj;Dj
� �

;G
^

Bj
� �h i

� �
U2 Gj
� �XN Gjð Þ

k¼1

mk

XN Gjð Þ

k¼1

mk � 1

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 Aj;Bj; Cj;Dj
� �

;G
^

Cj
� �h i

�
U2 Cj
� �XN Cjð Þ

k¼1

mk

XN Cjð Þ

k¼1

mk � 1

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 Aj;Bj; Cj;Dj
� �

;G
^

Dj
� �h i

� �
U2 Dj
� �XN Djð Þ

k¼1

mk

XN Djð Þ

k¼1

mk � 1

G Dj
� �

1� 2dj
� �

aj � bj
� �

;

yielding

Cov F̂4 A; B; C;Dð Þ;G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �XN Bjð Þ

k¼1

mk

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �XN Cjð Þ

k¼1

mk

XN Cjð Þ

k¼1

mk � 1

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �XN Djð Þ

k¼1

mk

XN Djð Þ

k¼1

mk � 1

G Dj
� �

1� 2dj
� �

aj � bj
� �

: u
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Proposition 37. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;C;Dg, some of which

may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms
U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

, and U2 Pj
� �2 negligible to U2 Pj

� �
. Based on this simplifying assumption, the approximately unbiased ratio

estimator ~F4 A;B; C;DjPð Þ has approximate variance

Var ~F4 A;B; C;DjPð Þ
� 	

� F4 A; B; C;Dð Þ2

G Pð Þ2
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ Var ~G Að Þ
� 	

G Pð Þ2
� 2

Cov F̂4 A;B; C;Dð Þ; ~G Pð Þ
h i
F4 A;B; C;Dð ÞG Pð Þ

2
4

3
5
;

where the variances are

Var F̂4 A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj;Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

Var ~G Pð Þ
� 	

� 1
J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �
� 4

J2
XJ

j¼1

U2 Pj
� �

1� 2U2 Pj
� �G Pj

� �2

and the covariances are

Cov F̂4 A;B; C;Dð Þ; ~G Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

1� U2 Aj
� �G Aj

� �
1� 2aj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �

1� U2 Bj
� �G Bj

� �
1� 2bj
� �

cj � dj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

1� U2 Cj
� �G Cj

� �
1� 2cj
� �

aj � bj
� �

Cov F̂4 A;B; C;Dð Þ; ~G Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� �

1� U2 Dj
� �G Dj

� �
1� 2dj
� �

aj � bj
� �

:

Proof. Recall that

~F4 A;B; C;DjPð Þ ¼ F̂4 A;B; C;Dð Þ
~G Pð Þ

;

where F̂4 A;B; C;Dð Þ is an unbiased estimator for F4 A; B; C;Dð Þ and ~G Pð Þ is an unbiased estimator of G(P). Assuming that

X ¼ F̂4 A;B; C;Dð Þ and Y ¼ ~G Pð Þ, following the approximation in Wolter (2007) we have

Var ~F4 A;B; C;DjPð Þ
� 	

� F4 A; B; C;Dð Þ2

G Pð Þ2
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ Var ~G Að Þ
� 	

G Pð Þ2
� 2

Cov F̂4 A;B; C;Dð Þ; ~G Pð Þ
h i
F4 A;B; C;Dð ÞG Pð Þ

2
4

3
5
;

where Var F̂4 A;B; C;Dð Þ
h i

is given in Proposition 27, Var ~G Pð Þ
� 	

in Lemma 18, and Cov F̂4 A;B; C;Dð Þ; ~G Pð Þ
h i

in Lemma 35 for each

population P 2 fA;B;C;Dg. h

Proposition 38. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;C;Dg, some of which

may be related or inbred, where individual k 2 f1; 2; . . . ;N Pj
� �

} has ploidy mk. Moreover, assume that no individual is related to more
than one other individual, which makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
, and U2 Pj

� �2 negligible to U2 Pj
� �

. Based on this simplifying
assumption, the ratio estimator F

^

4 A;B; C;DjPð Þ has approximate variance

Var F
^

4 A;B; C;DjPð Þ
h i

� F4 A; B; C;Dð Þ2

Y Pð Þ2
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ
Var G

^

Að Þ
h i

Y Pð Þ2
� 2

Cov F̂4 A;B; C;Dð Þ;G
^

Pð Þ
h i
F4 A;B; C;Dð ÞY Pð Þ

2
4

3
5
;
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where the variances are

Var F̂4 A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj;Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

Var G
^

Pð Þ
h i

� 1
J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �
� 4

J2
XJ

j¼1

U2 Pj
� �

XN Pjð Þ

k¼1

mk

XN Pjð Þ

k¼1

mk � 1

2
66666664

3
77777775

2

G Pj
� �2;

the covariances are

Cov F̂4 A; B; C;Dð Þ;G
^

Að Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� � XN Ajð Þ

k¼1

mk

XN Ajð Þ

k¼1

mk � 1

G Aj
� �

1� 2aj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Bð Þ
h i

� � 1
J2
XJ

j¼1

U2 Bj
� �XN Bjð Þ

k¼1

mk

XN Bjð Þ

k¼1

mk � 1

G Bj
� �

1� 2bj
� �

cj � dj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Cð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �XN Cjð Þ

k¼1

mk

XN Cjð Þ

k¼1

mk � 1

G Cj
� �

1� 2cj
� �

aj � bj
� �

Cov F̂4 A; B; C;Dð Þ;G
^

Dð Þ
h i

� � 1
J2
XJ

j¼1

U2 Dj
� � XN Djð Þ

k¼1

mk

XN Djð Þ

k¼1

mk � 1

G Dj
� �

1� 2dj
� �

aj � bj
� �

;

and where

Y Pð Þ ¼ 1
J

XJ

j¼1

1� U2 Pj
� �� 	 PN Pjð Þ

k¼1
mk

PN Pjð Þ

k¼1
mk � 1

G Pj
� �

:

Proof. Recall that

F
^

4 A;B; C;DjPð Þ ¼ F̂4 A;B; C;Dð Þ

G
^

Pð Þ
;

where F̂4 A;B; C;Dð Þ is an unbiased estimator for F4 A; B; C;Dð Þ and G
^

Pð Þ is an estimator of G(P). Assuming that X ¼ F̂4 A;B; C;Dð Þ and

Y ¼ G
^

Pð Þ, following the approximation in Wolter (2007) we have

Var F
^

4 A;B; C;DjPð Þ
h i

� F4 A; B; C;Dð Þ2

Y Pð Þ2
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ
Var G

^

Að Þ
h i

Y Pð Þ2
� 2

Cov F̂4 A;B; C;Dð Þ;G
^

Pð Þ
h i
F4 A;B; C;Dð ÞY Pð Þ

2
4

3
5
;

where Var F̂4 A;B; C;Dð Þ
h i

is given in Proposition 27, Var G
^

Pð Þ
h i

in Lemma 18, Cov F̂4 A;B; C;Dð Þ;G
^

Pð Þ
h i

in Lemma 36, and Y Pð Þ ¼ E G
^

Pð Þ
h i

in proof of Corollary 11 for each population P 2 fA; B;C;Dg. h
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Lemma 39. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which
makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2; U2 Aj
� �

U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

; U2 Bj
� �

U2 Dj
� �

, and
U2 Cj
� �

U2 Dj
� �

negligible to U2 Pj
� �

. Based on this simplifying assumption, the unbiased estimator Ĥ A; B;C;Dð Þ has approximate
variance

Var Ĥ A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

aj þ bj � 2ajbj
� �2 U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i

þ 1
J2
XJ

j¼1

cj þ dj � 2cjdj
� �2 U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i
:

Proof. From the proof of Lemma 17, we have that

E Ĥ Aj; Bj;Cj;Dj
� �h i

¼ H Aj; Bj;Cj;Dj
� �

;

yielding

E Ĥ Aj; Bj;Cj;Dj
� �h i2

¼ H Aj; Bj;Cj;Dj
� �2:

We first calculate

E Ĥ Aj;Bj;Cj;Dj
� �2

h i
¼ E âj þ b̂j � 2âjb̂j

� �2
ĉ j þ d̂j � 2ĉ jd̂ j

� �2
� �

¼ E âj þ b̂j � 2âjb̂j

� �2
� �

E ĉ j þ d̂j � 2ĉ jd̂ j

� �2
� �

:

We compute the first term as

E âj þ b̂j � 2âjb̂j

� �2
� �

¼ E â2
j

h i
þ E b̂

2
j

h i
þ 4E â2

j

h i
E b̂

2
j

h i
þ 2E âj

� 	
E b̂j

h i
� 4E â2

j

h i
E b̂j

h i
� 4E âj

� 	
E b̂

2
j

h i

¼ E â2
j

h i
þ E b̂

2
j

h i
þ 4E â2

j

h i
E b̂

2
j

h i
þ 2ajbj � 4E â2

j

h i
bj � 4ajE b̂

2
j

h i
�a2

j þ U2 Aj
� �

aj 1� aj
� �

þ b2
j þ U2 Bj

� �
bj 1� bj
� �

þ4 a2
j þ U2 Aj

� �
aj 1� aj
� �h i

b2
j þ U2 Bj

� �
bj 1� bj
� �h i

þ 2ajbj

�4 a2
j þ U2 Aj

� �
aj 1� aj
� �h i

bj � 4aj b2
j þ U2 Bj

� �
bj 1� bj
� �h i

¼ a2
j þ b2

j þ 4a2
j b2

j þ 2ajbj � 4a2
j bj � 4ajb2

j þ U2 Aj
� �

aj 1� aj
� �

þ U2 Bj
� �

bj 1� bj
� �

þ4U2 Aj
� �

aj 1� aj
� �

b2
j þ 4U2 Bj

� �
a2

j bj 1� bj
� �

þ 4U2 Aj
� �

U2 Bj
� �

aj 1� aj
� �

bj 1� bj
� �

�4U2 Aj
� �

aj 1� aj
� �

bj � 4U2 Bj
� �

ajbj 1� bj
� �

¼ aj þ bj � 2ajbj
� �2 þ U2 Aj

� �
G Aj
� �

1� 4bj þ 4b2
j

h i
þ U2 Bj

� �
G Bj
� �

1� 4aj þ 4a2
j

h i
þ4U2 Aj

� �
U2 Bj
� �

G Aj
� �

G Bj
� �

� aj þ bj � 2ajbj
� �2 þ U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2;

where we used the fact that U2 Aj
� �

U2 Bj
� �

is negligible compared to U2 Aj
� �

and U2 Bj
� �

as an approximation. Using a similar argument,
we have that

E ĉ j þ d̂j � 2ĉ jd̂ j

� �2
� �

� cj þ dj � 2cjdj
� �2 þ U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2:
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Hence, we have that

E Ĥ Aj;Bj;Cj;Dj
� �2

h i
¼ E âj þ b̂j � 2âjb̂j

� �2
� �

E ĉ j þ d̂j � 2ĉ jd̂ j

� �2
� �

� aj þ bj � 2ajbj
� �2 þ U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i

� cj þ dj � 2cjdj
� �2 þ U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i
�H Aj;Bj;Cj;Dj
� �2

þ aj þ bj � 2ajbj
� �2 U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i

þ cj þ dj � 2cjdj
� �2 U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i
;

where we used the fact that U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Dj
� �

are negligible compared to
U2 Aj
� �

; U2 Bj
� �

; U2 Cj
� �

, and U2 Dj
� �

as an approximation. Putting it together, we have

Var Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E Ĥ Aj;Bj;Cj;Dj
� �2

h i
� E Ĥ Aj;Bj;Cj;Dj

� �h i2

¼ E Ĥ Aj;Bj;Cj;Dj
� �2

h i
�H Aj;Bj;Cj;Dj

� �2

� aj þ bj � 2ajbj
� �2 U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i

þ cj þ dj � 2cjdj
� �2 U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i
:

Given the assumption of independent loci, we have

Var Ĥ A;B;C;Dð Þ
h i

¼ Var
1
J

XJ

j¼1

Ĥ Aj; Bj;Cj;Dj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Var Ĥ Aj;Bj;Cj;Dj
� �h i

� 1
J2
XJ

j¼1

aj þ bj � 2ajbj
� �2 U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i

þ 1
J2
XJ

j¼1

cj þ dj � 2cjdj
� �2 U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i
: u

Lemma 40. Consider J independent polymorphic loci in populations A, B, C, and D with respective parametric reference allele
frequencies aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA;B;C;Dg,

some of which may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which
makes the terms U3 Pj

� �
; U4 Pj

� �
; U2;2 Pj

� �
; U2 Pj

� �2; U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Dj
� �

negligible to U2 Pj
� �

.
Based on this simplifying assumption, the unbiased estimators F̂4 A;B; C;Dð Þ and Ĥ A;B;C;Dð Þ have approximate covariance

Cov F̂4 A;B; C;Dð Þ; Ĥ A;B;C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2bj
� �

� 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2aj
� �

þ 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2dj
� �

� 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2cj
� �

:
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Proof. From the proofs of Proposition 12 and Lemma 17, we that have

E F̂4 Aj; Bj; Cj;Dj
� �h i

¼ F4 Aj;Bj; Cj;Dj
� �

;

and

E Ĥ Aj; Bj;Cj;Dj
� �h i

¼ H Aj; Bj;Cj;Dj
� �

;

yielding

E F̂4 Aj;Bj; Cj;Dj
� �h i

E Ĥ Aj;Bj;Cj;Dj
� �h i

¼ F4 Aj;Bj; Cj;Dj
� �

H Aj; Bj;Cj;Dj
� �

:

We first calculate

E F̂4 Aj;Bj; Cj;Dj
� �

Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E âj � b̂j

� �
ĉ j � d̂j

� �
âj þ b̂j � 2âjb̂j

� �
ĉ j þ d̂j � 2ĉ jd̂j

� �h i

¼ E âj � b̂j

� �
âj þ b̂j � 2âjb̂j

� �h i
E ĉ j � d̂j

� �
ĉ j þ d̂j � 2ĉ jd̂ j

� �h i
:

We compute the first term as

E âj � b̂j

� �
âj þ b̂j � 2âjb̂j

� �h i
¼ E â2

j

h i
� 2E â2

j

h i
E b̂j

h i
� E b̂

2

j

h i
þ 2E âj

� 	
E b̂

2

j

h i

¼ E â2
j

h i
1� 2E b̂j

h i� �
� E b̂

2

j

h i
1� 2E âj

� 	� �
� a2

j þ U2 Aj
� �

aj 1� aj
� �h i

1� 2bj
� 	

� b2
j þ U2 Bj

� �
bj 1� bj
� �h i

1� 2aj
� 	

¼ aj � bj
� �

aj þ bj � 2ajbj
� �

þ U2 Aj
� �

G Aj
� �

1� 2bj
� �

� U2 Bj
� �

G Bj
� �

1� 2aj
� �

:

Using a similar argument, we have that

E ĉ j � d̂j

� �
ĉ j þ d̂j � 2ĉ jd̂ j

� �h i
� cj � dj
� �

cj þ dj � 2cjdj
� �

þ U2 Cj
� �

g Cj
� �

1� 2dj
� �

� U2 Dj
� �

g Dj
� �

1� 2cj
� �

:

Hence, we have that

E F̂4 Aj;Bj; Cj;Dj
� �

Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E âj � b̂j

� �
âj þ b̂j � 2âjb̂j

� �h i
E ĉ j � d̂j

� �
ĉ j þ d̂j � 2ĉ jd̂ j

� �h i

� aj � bj
� �

aj þ bj � 2ajbj
� �

þ U2 Aj
� �

G Aj
� �

1� 2bj
� �

� U2 Bj
� �

G Bj
� �

1� 2aj
� �h i

� cj � dj
� �

cj þ dj � 2cjdj
� �

þ U2 Cj
� �

G Cj
� �

1� 2dj
� �

� U2 Dj
� �

G Dj
� �

1� 2cj
� �h i

�F4 Aj;Bj; Cj;Dj
� �

H Aj;Bj;Cj;Dj
� �

þU2 Aj
� �

G Aj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2bj
� �

�U2 Bj
� �

G Bj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2aj
� �

þU2 Cj
� �

G Cj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2dj
� �

�U2 Dj
� �

G Dj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2cj
� �

;
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where we used the fact that U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

, and U2 Bj
� �

U2 Dj
� �

are negligible compared to
U2 Aj
� �

; U2 Bj
� �

; U2 Cj
� �

, and U2 Dj
� �

as an approximation. Putting it together, we have

Cov F̂4 Aj;Bj; Cj;Dj
� �

; Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E F̂4 Aj;Bj; Cj;Dj
� �

Ĥ Aj;Bj;Cj;Dj
� �h i

�E F̂4 Aj;Bj; Cj;Dj
� �h i

E Ĥ Aj;Bj;Cj;Dj
� �h i

¼ E F̂4 Aj;Bj; Cj;Dj
� �

Ĥ Aj; Bj;Cj;Dj
� �h i

�F4 Aj; Bj; Cj;Dj
� �

H Aj;Bj;Cj;Dj
� �

�U2 Aj
� �

G Aj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2bj
� �

�U2 Bj
� �

G Bj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2aj
� �

þU2 Cj
� �

G Cj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2dj
� �

�U2 Dj
� �

G Dj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2cj
� �

:

Given the assumption of independent loci, we have

Cov F̂4 A; B; C;Dð Þ; Ĥ A; B;C;Dð Þ
h i

¼ Cov
1
J

XJ

j¼1

F̂4 Aj;Bj; Cj;Dj
� �

;
1
J

XJ

j¼1

Ĥ Aj;Bj;Cj;Dj
� �2

4
3
5

¼ 1
J2
XJ

j¼1

Cov F̂4 Aj; Bj; Cj;Dj
� �

; Ĥ Aj; Bj;Cj;Dj
� �h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2bj
� �

� 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2aj
� �

þ 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2dj
� �

� 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2cj
� �

: u

Proposition 41. Consider J polymorphic loci in populations A, B, C, and D with respective parametric reference allele frequencies
aj; bj; cj; dj 2 0; 1ð Þ, and suppose we take a random sample of N Pj

� �
individuals at locus j in population P 2 fA; B;C;Dg, some of which

may be related or inbred. Moreover, assume that no individual is related to more than one other individual, which makes the terms
U3 Pj
� �

; U4 Pj
� �

; U2;2 Pj
� �

; U2 Pj
� �2; U2 Aj

� �
U2 Bj
� �

; U2 Aj
� �

U2 Cj
� �

; U2 Aj
� �

U2 Dj
� �

; U2 Bj
� �

U2 Cj
� �

; U2 Bj
� �

U2 Dj
� �

, and U2 Cj
� �

U2 Dj
� �

negligible to
U2 Pj
� �

. Based on this simplifying assumption, the approximately unbiased ratio estimator D̂ A; B;C;Dð Þ has approximate variance

Var D̂ A; B; C;Dð Þ
h i

� F4 A;B; C;Dð Þ2

H A;B;C;Dð Þ2
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ
Var Ĥ A;B;C;Dð Þ

h i
H A; B;C;Dð Þ2

� 2
Cov F̂4 A;B; C;Dð Þ; Ĥ A;B;C;Dð Þ

h i
F4 A;B; C;Dð ÞH A;B;C;Dð Þ

2
4

3
5
;

where the variances are

Var F̂4 A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

þ U2 Dj
� �

G Dj
� �h i

F2 Aj;Bj
� �

þ 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

þ U2 Bj
� �

G Bj
� �� 	

F2 Cj;Dj
� �

Var Ĥ A;B; C;Dð Þ
h i

� 1
J2
XJ

j¼1

aj þ bj � 2ajbj
� �2 U2 Cj

� �
G Cj
� �

1� 2dj
� �2 þ U2 Dj

� �
G Dj
� �

1� 2cj
� �2

h i

þ 1
J2
XJ

j¼1

cj þ dj � 2cjdj
� �2 U2 Aj

� �
G Aj
� �

1� 2bj
� �2 þ U2 Bj

� �
G Bj
� �

1� 2aj
� �2

h i
:
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and the covariance is

Cov F̂4 A;B; C;Dð Þ; Ĥ A;B;C;Dð Þ
h i

� 1
J2
XJ

j¼1

U2 Aj
� �

G Aj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2bj
� �

� 1
J2
XJ

j¼1

U2 Bj
� �

G Bj
� �

cj � dj
� �

cj þ dj � 2cjdj
� �

1� 2aj
� �

þ 1
J2
XJ

j¼1

U2 Cj
� �

G Cj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2dj
� �

� 1
J2
XJ

j¼1

U2 Dj
� �

G Dj
� �

aj � bj
� �

aj þ bj � 2ajbj
� �

1� 2cj
� �

:

Proof. Recall that

D̂ A;B; C;Dð Þ ¼ F̂4 A;B; C;Dð Þ
Ĥ A;B;C;Dð Þ

;

where F̂4 A;B; C;Dð Þ is an unbiased estimator for F4 A; B; C;Dð Þ and Ĥ A;B;C;Dð Þ is an unbiased estimator of H A;B;C;Dð Þ. Assuming that
X ¼ F̂4 A;B; C;Dð Þ and Y ¼ Ĥ A;B;C;Dð Þ, following the approximation in Wolter (2007) we have

Var ~D A;B; C;Dð Þ
� 	

� F4 A;B; C;Dð Þ2

H A;B;C;Dð Þ2

"
Var F̂4 A;B; C;Dð Þ

h i
F4 A;B; C;Dð Þ2

þ
Var Ĥ A;B;C;Dð Þ

h i
H A;B;C;Dð Þ2

�2
Cov F̂4 A;B; C;Dð Þ; Ĥ A;B;C;Dð Þ

h i
F4 A;B; C;Dð ÞH A;B;C;Dð Þ

#
;

where Var F̂4 A;B; C;Dð Þ
h i

is given in Proposition 27, Var Ĥ A;B;C;Dð Þ
h i

in Lemma 39, and Cov F̂4 A;B; C;Dð Þ; Ĥ A;B;C;Dð Þ
h i

in Lemma 40.
h
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