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� Multi-dimensional robust optimization model was comprehensively composed of cost factors and robustness of solution.

� A hybrid algorithm was redesigned to solve the model, which is formed by Pareto genetic algorithm and IGRA method.

� A high-risk area was taken as a real-world case, an average-cost reduction and a robustness increment with urgencies are gained.
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For the optimization problem of the cold-chain emergency materials (CEM) distribution

routes with multi-demand centers and soft time windows and to solve dispatching ma-

terials to medical treatment institutions in various places of the disaster areas under

COVID-19, a multi-dimensional robust optimization (MRO) model was proposed, which

was solved by a hybrid algorithm combined Pareto genetic algorithm and the improved

grey relative analysis (IGRA). The proposed model comprehensively takes into consider-

ation of the cost factors of the cold-chain logistics and robustness of solution with the

purpose of minimizing the costs and maximizing robustness. The availability of the pro-

posed approach and hybrid algorithm were thoroughly discussed and qualified through a

real-world numerical simulation test case, which was a previous risk area located at Hubei

Province. Research results show an average-cost reduction of 4.51% and a robustness

increment of 11.69% in addition to consider the urgencies of demand. Consequently, not

only the costs can be slightly reduced and the robustness be heightened, but also the

blindness of the distribution can be avoided effectively with the demand urgency being

considered. Research result indicates that when combining with the specific process of

supplies dispatching in the prevention and control, the proposed approach is in a far better
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agreement in practice, and it could meet the diverse requirements of the emergency sce-

narios flexibly.

© 2022 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For surmounting problems of the illogical allocation of

emergency supplies in the prevention and control of COVID-

19 as well as the majority of unnecessary personal injury and

property loss, this study redesigned an approach of the urban

cold-chain emergency material resource dispatching and

studied the robust optimization of dispatching in the highway

for the purpose of improving the efficiency of cold-chain

emergency materials (CEM) distribution. Disasters such as

COVID-19 are starting to be part of our daily life, which have

fatal devastating effects in terms of human injures and

property damages. Under the novel coronavirus pneumonia

(NCP), the government departments are critical to the scien-

tific and reasonable scheduling of the emergency supplies for

minimizing the loss of lives and maximizing the efficiency of

the rescue operations. Therefore, on the premise of the

transportation economy, the robust optimization of CEM dis-

tribution path can ensure the vehicles reach the high-risk

epidemic areas safely, quickly and economically, thus there is

strong applicability, and it is great of momentous practical

significance to study this problem.

Path optimization problem is a typical multi-objective

planning (MOP) problem. Toward robust optimization of

vehicle routing problem (VRP), Huisman et al. (2004), Sungur

et al. (2008), Cao et al. (2014), Haghi et al. (2017), Liu et al.

(2021), Ouhimmou et al. (2019) and Hoogeboom et al. (2021)

aimed to improve the robustness of the vehicle routing

scheme and established robust optimization models for VRP.

It can be seen that scholars have made some achievements

in the research on robust optimization scheduling of

emergency supplies.

In recent years, robust optimization has formed a system

through lucubrating of Bertsimas and Goyal (2013), which has

been widely applied in the field of emergency rescue. Liu

(2014), Li et al. (2017), and Hao and Zhang (2019) had united

robust optimization with emergency management, but these

research findings had not combined special cold-chain

materials. Regarding cold-chain logistics distribution, Sim

(2004) first proposed a robust optimization (RO) model, and

then Guo and Yang (2020) established an RO model for

perishable goods scheduling. However, these scholars have

not considered emergency factors. Ma et al. (2018) built the

multi-objective bi-level robust optimization model

considering the transportation risk, costs, and service time

window in hazardous materials distribution routes and

solved it by means of a hybrid algorithm. It can well

complete the multi-objective bi-level optimization on the

hazardous materials distributing routes in uncertain

environments.
This study sets out to study the vehicle routing problem

with time window (VRPTW) problem with the following

properties: the soft strictness of the time window for the ur-

gent need of patients receiving the drugs, the uncertainty of

the demands in epidemic areas, the uncertainty of the

random efficacy loss of drugs in the process of driving, and the

psychological burden of the deliverymen entering the high-

risk regions. The essence of the study is multidimensional

objective robust vehicle routing problem with soft time win-

dows (MORVRPTW); this research builds a robust optimization

model and takes a numerical example to verify it. Hubei

Province, China, as one of the epidemic areas under COVID-19,

its medical resources are overloaded, so that emergency drugs

are urgently needed to support medical institutions in Hubei

Province. Among the emergency demands, the cold-chain

medicine has become an important material. Therefore, this

paper will research transportation scheduling plus better

robustness and lower cost of CEM and the scheduling com-

parison of taking consideration of the urgencies for demands

or not.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews the previous studies on the modeling approach

of robust optimization for CEM distributing. Section 3

develops a mathematical model to formulate the robust

optimization problem for CEM distributing and presents the

model solution. Section 4 tests the proposed method

framework using a case study and analyzes the comparison

of considering the demand urgency or not. Conclusions and

future work are discussed in Section 5.
2. Literature review

The occurrence of sudden infectious diseases, earthquakes

and other malignant events has caused a major or even

devastating blow to human beings, posing a major threat to

human survival and social development. The outbreak of

sudden events will cause great harm to social life, such as the

threat to human life and health, causing serious economic

losses and environmental harm. After an emergency occurs, it

is indispensable to take timely and effective measures for

emergency rescue. The distribution of emergency supplies

and cold-chain medical supplies is one of the significant links

in emergency rescue, and the distribution path optimization is

crucial to realize the efficient deployment of emergency

supplies.

With the outbreak of large-scale infectious diseases, the

demand for cold-chain drugs and cold-chain vaccines in

medical institutions of various epidemic areas has increased

sharply, and the transportation scheduling of these special

http://creativecommons.org/licenses/by-nc-nd/4.0/
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materials is a difficult task. Therefore, this paper studies this

essential problem and provides effective solutions for the

scheduling of special materials caused by various unexpected

events.

The following literature review presents the studies on the

two logistics types: (a) emergency logistics and (b) cold-chain

logistics.

2.1. Emergency logistics

The demand for emergency logistics not only comes from

natural disasters, but also from man-made disasters. Obvi-

ously, recent years have seen a significant growth in human life

and property damages caused by anthropogenic and natural

disasters. This has prompted researchers in different fields to

intensively address the problems of the emergency manage-

ment. To solve the problem of vehicles scheduling and routes

with the aim to enhance the enhancement of rescue efficiency

in case of sudden public events, scholars have established a

certain foundation in the study of emergency logistics: Ko et al.

(2016) improved and applied genetic algorithm to emergency

supplies scheduling. The COVID-19 pandemic spreads rapidly

around the world currently, and has given rise to huge

impacts on all aspects of human society. Rahman et al. (2020)

proposed a model which was helpful to reduce casualties and

property losses and improve emergency operation. For the

supply and distribution of emergency materials, Dalal and

Üster (2021) established the robust planning of disaster

emergency rescue supply. Shang et al. (2020a) utilized big

data techniques to analyze the impacts of COVID-19 on the

user behaviors and environmental benefits of bike sharing.

Fang et al. (2020) took emergency medical supplies as an

example and established the supply and demand mechanism

of post-earthquake emergency logistics, which provided the

basis for emergency rescue of emergencies. According to the

typical characteristics of emergency medical logistics, Chen

(2020) established a double-objective vehicle scheduling

model. Tang and Ye (2021) built a fair distribution model of

emergency medical materials considering multiple

distribution centers, multiple demand points, multiple

materials and multiple objectives, which enhanced the

timeliness of emergency rescue. Wang and Bao (2021) studied

the optimization of emergency material delivery schemes in

multi-disaster areas. Jing (2021) studied the optimization of

emergency logistics distribution resources under

emergencies, and achieved certain results. According to the

characteristics of emergency medical supplies, Wang et al.

(2021a) designed a multi-objective location-allocation model,

and the results showed that the model had advantages in

scheduling decision-making. Following this, Han et al. (2021)

constructed an optimization model of emergency material

distribution path with time window constraints, which

provided scientific decision-making basis for emergency

logistics. As well as this, Liang et al. (2021) established a

solution method of emergency medical material distribution

model based on genetic algorithm, which improved

timeliness. In addition, Chen (2011) set up a double-objective

vehicle scheduling model from the perspective of delivery

time and disaster-stricken point satisfaction. Lu and Ma

(2021) conducted a spatial correlation study of virus
transmission in Hubei Province, China. And we will know the

choice behavior of commuters’ rail transit mode during the

COVID-19 pandemic from a recent study (Tan and Ma, 2021).

Ma et al. (2020) constructed an emergency customized bus

route optimization method considering the requirements of

epidemic prevention and control under public health

emergencies. Zhou et al. (2020) studied the unconventional

epidemic prevention strategy of urban public transportation

under the COVID-19 epidemic.

2.2. Cold-chain logistics

Cold-chain logistics is a vital way to ensure the quality of ma-

terials. It is a low-temperature logistics process by means of

refrigeration technology. The distribution process is at the core

as one of the links of cold-chain logistics. Osvald and Stirn

(2007) took a real food market as an example to establish the

distribution of cold-chain fruits and vegetables, where the

model considers the impact of the perishability as part of the

overall distribution costs and a heuristic approach. Tabu-

based search is used to solve the problem, which provides a

solution basis for the transportation of perishables. Hsiao

et al. (2017) aimed at the simultaneous distribution of a

variety of agricultural products based on satisfying the

product quality required by customers, which built the cold-

chain logistics distribution models with multi-temperature

co-distribution and adopted the adaptive optimization

algorithm based on biogeography. Haghani and Oh (1996)

solved the multimodal transport model of the emergency

supplies based on the space-time network through Lagrange

relaxation and iterative heuristic algorithm. €Ozdamar and

Demir (2012) proposed a hierarchical clustering and path

coordination model based on the multi-level clustering

algorithm and verified the validity of the model with the

corresponding numerical examples. Stochastic time-

dependent vehicle routing problem (STDVRP) model without

time windows was relatively simple, but the computational

complexity was still high. Barbarosoglu and Arda (2004),

Mendoza (2011), and Moghaddam et al. (2012) also established

a stochastic programming model for VRP. Most of them take

the freshness of products and carbon emissions as the main

modeling object, whereas few scholars link perishables with

transportation in emergency. Following this, Dewi and Utama

(2020) designed the hybrid whale optimization algorithm

(HWOA) to minimize the distribution cost of the green vehicle

routing problem (GVRP). Onwude et al. (2020) gave promising

insight towards the use of advanced technologies in reducing

losses in the cold-chain of fruits and vegetables. Awad et al.

(2020) summarized the literature of cold-chain logistics.

Recently, Xiao et al. (2021) designed a hybrid algorithm to

solve the vehicle routing problem in cold-chain logistics,

which provided a reasonable decision basis for cold-chain

logistics. In addition, Zhang et al. (2021) used bi-level

programming method to construct the optimization decision

model of low-carbon cold-chain logistics distribution system,

which provided some ideas for improving energy saving and

emission reduction. Chen and Liu (2021) applied ant colony

algorithm to the research of cold chain logistics path

optimization, which can improve the quality of logistics. Also,

Liu (2021) analyzed the optimization strategy of cold chain

https://doi.org/10.1016/j.jtte.2022.01.001
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logistics distribution path of fresh agricultural products. From

the perspective of value for customer and satisfaction, Wang

et al. (2021b) established a mathematical model of the time-

varying path of urban cold chain logistics and verified and

analyzed it. As well as this, Liu et al. (2021) established a

distribution path optimization model for cold-chain material

with the lowest comprehensive distribution cost as the

objective function, and designed an algorithm to solve the

problem. Ren et al. (2020) constructed a mathematical model

of cold chain vehicle route optimization to minimize the total

cost, and designed a new ant colony algorithm by integrating

and innovating traditional algorithms. With considering the

interference factors such as delivery time and delivery risk of

multi-temperature cold-chain logistics, Ding (2021) built a

multi-temperature cold-chain logistics vehicle delivery path

optimization model and designed an algorithm to solve it.

Also, Shen et al. (2021) established the model and solved it by

genetic algorithm with considering the cargo loss and carbon

emission factors in the process of cold-chain logistics.

Actually, the existing studies on cold-chain logistics has

adopted different models and methods, and the contribution

can be applied to different problems in this field.
2.3. Research gap

To sumup, urban road networks are typical complex systems,

which are crucial to our society and economy. Topological

characteristics of a number of urban road networks purely

based on physical roads rather than routes of vehicles or

buses are investigated in order to discover underlying unique

structural features (Shang et al., 2020b). In accordance with

research findings, previous studies showed that most of the
existing researches focus on the optimization of the

distribution path in the case of separating the cold-chain

and emergency factors, yet, only some research results are

aimed at the distribution path in case of cold-chain and

emergency are considered simultaneously. In addition, the

model built by the predecessors did not regard the

robustness rate as a single objective for the CEM distribution

problem or did not consider the psychological panic of the

deliverymen when entered the high-infectious epidemic

areas. In the fight against NCP, the field of cold-chain

medicine supplies is pivotal to support high-risk areas, and

the optimized transport scheduling of cold-chain emergency

medicine has become a shortcoming while supporting

epidemic areas, therefore, the main content of this research

is to seek a better distribution plan for this shortcoming

field. Since former studies are limited to combine the

exploration of cold-chain and emergency factors, it is

significant to conduct the research on this topic to give an

in-depth understanding of the robust optimization of

distribution path for CEM.
3. Methodology

3.1. Problem statement

The rescue work for Hubei Province is the research target in

this study. The tasks of the research can be described as fol-

lows: the distribution center transported the cold-chain

medicine to multiple medical aid agencies of high-risk areas,

the maximum load of vehicles, locations of high-risk areas,

nominal demands, soft time windows of receiving emergency

https://doi.org/10.1016/j.jtte.2022.01.001
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Table 1 e Variables of the model.

Variable Definition

K ðk2KÞ Vehicle set

C ðci 2CÞ The aggregate volume of emergency supplies

di ði2NÞ Nominal demand for cold-chain drugs

Q ði; j2N; k2KÞ The maximum supply of distribution center

dij ði; j2NÞ The distance from epidemic area i to j

A1r
i ; A2r

i
Resting and unloading time at i (superscript r is only to distinguish it from other similar

symbols)

REe; REl The time window for the patients receiving the medication (superscript e stands for early

arrival and l stands for late arrival)

l1, l2, d Coefficients for consumption cost of bodies

Ta; Tb The lower and upper bounds of drugs storage temperature (subscript a represents the lower

bound and b represents the upper bound)

TLOSE
1;0

The time point at which drugs effect begin to wear off

TLOSE
s

The time critical point for complete failure (subscript s stands for critical point)

x2½0; 1� 0-1 integer parameter, when x ¼ 1, the temperature is lower than the lower bound, when x ¼ 0,

the temperature is higher than the upper bound

TPsy
2;0

The tipping point of psychological change

CPsy
2;0

The initial state of psychology

E0; E1 The initial fixed salary and compensation salary

m
Psy
1 ; m

Psy
2 ; m

Psy
3 ; m

Psy
4

Psychological compensation or burden factors for compensation of pay, contacting with

personnel of the epidemic areas, resting in the epidemic areas and returning to quarantine

Ntou
2 The number of people in contact with infected areas

tquar4
The isolation periods

a; b; w Auxiliary coefficients

Nk The number of vehicles in use

pfull; p0 Fuel consumption in full and in no-load

Bk
1; B

k
max

The weight of the transported material and load limit of vehicle k

ekCO2
Conversion coefficient between fuel consumption and carbon emission
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supplies, and the distance and time between the areas are all

known. The goal is to achieve the optimal vehicle routings

scheme plus higher robustness and lower total costs. Also, the

distribution work can be shown in Fig. 1.

G ¼ ðV;AÞ is defined as cold-chain emergency logistics

network. V includes two subsets, distribution center M and

epidemic points set N. A is a set of available links. DM ¼ ðdmijÞ
is distance matrix between two places, ði; jÞ2A, where i and j

are points of the distribution network. The delivery will be

carried out by multiple vehicles with a limit of 7, and the load

limit of 8.5 t for every vehicle.

DM¼

0BB@
dm11

dm21

«

dmi1

dm12

dm22

«

dmi2

/

/

…

dm1j

dm2j

«

dmij

1CCA (1)

3.2. Symbols of models

Table 1 shows the model variables. The costs adopt economy

as dimension: 61 (the time cost is a yuan/min),62 (the penalty

cost of physical consumption is b yuan/min),63 (the economic

compensation of psychological cost is c yuan/burden), 64 (loss

of efficacy value equals to d yuan multiply degree of loss) and

65 (purchase additional carbon emission allowances from

environmental authorities according to the carbon trading

policy, 20 yuan/t) are the dimensional unified conversion

coefficients of each sub-cost target.
3.3. Mathematical derivation of model

General linear programming (LP).

ObjðxÞ¼min
x

n
CT
costx : aT

i x�kT
i bi; 0 < i�Ncons:

o
(2)

where Ncons: are constraints, kT
i bi represents polynomial of

constraints, deterministic parameter bi of LP 1
transformed into

un-

certain parameter, bi

�
1

formed
robust linear optimization.

ObjðxÞ¼min
x

n
CT
costx : aT

i x�kT
i bi

�
; 0 < i�Ncons:; cbi

�
2G

o
(3)

The objective of robust rate is considered separately. The

feasibility of the solution is limited by the load limit of vehicles

and the soft time windows; also, the robustness is limited by

the on-board surplus and the surplus of arrival time. The on-

board surplus is the difference value between the vehicles

volume and the total nominal demands of the medical in-

stitutions of the epidemic areas. The surplus of arrival time is

the difference value between the arrival time point of vehicle k

at i and ending point of the soft time window for the receiving

materials.

maxfrobustnessg 1
transformed into

minf� robustnessg (4)

ak
i is defined as the departure time of vehicle k from i after

completing drugs support, ½REl;j �ðak
i þtijÞ� denotes the time

remaining for k from i to j, e and ð1�eÞ signify vehicle-borne

surplus and arrival time-point surplus. Build the following

model.

https://doi.org/10.1016/j.jtte.2022.01.001
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F3
RO ¼

�
max

i;j2N;k2K
fRg; min

i;j2N;k2K
fCg

�
0

�
min

i;j2N;k2K
f�Rg; min

i;j2N;k2K
fCg

�
(5)

Constraints are8<:REl
i � REe

i � 0; AREl
i � BREe

i � 0; ci2NXX
xijkdi � Bmax; ci; j2N; ck2K

3.4. Objective of cost C

(1) Sub-objective 1 of C: minimize the transportation time.
ZLOSE
3 ¼

8>>>>>><>>>>>>:

62,0 ti � TLOSE
1;0

63xijk

"
h

1þ hTLOSE
1;0

�
TLOSE
1;0

	2
� t2i

#P
i;j2N

P
k2K

½r1ð1�xÞðTijk�TbÞþr2xðTa�TijkÞ�
TLOSE
1;0 < ti <TLOSE

s

62,1 ti � TLOSE
s

(10)
ZServiceT
1 ¼61

X
isj:i;j2N

X
k2K

�
tij þdoirki

voi
þxijk

�
A1r

i þA2r
i

��
(6)

rki ¼
�
1 Vehicle k transported materials to i
0 Else

(7)

xijk ¼
�
1 Vehicle kwould leave i to j
0 Else

(8)

(2) Sub-objective 2 of C: minimize body consumption with

a soft time window.

There is a certain acceptance range for time window of

the materials arrival, which is to the life condition of the

patients, i.e., the time deviations of the materials arrival are

limited. Since the deliverymenmay not guarantee to arrive at

the epidemic areas within the timewindow in transit, certain

body consumption costs of patients will be incurred.
Zi
4 ¼

8>>><>>>:
64

�
CPsy
2;0 � m

Psy
1 E0 � m

Psy
3 tri þ m

Psy
2 Ntou

2 þ m
Psy
4 tquar4 �

�
TPsy
2;0 � ti

	a
Psy
1

�
64

�
CPsy
2;0 � m

Psy
1 ½ðti � t0ÞS1 þ E0� � m

Psy
3 tri þ m

Psy
2 Ntou

2 þ m
Psy
4 tquar4 � w

Ps
2;
Zbody
2 ¼

8>>>>>><>>>>>>:

62l1
dðd>1ÞðREe � BREeÞ þ l2ðBREe � tiÞ ti � BREe

62l1ðREe � tiÞ BREe < ti � REe

0 REe < ti � REl

62l1

�
ti � REl

	
REl < ti � AREl

62l1
dðd>1Þ

�
AREl � REl

	
þ l2

�
ti � AREl

	
ti >AREl

(9)

Furthermore, this paper builds a consumption cost func-

tion caused by broken line curve of the soft time window,

which is shown in Fig. 2.

(3) Sub-objective 3 of C: minimize loss of efficacy for cold-

chain medicine.

The loss is only related to road conditions and storage

temperature.
(4) Sub-objective 4 of C: minimize psychological burden of

deliverymen.

The core of the distribution of emergency supplies is an

arrangement of vehicle routing for the purpose of delivering

various supplies to the regions of demand, apparently, the

deliverymen executed it. As COVID-19 for the new virus with

the fast transmission speed, respiratory infection mode, and

high mortality rate, etc., these factors pose masses of great

menaces to the delivery of supplies for high-risk epidemic

areas and jeopardize psychological of deliverymen. The

outbreak of the epidemic not only threatens the health of the

public, but also affects the psychological health and mental

state of people. As much as possible to reduce the psycho-

logical panic of deliverymen has become a pivotal factor

during epidemic prevention and control. In the fight against

psychological epidemic prevention, in addition to the medical

assistance of “hardcore”, the psychological protection of

“flexibility” is also indispensable.
ti � TPsy
2;0

y
2

�
TPsy
2;0 � ti

	b
Psy
2;1

�
ti >TPsy

2;0

(11)
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(5) Sub-objective 5 of C: minimize carbon emissions.

Building the sub-objective 5 conforms to policies of carbon

emissions and carbon trading of country, which actively re-

sponds to the environment-friendly society.

ZCE
5 ¼65

X
i;j2N

X
k2K

24pfull þ p0

�
Bk
max � Bk

1

	
Bk
max

35ekCO2
dijkNkxijk (12)

Then, the total C is as follows (ki is the weight factor).
in f ¼ min
n
k16

1ZServiceT
1 þ k26

2Zpunish
2 þ k36

3ZLOSE
3 þ k46

4ZPsy
4 þ k56

5ZCE
5

o
min

8<:k16
1

X
isj:i;j2N

X
k2K

�
tij þ doirki

voi
þ xijk

�
A1r

i þ A2r
i

��þ k26
2Zpunish

2

þk36
3xijk

"
h

1þ hTLOSE
1;0

�
TLOSE
1;0

	2
� t2i

#P
i;j2N

P
k2K

½r1ð1�xÞðTijk�TbÞþr2xðTa�TijkÞ�

þk46
4
X
i2N

Zi
4 þ k56

5
X
i;j2N

X
k2K

24pfull þ p0

�
Bk
max � Bk

1

	
Bk
max

35ekCO2
dijkNkxijk

9=; (13)
3.5. Objective of robustness R

Firstly, the robust optimization is transformed into a deter-

ministic problem, and the feasibility of the solution is limited
F3
RO ¼

(
max

i;j2N;k2K



Obj6

�
; min

i;j2N;k2K

(X5

i¼1

Obj

))

¼ min
i;j2N;k2K

8><>:�Obj6;
X5

i¼1

Obj

9>=>; ¼ min
i;j2N;k2K

8><>:e

0B@1�

P
k2K

P
i;j2N

dixijk

Bmax

X
k2K

X
j2N

xOjk

1CAþ

ð1� eÞ

P
k2K

P
i;j2N

xijk

h
REl;j � �

ak
i þ dij

�i
P

REl;j
;

X
6i

�
k1Z

ServiceT
1 þ k2Z

body
2 þ k3Z

LOSE
3 þ k4Z

Psy
4 þ k5Z

CE
5

	o
¼ min

i;j2N;k2K

8><>:e

0B@1�

P
k2K

P
i;j2N

dixijk

Bmax

X
k2K

X
j2N

xOjk

1CAþ ð1� eÞ

P
k2K

P
i;j2N

xijk

h
REl;j � �

ak
i þ dij

�i
P

REl;j

k16
1

X
isj:i;j2N

X
k2K

"
tij þ doirki

voi
þ xijk

�
A1r

i þA2r
i

#
þ k26

2Zbody
2 þ

X
k36

3xijk

�
h

1þ hTLOSE
1;0

�
TLOSE
1;0

	2
� ti

2

�P
i;j2N

P
k2K

½r1ð1�xÞðTijk�TbÞþr2xðTa�TijkÞ�

þk46
4ZPsy

4 þ k56
5
X
i;j2N

X
k2K

"
pfull þ p0

�
Bk
max � Bk

1

	
Bk
max

#
ekCO2

dijkNkxijk
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Z6 ¼Obj6 ¼maxfRg¼max

8><>:e

0B@1�

P
k2K

P
i;j2N

dixijk

Bmax

P
k2K

P
j2N

xOjk

1CAþð1� eÞ

P
k2K

P
i;j2N

xi
by (a) vehicle-borne constraints and (b) soft time window

constraints. The robustness of the solution is limited by (c)

vehicle-borne surplus and (d) surplus of arrival time point.

Build the objective of maximum robustness.
3.6. MRO modeling

In this study, the objective is to maximize the robustness and

minimizethecosts.Tosolve itsimply, theobjectiveof robustrate
was obtained by a linear transformation maxfRg/minf � Rg.
The uncertain sets of demand and time are transformed deter-

ministically based on the robust optimization theory. The vari-

ation interval of the travel time for unit distance is ½tij0 � btijbtij;
;

(15)

jk

h
REl;j � �

ak
i þ tij

�i
P

REl;j

9>=>; (14)

https://doi.org/10.1016/j.jtte.2022.01.001
https://doi.org/10.1016/j.jtte.2022.01.001


Fig. 2 e Diagram of soft time window.
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tij0 þ btijbtij�, the demand varies within ½di0 � bdi
bdi; di0 þ bdi

bdi�,
assuming themaximum deviation is 8% of the nominal value.

Constraints are8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Xn

i¼1

XNK

k¼1

xk
ij�1;ci;j2N;ck2K

REl
i�REe

i �0; AREl
i�BREe

i �0;ci2NXX
xijkdi�Bmax;ci; j2N;ck2K

Trot
s �Trot

1;0�0; Trot
s ; Trot

1;0; tis0;ci2N

Ntou
2 ; tquar4 ; a

Psy
1 ; b

Psy
2;1 ; w

Psy
2;2 ; m

Psy
1 ; m

Psy
2 ; m

Psy
3 ; m

Psy
4 ;

X
Zi
4; E1>0;ci2N

Bk
max�Bk

1 �0; pfull�p0�0;ck2K

4. Case study

The experimental environment is CPU 1.80 GHz, the devel-

opment environment is MATLAB R2018a, and the case test is

run on computer for Intel(R) Core(TM) i5-8265U CPU @

1.80 GHz, 8 GB RAM and Windows7 platform.
4.1. Comparison with traditional algorithm

4.1.1. Experiment 1
The benchmark test data R-101 of vehicle routing problem

with time window designed by Solomon (2021) is selected as
Table 2 e Experimental result.

Example test Algorithm solution Iterations to reach
the optimal solution (tim

R-101 Basic genetic algorithm 58

Improved algorithm 37
an example. The problem includes 25 demand points,

horizontal and vertical coordinates ðx; yÞ, demands, upper

and lower limits of service time window and service

duration. There is only one distribution center ðNo: 0Þ. The
number of vehicles is unlimited, and the capacity of

vehicle is limited to 200. All customer points are evenly

distributed in the plane coordinates of ð0; 25Þ2. The

distance between distribution center and customer points

and the distance between any 2 customer points are

calculated by Euclidean formula, i.e., the time and

distance can be converted into the same unit. According

to the problem scale of 25 in this example, we set the

crossover probability (pc) of 0.9, the mutation probability

(pm) of 0.098 and the maximum iteration number of 200.

Furthermore, MATLAB programming is applied to solve

VRP under the broken-line soft time window and the

example is tested. The comparison between the original

optimal solution and the optimal solution obtained in this

paper is shown in Table 2.

It can be seen from Table 2 that the optimal solution of the

example dropped from 5937.2 to 4829.5, the total distribution

costs decreased by 18.66%, and also, the total vehicle

mileage decreased from 640.88 to 512.70, which decreased by

about 20.00%. Moreover, the number of vehicles in use

decreased from 7 to 5 and the number of iterations to reach

the optimal solution is correspondingly reduced.

Therefore, the improved algorithm is superior to the basic

algorithm in number of vehicles, road haul and total costs. In

summary, the performance of the improved algorithm is su-

perior to the traditional genetic algorithm, and the output of

the algorithm is stable.

4.1.2. Experiment 2
Two examples in SET-A of CVRP test set are selected. Table 3

shows the comparison between the results of the algorithm

CRO (Jiang et al., 2018) and the algorithm designed in this

paper. Where bkropt represents the current optimal solution

given by the standard test example, and

ðbkropt �solbestÞ=bkropt � 100% indicates the deviation.

Table 3 shows that the optimal value of one of the three

calculation examples in SET-A with an average deviation of

0.48% from bkropt is calculated by CRO algorithm. However,

the improved genetic algorithm designed in this paper can

find two optimal solutions in three examples with an

average deviation of 0.05% from bkropt.

In terms of solution accuracy, the deviation between the

solution result of the improved genetic algorithm designed

in this paper and bkropt is obviously small, and the algorithm

can solve the optimal solution with a higher proportion,

stable solution, good robustness and preferable

performance.
es)
Optimal

solution ðsolbestÞ
Number of
vehicle

Road
haul

Cost gap (%)

5937.2 7 640.88 18.66

4829.5 5 512.70

https://doi.org/10.1016/j.jtte.2022.01.001
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Table 3 e Comparison of experimental result.

Example test A-n(i)-k(j) bkropt
value

CRO (Jiang et al., 2018) ðbkropt � solbestÞ=
bkropt � 100%

Improved
algorithm ðsolbestÞ

ðbkr0opt � sol0bestÞ=
bkr0opt � 100%

A-n32-k5 784 787 0.38% 784 0

A-n33-k5 661 668 1.06% 662 0.15%

A-n33-k6 742 742 0 742 0
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4.2. Basic data

Owing to the disparate road conditions, the followings are the

basic data of the real-world study. The coordinate values are

offered in Table 4. Simultaneously, the distance and time

parameters between adjacent epidemic areas are provided

in Tables 5 and 6.

4.2.1. Nominal demand analysis with TFN-PERT
Wuhan, Hubei Province was one of the epidemic cities under

COVID-19. Therefore, taking 14 days after the sealing city
Table 5 e Distance between two adjacent areas (km) (Source o

i 1 2 3 4 5 6 7 8

1 e 73 74 222 98 313 78 170

2 73 e 139 247 163 258 143 115

3 74 139 e 307 46 379 14 237

4 222 247 307 e 303 204 278 262

5 98 163 46 303 e 403 34 260

6 313 258 379 204 403 e 384 169

7 78 143 14 278 34 384 e 240

8 170 115 237 262 260 169 240 e

9 93 146 131 237 98 397 119 254

10 322 320 408 115 412 251 396 320

11 240 220 313 91 333 132 317 220

12 441 386 507 364 531 171 511 289

13 519 518 605 313 609 448 593 518

14 141 121 214 126 257 264 218 157

15 155 181 241 73 245 266 229 198

16 101 127 187 126 191 319 175 213

17 536 481 603 411 626 287 606 391

Table 4 e Coordinate values of the epidemic areas.

Area i [A. i] (X, Y)

[A.1] (473, 75)

[A.2] (438, 123)

[A.3] (524, 75)

[A.4] (277, 61)

[A.5] (540, 46)

[A.6] (267, 244)

[A.7] (525, 67)

[A.8] (385, 209)

[A.9] (474, 12)

[A.10] (187, 100)

[A.11] (275, 136)

[A.12] (142, 310)

[A.13] (17, 40)

[A.14] (365, 98)

[A.15] (339, 69)

[A.16] (390, 60)

[A.17] (129, 206)
(2020.2.8), i.e., the end node of the first incubation period of

NCP, as the observation data to study.

The cold-chain emergency drugs needed in Hubei Province

are shown in Table 7. To solve themathematical model in this

study, defuzzification is the first problem to be solved. As

there are a mass of fuzzy indexes in this paper, the TFN

theory (Triangular Fuzzy Number, a method to convert fuzzy

and uncertain linguistic variables into certain values) is

involved to solve the model, and the triangular fuzzy

numbers are comprised of the most pessimistic value, the

most probable value, and the most optimistic value.

Simultaneously, PERT method is used for estimation (Taking

x1; x0; x2 as triangular fuzzy number) of nominal demands,

those are shown in Table 8. The triangular fuzzy numbers

are comprised of the most pessimistic value, the most

probable value and the most optimistic value. PERT method

is used for estimation and formula is Di ¼ x1a1þx0a0þx2a2
6 . a1

almost always takes 1=6, a0 almost always takes 4=6, and a2
almost always takes 1=6 for defuzzification. Therefore, the

nominal demand di0 ¼ 1�x1þ4�x0þ1�x2
6 . It hereby, the final

nominal values are acquired.

4.2.2. Urgency determination with IGRA
Combination of IGRA method based on vectorial angle cosine

and Delphi method, the objective weights, and the subjective

weights will be obtained. And then, the linear weighted

Wk ¼ pCk þ ð1�pÞEk is adopted so as to the final weights are

gained (Initial matrix is as follows). Lastly, the urgency coef-

ficient ji of 17 epidemic areas shall be gained.
f data: Baidu Map API open platform).

9 10 11 12 13 14 15 16 17

93 322 240 441 519 141 155 101 536

146 320 220 386 518 121 181 127 481

131 408 313 507 605 214 241 187 603

237 115 91 364 313 126 73 126 411

98 412 333 531 609 257 245 191 626

397 251 132 171 448 264 266 319 287

119 396 317 511 593 218 229 175 606

254 320 220 289 518 157 198 213 391

e 340 302 525 537 186 173 119 620

340 e 122 352 241 225 172 225 367

302 122 e 291 323 149 151 204 355

525 352 291 e 552 408 425 463 187

537 241 323 552 e 427 373 423 564

186 225 149 408 427 e 61 75 486

173 172 151 425 373 61 e 62 472

119 225 204 463 423 75 62 e 525

620 367 355 187 564 486 472 525 e
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For the sake of reflecting fully the epidemic situation in

various cities of Hubei Province and ensuring the efficiency of

distribution tasks, severity of the epidemic, number of NCP

infections, death rate of NCP, degree of shortage and difficulty

for transportation are all regarded as the evaluation indexes

(Table 9) of the urgency. The permanent resident population is

acquired from the demographic analysis network. The

number of infections and the mortality rate (%) are obtained

from the announcement of the Hubei Provincial Health

Commission and relevant news reports.

The crucial parameters of the code and the running results

(Table 10) are as follows.

(a) rjk ¼ uojk=

�
max

j
fuojkg � min

j
fuojkg

�
% % Ratio of the deviation.

(b) O is the normalizedmatrix, and the normalizedmethod

is shown below.

ojk ¼ ijk=max
j

fi1k; i2k; /; imkg

(c) mjk ¼ lojk=

�
max

j
fuojkg � min

j
fuojkg

�
% % Deviation rate of inferior quality.

(d) maxuo ¼ maxfmaxfUOgg

% % Optimal maximum deviation of two-stage Du
max.

(e) minuo ¼ minfminfUOgg
Table 6 e Arrival time between two adjacent areas (min) (Sour

i 1 2 3 4 5 6 7 8

1 e 68 73 188 87 220 73 132

2 68 e 122 196 137 183 125 94

3 73 122 e 226 63 271 30 178

4 188 196 226 e 209 141 199 185

5 87 137 63 209 e 283 42 192

6 220 183 271 141 283 e 286 128

7 73 125 30 199 42 286 e 175

8 132 94 178 185 192 128 175 e

9 90 117 119 166 94 286 100 188

10 257 243 298 90 289 186 280 231

11 179 179 228 73 239 107 226 164

12 303 266 355 253 370 134 356 213

13 431 417 474 264 467 363 467 417

14 119 119 168 95 186 187 165 126

15 144 147 183 54 174 188 162 150

16 102 116 151 89 142 223 129 160

17 445 408 494 361 507 282 496 351
% % The two-order minimum of the optimal deviation

Du
min.

(f) maxlo ¼ maxfmaxfLOgg

% % The two-order maximum of the inferiority deviation

Dl
max.

(g) minlo ¼ minfminfLOgg

%%The two-orderminimumof the inferior deviationDl
min.

(h) qq ¼ minuoþ p� maxuo

%% Themolecular of coefficient of superior correlation luj.

(i) ww ¼ UOþ p� maxuo

% % The denominator of coefficient of superior correlation

luj.

(j) qq1 ¼ minloþ p� maxlo

% % The molecular of coefficient of inferior correlation llj.

(k) ww1 ¼ LOþ p� maxlo

% % The denominator of coefficient of inferior correlation

llj.

The priority distribution shall be known for some areas

with high urgency coefficient ji and it is 1/ 3/7/ 2/11/

4/14 / 13/10 / 8/6 / 12/16 / 15/9 / 5/17.
ce of data: Baidu Map API open platform).

9 10 11 12 13 14 15 16 17

90 257 179 303 431 119 144 102 445

117 243 179 266 417 119 147 116 408

119 298 228 355 474 168 183 151 494

166 90 73 253 264 95 54 89 361

94 289 239 370 467 186 174 142 507

286 186 107 134 363 187 188 223 282

100 280 226 356 467 165 162 129 496

188 231 164 213 417 126 150 160 351

e 240 208 360 426 135 122 90 501

240 e 107 281 222 166 126 161 341

208 107 e 214 286 110 113 148 329

360 281 214 e 456 294 296 321 208

426 222 286 456 e 332 289 323 525

135 166 110 294 332 e 57 66 406

122 126 113 296 289 57 e 48 400

90 161 148 321 323 66 48 e 438

501 341 329 208 525 406 400 438 e
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Table 9 e Fuzzy evaluation index.

Epidemic
area site i

Severity of
epidemic (level)

Permanent resident
population (104)

Number
infectio

Wuhan Very serious 1121.20 14,982

Xiaogan General 492.10 2436

Huanggang Serious 633.30 2141

Jingzhou Slight 557.01 997

Huangshi Very slight 270.83 760

Xiangyang Slight 568.00 988

Ezhou Serious 105.97 639

Suizhou General 222.1 984

Xianning Slight 254.84 493

Yichang General 413.79 711

Jingmen Serious 289.75 663

Shiyan Very slight 339.80 467

Enshi Slight 402.10 379

Tianmen Serious 124.74 171

Qianjiang General 96.61 82

Xiantao General 152.92 379

Shennongjia Very slight 7.61 10

Table 7 e Cold-chain emergency drugs of Hubei Province
(list four).

Name of drug Category Storage
condition

(	C)

c1 (recombinant bovine

basic fibroblast

growth factor eye gel)

Etology drugs/skin

drugs

2e8

c2 (intravenous injection

of human

immunoglobulin

(pH4))

Biological products 2e8

c3 (bifidobacterium and

Lactobacillus triple

live tablet)

Microecological

medicine

2e8

c4 (insulin injection) Insulin 2e8

Table 8 e Nominal demand (units) based on TFN-PERT
(turn uncertainty into certainty by bd2

; bdi).

Area i [A. i] di0 (units)

[A.1] 14.36

[A.2] 5.93

[A.3] 5.01

[A.4] 2.37

[A.5] 2.10

[A.6] 2.01

[A.7] 2.18

[A.8] 2.19

[A.9] 2.20

[A.10] 2.21

[A.11] 1.99

[A.12] 1.92

[A.13] 2.10

[A.14] 1.52

[A.15] 1.39

[A.16] 1.68

[A.17] 0.18

Sum 51.43
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4.3. Algorithm

GA was first proposed by Professor Holland from University of

Michigan in 1975. In order to solve the non-inferior solution

set of multi-objective optimization, NSGA came into being.

The grey system was first proposed by Julong Deng, a profes-

sor of control science and engineering, the GRA is a method to

measure the correlation degree between factors according to

the similarity or difference degree of the development trend

among factors, i.e., the “grey correlation degree”. In this study,

a hybrid algorithm NSGA-IGRA was adopted to solve the

model, which combined with multi-objective genetic algo-

rithm and improved grey relative analysis method, and the

optimization process was realized with two stages.

a) Phase 1 (ji ¼ 0=same)

STEP 1: Set initial parameters and initialize the population

STEP 2: ji ¼ 0; n ¼ 1, the initial Pareto non-inferior solution

set is obtained

b) Phase 2 (different ji)

STEP 1: The new ji ¼ a were obtained.

STEP 2: A new nondominated solution set was gained by

running.

GA is a heuristic algorithm, which is more suitable for

practical problems. Therefore, this paper uses genetic algo-

rithm to solve the VRP of CEM. The universality and robust-

ness of this algorithm are superior, and the process of multi-

objective genetic algorithm is shown in Fig. 3.
4.4. Results and discussion

4.4.1. Robust optimization solution without considering the
urgency
Fig. 4 shows the distribution curve when the model is iterated

200 times. It clearly can be seen that robustness and cost are

negatively correlated, i.e., provided the robustness increases,

the optimality decreases. Also, the total costs are generally

between 22,000 units and 34,000 units. In this paper, the
of
ns

Mortality
rate (%)

Material shortage
degree

Difficulty of material
transportation

4.06 Very serious General

1.19 Serious Difficult

2.01 Serious Difficult

1.30 Serious Difficult

0.26 Slight General

0.71 Serious Easy

3.29 Serious General

0.91 General Difficult

0.81 Slight General

1.13 General General

2.87 General Difficult

0.00 Slight Difficult

0.00 Slight Difficult

5.08 General General

2.44 Slight Easy

1.32 Slight General

0.00 Very slight Easy
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Table 10 e ji coefficient value.

Area i [A. i] ji value

[A.1] 0.846

[A.2] 0.515

[A.3] 0.594

[A.4] 0.467

[A.5] 0.195

[A.6] 0.294

[A.7] 0.525

[A.8] 0.303

[A.9] 0.237

[A.10] 0.330

[A.11] 0.509

[A.12] 0.274

[A.13] 0.349

[A.14] 0.418

[A.15] 0.238

[A.16] 0.265

[A.17] 0.114 Fig. 4 e Two-dimensional display of Pareto solution.
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maximization of robustness and the minimization of total

costs are regarded as objective function plus the opposite

change directions. The representative Pareto solutions are

used for discussing as follows in Fig. 5, and the optimal

distribution routes obtained from each solution with high
Fig. 3 e Operation process
costs or high robustness are selected, respectively. Different

colors in Fig. 5 present routes of different vehicles.

Based on the above results, the Pareto solution set is clas-

sified into the optimal (a), the suboptimal (b), the second

suboptimal (c) and the third suboptimal (d) solutions
of NSGA to solve MOP.

https://doi.org/10.1016/j.jtte.2022.01.001
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Fig. 5 e Dispatching routes. (a) Path of optimal delivery solution, scheme (a), C ¼ 24,337, ¡R ¼ ¡0.0161. (b) Path of optimal

delivery solution, scheme (b), C ¼ 27,580, ¡R ¼ ¡0.2554. (c) Path of optimal delivery solution, scheme (c), C ¼ 29,224,

¡R ¼ ¡0.3502. (d) Path of optimal delivery solution, scheme (d), C ¼ 28,825, ¡R ¼ ¡0.3090.
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respectively for the perspective of minfCg, also, the corre-

sponding C values and distribution routings are analyzed in

Tables 11 and 12. All of (a), (b), (c) schemes use 5 vehicles, and

the total driving time are 20,758, 20,804 and 20,400 min,

respectively. For scheme (d), the total driving time is

23,598 min when 7 vehicles are in use, whereas, 20,818 min

when 5 vehicles are in use.

Analysis of aki (take k1 of scheme (a) as an example) vehicle

k1 starts from the distribution center O, which unloads and

rests after arriving at epidemic area 13, and the departure time

from 13 to 14 is 468min. After arriving at epidemic area 14, the
vehicle unloads and rests again, the departure time from 14 to

15 is 852 min. Then, the vehicle also unloads and rests after

arriving at epidemic area 15 and the starting time from15 to 11

is 1007 min. After arriving at epidemic area 11, the vehicle

unloads and rests as well, ultimately, the departure time of

returning to the distribution center O from point 11 is

1289 min.

It can be seen from Table 12, the scheme (c) and scheme (d)

with higher robustness are regarded as the optimal scheme

and suboptimal scheme, which the robustness are 0.3502

and 0.3090, respectively. Nevertheless, the robustness of

https://doi.org/10.1016/j.jtte.2022.01.001
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Table 11 e Pareto solution analysis 1 for perspective of minfCg (no priority distribution).

Level of scheme Total cost value C Path selection (i/j) Departure time from each epidemic site aki (min)

Optimal (a) 24,337 0 / 13/14 / 11/0 4681130852114010071110128910
0 / 8/2 / 9/0 381280534220732290125520
0 / 5/7 / 3/6 / 12/0 683350776370864330121236014023120197630
0 / 17/1 / 0 4094170894410170040
0 / 4/16 / 15/10 / 0 417540560516065551508255100108350

Suboptimal (b) 27,580 0 / 4/15 / 16/

14 / 10/0

417052506170730094101199

0 / 5/7 / 2/8 / 0 683077609590113401515

0 / 6/12 / 11/0 5360726099101273

0 / 17/1 / 0 409089401700

0 / 13/3 / 9/0 46809940119001713

Second suboptimal (c) 29,224 0 / 6/12 / 2/11 / 0 5360726010430130301585

0 / 17/1 / 0 409089401700

0 / 4/15 / 16/9

/14 / 10/0

41705250617075409400115101409

0 / 8/5 / 7/3 / 13/0 3810632072508130136401832

Third suboptimal (d) 28,852 0 / 6/12 / 11/10 / 0 536072609910115001408

0 / 4/14 / 16/15 / 0 41705660677077201072

0 / 17/1 / 0 409089401700

0 / 2/3 / 8/0 62108240107901460

0 / 13/5 / 1/7 / 0 4680987010800123801761
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scheme (a) is the lowest as the third suboptimal scheme. The

best transportation routings can be chosen for preference

decision-makers with maximizing robustness.

In summary, the optimality of schemes (a) and (b) is more

superior and the robust rate is lower, the optimality of

schemes (c) and (d) is more inferior, yet, the robust rate is

higher. Therefore, the optimal plan should be chosen for the

decision-makers with the lowest cost or the highest robust-

ness, and the robust optimizationmodel can be used to realize

the allocation scheme with high robustness when only the

range information of factors is known.

4.4.2. Robust optimization solution considering the urgency
Fig. 6(a) shows the distribution curve when the model is

iterated to 200 times with consideration of the demand

urgency, which also shows that there is a negative

correlation between robustness and costs, and the costs are

almost always between 22,000 units and 33,000 units. As

shown in Fig. 6(b), scheme (b) is the optimal distribution

plan when priority distribution is considered plus the robust

rate of 0.4813, which has strong robustness. Different colors

in Fig. 6(b) present routes of different vehicles. The total
Table 12 e Pareto solution analysis 2 for perspective of
maxfRg (no priority distribution).

Level of scheme Robustness value R

Optimal (c) 0.3502

Suboptimal (d) 0.3090

Second suboptimal (b) 0.2554

Third suboptimal (a) 0.0161
costs are 27,289, which are lower, i.e., the robustness rate

increases with the reduction of the cost. The number of

vehicles in use is 5, and the total driving time is 20,489 min.

The routings are shown in Table 13.

As the distribution order has been determined in the case

of taking into consideration of the demand urgency for

epidemic areas, all the running results corresponding to Par-

eto solutions are the same, and the distribution path is

unique.

4.4.3. Comparison of considering urgency or not
The results in Table 14 above, the average costs are 28,911.26

units without taking into consideration of the demand

urgency for epidemic areas and 27,609.85 units under the

circumstances of considering the priority distribution,

respectively, the value declines 4.51%. And the average

robustness is 0.25706 without taking into account the

demand urgency of epidemic areas and 0.28710 in the case

of considering the priority distribution, respectively, the

value rises 11.69%. The cost reduced slightly and the

robustness rate increased due to the pre-estimation of the

difference in demands of the epidemic areas and the

attention to the difference in demands of different regions

in the case of priority distribution, i.e., the total costs of the

distribution scheme decrease and the robustness increases

when the demand urgency of each epidemic area is taken

into account.

In simple terms, the solution considering the emergency

degree is better and more robust. The robustness rate R is the

main objective of this study and the minimizing the trans-

portation time T is themost urgent factor of materials support

during the epidemic period under COVID-19. Accordingly, the

https://doi.org/10.1016/j.jtte.2022.01.001
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Fig. 6 e Pareto solution (priority delivery) and routing. (a) Pareto solution, Pareto front (priority delivery). (b) Optimal path

(with urgency), scheme (b), C ¼ 27,289, ¡R ¼ ¡0.4813.
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relationship of R-T and other four sub-costs are visually

shown by laying out the three-dimensional graphs in Fig. 7.

The physical consumption cost of patients W, the

psychological burden of deliverymen when entered high-risk

areas B, the additional carbon trading costs generated by

carbon emissions P and the efficacy loss value V, namely the

relationship between the three sub-objective functions R-T-

W, T-R-P, V-T-R, T-B-R, respectively.

4.4.4. Objective function results without considering
robustness
The running result of the optimal solution of the CEM sched-

uling and distribution scheme inMATLAB under the condition

that without considering priority distribution is as follows.

(a) Results without considering robustness and urgency

The total objective function value

fTotal Object¼ZServiceT
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(b) Results with considering urgency but not robust

The total objective function value is shown as Eq. (18).

It can be seen from Table 15 that the results of the two

functions without considering the robustness are obviously

different. The dispatching scheme with considering the

urgency is better than the dispatching scheme under the

condition of not considering it, i.e., the cost will be reduced

to a certain extent.
4.4.5. Comprehensive comparison
Table 16 is a comparative analysis of the scheduling

schemes under various computing scenarios with respect

to cost. To sum up, the scheduling scheme of considering

the demand urgency under the premise of robust

optimization is the optimum with the lowest cost and

high robustness, i.e., the scheme ½10100 � is the optimal

solution. However, the scheduling scheme without

considering robust optimization and the urgency is the

inferior, which cost is the highest, i.e., the scheme ½20200 � is
the inferior.
4.4.6. Scheduling scheme of more vehicles
As the severity of the epidemic rises and the number of

infection increases, the demand for cold-chain medical
ðBk
max � Bk

1Þ
k
max

�ekCO2
dijkNkxijk

9=;

(18)
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Table 14 e Comparison discussion.

Objective
function

No priority
delivery

(no urgency)

Consider
priority
delivery

(with urgency)

Rate of
change (%)

Average

value of C

28,911.26 27,609.85 �4.51

Average

value of R

0.25706 0.28710 11.69

Fig. 7 e Relationship of sub-objectives. (a

Table 13 e Pareto solution analysis 2 for optimal scheme
(e) (with urgency).

Path selection (i/
j)

Departure time from
each epidemic

site aki (min)

0 / 6/12 / 14

/8 / 0 (k1)

5360726010710124201623

0 / 13/11 / 0 (k2) 468080601088

0 / 4/16 / 2

/10 / 0 (k3)

417056007230104701305

0 / 17/1 / 0 (k4) 409089401700

0 / 9/7 / 3/5

/ 15/0 (k5)

5230674076209020112701427
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materials in various medical institutions will continuously

augment so that more vehicles are needed to provide

support for material distribution to the risk areas.

Therefore, the following results is obtained with the

scheduling scheme for more vehicles. The results are

shown in Fig. 8.

Fig. 8(a) shows the distribution curve when the model is

iterated to 200 times without demand urgency, which shows

that there is a negative correlation between robustness and

costs. As shown in Fig. 8(b), the scheme is the optimal

distribution plan when priority distribution is not

considered, plus the robustness of 0.4256, which has strong

robustness. The number of vehicles in use is 10, and the

total driving time is 24,638 min. Then, Fig. 8(c) also presents

the distribution curve when the model is iterated to 200

times with demand urgency. The scheme in Fig. 8(d) is the

optimal distribution plan when priority distribution is

considered plus the robustness of 0.4961, which has strong

robustness. Different colors in Fig. 8(b) and (d) present routes

of different vehicles. The number of vehicles in use is 10,

and the total driving time is 23,194 min. In summary, the

scheduling scheme is better when the demand urgency of

each epidemic area is considered from the perspective of

robustness.
) R-T-W. (b) T-R-P. (c) V-T-R. (d) T-B-R.

https://doi.org/10.1016/j.jtte.2022.01.001
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Table 15 e Comparison discussion.

Situation No
robustness
or urgency

No
robustness
but urgency

Rate of
change (%)

Objective

function value

33,267.2020 29,432.6100 �11.53

Fig. 8 e Pareto solution and routing (10 vehicles). (a) Pareto front

(c) Pareto front (with urgency). (d) eR ¼ ¡0.4961 (overall time is

Table 16 e Cost comparison in different computing scenarios.

Scenario of solution ½10� consider robustness
½100 � consider urgency ½10100 � 27,609.8500
½200 � no urgency ½10200 � 28,911.2604
Proportion of variation (%) �4.5014

J. Traffic Transp. Eng. (Engl. Ed.) 2022; 9 (1): 1e20 17
5. Conclusions and limitations

In this study, the problems exposed in emergency logistics

system of China and the shortcomings of dispatching for the

cold-chain emergency medicine under the COVID-19 were

summarized. For VRP with a soft time window, the authors
(no urgency). (b) eR ¼ ¡0.4256 (overall time is 24,638 min).

23,194 min).

½20� no robustness Amplitude of variation (%)

½20100 � 29,432.6100 �6.6018

½20200 � 33,267.2020 �15.0666

�13.0284 e
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have comprehensively considered such factors as the psycho-

logical burden and panic of deliverers entering the epidemic

area of high-risk infectious diseases, the uncertainty of cold-

chain drug delivery time and demand, the deviation of efficacy

caused by emergencies in distribution process, the robustness

of the solution and other characteristics, etc., with the goal of

maximizing the robustness rate andminimizing the total costs.

The robust optimization scheduling model and distribution

system for urban CEM under major public health emergencies

were redesigned and verified, and the results has shown both

the effectiveness and applicability of model. Also, the initial

optimal schemes were compared with the optimal route

scheme with considering priority distribution, and the conse-

quence demonstrates that the total costs with considering de-

mand urgency are lower and the robustness rate is stronger.

(1) The timeliness (minimum time), robustness (maximum

robust rate), high-efficiency (psychological burden of de-

liverymen), economy (total costs), environmental protec-

tion (policy of carbonemission reduction) andprecisionof

distribution (demand urgency) were taken into account

synthetically in the abovementioned model, and the

minimization of carbon costs conforms to policies of

carbon emissions and carbon trading of country, which

actively responds to the environment-friendly society.

Also, the psychological panic burden of deliverymen

entering high-risk areas has been a momentous research

objective with the high infectivity of COVID-19.

(2) The robustness of Pareto solution is limited by the

surplus of vehicle-borne and the surplus of arrival time,

also, the robustness is redefined based on the uncer-

tainty of factors. The results verify the accuracy.

(3) NSGA-IGRA isdesignedasahybridalgorithmtosolve the

robust optimization model for cold-chain emergency

supplies scheduling, which can find out the robust so-

lution of Pareto solution set comprised of the optimal

and sub-optimal, the research results demonstrate that

the average costs of the distribution schemes consid-

ering the demand urgency is slightly reduced by 4.51%

compared with the initial scheme, and robustness in-

creases by 11.69%. Accordingly, considering the priority

distribution can not only reduce the cost slightly, but

also make the robustness stronger and avoid the blind-

ness and misalignment of the distribution effectively in

practice. The findings of this study provide insights into

the distribution path for CEM, the model and the joint-

hybrid algorithm can be directly applied to the robust

optimization of distribution path for CEM.

In summary, the dispatching of emergency supplies is

regarded as a pivotal and momentous work in responding to

emergencies. After all, whether the materials can be trans-

ported promptly to the needed areas directly determines the

efficiency of the rescue, therefore, time is urgent, and it is of

the essence. At a large-scale epidemic disease context, i.e., a

COVID-19 pandemic, which is susceptible extraordinarily to

infection, the psychological burden of deliverymen also is a

crucial research object as well. Also, the uncertainty of
distribution time and demand of materials, the deviation of

efficacy caused by emergencies in distribution process and the

robustness of the solution and other characteristics, these

sub-objectives are of a great research significance. Without

loss of generality, the blindness and misalignment of distri-

bution will likewise reduce the overall achievement of rescue.

Consequently, it is supremely critical to conduct the reason-

able and scientific dispatching for conformance to the quan-

tity of emergency supplies and the maximum load capacity of

vehicles on account of the priority distribution is considered

or not. Considering the above, the model optimizes the dis-

tribution time, life consumption of patients, robustness of

solution, and psychological burden of deliverymen when

entering infectious regions simultaneously to research the

CEMwithmassive demands. Therefore, not only the costs can

be slightly reduced and heighten robustness, but also the

blindness and misalignment of the distribution can be avoi-

ded effectively with the factor of urgency being considered.

Both the model and hybrid algorithm can better complete the

robust optimization for the CEM distributing. Solved by virtue

of a hybrid algorithm combined Pareto genetic algorithm and

the improved grey relative analysis, the numerical results

manifest the viability and superiority of it, which could save

computing time and iteration times than an unimproved ge-

netic algorithm. Affirmatively, the study shall furnish prom-

ising applications for the cold-chain emergency supply and

render a resultful practical decision support in case of

emergency.

However, some limitations should be addressed in future

work. First, the location and inventory of distribution center

for CEM are not considered in order to realize a numerical

model, for example, methods and algorithm of location are

neglected in the current analysis, that is, a complete analysis

for integration of site selection-distribution is not well pre-

sented in the literature, so one possible future goal is to apply

the new frameworks to build a system for the integration of

site selection-distribution, which will realize the integrity of

logistics chains. In addition, the current literature also lacks

algorithm comparison analysis, thus, different algorithmswill

be used to contrast differences as another possible goal. These

are the preliminary plans and the research contents of the

next stage. In simple terms, our hope is that research in this

direction will help bridge the gap between theoretical sound-

ness and the practical usefulness of the robust optimization of

distribution path for CEM.
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