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Abstract: Human brain, a dynamic complex system, can be studied with different approaches,
including linear and nonlinear ones. One of the nonlinear approaches widely used in
electroencephalographic (EEG) analyses is the entropy, the measurement of disorder in a system.
The present study investigates brain networks applying approximate entropy (ApEn) measure for
assessing the hemispheric EEG differences; reproducibility and stability of ApEn data across separate
recording sessions were evaluated. Twenty healthy adult volunteers were submitted to eyes-closed
resting EEG recordings, for 80 recordings. Significant differences in the occipital region, with higher
values of entropy in the left hemisphere than in the right one, show that the hemispheres become active
with different intensities according to the performed function. Besides, the present methodology
proved to be reproducible and stable, when carried out on relatively brief EEG epochs but also at
a 1-week distance in a group of 36 subjects. Nonlinear approaches represent an interesting probe
to study the dynamics of brain networks. ApEn technique might provide more insight into the
pathophysiological processes underlying age-related brain disconnection as well as for monitoring
the impact of pharmacological and rehabilitation treatments.

Keywords: entropy; EEG; left and right; brain networks

1. Introduction

Human brain, a dynamic complex system, can be studied using different approaches, including
linear and nonlinear ones.

It has long been observed that human physiological parameters are nonstationary and nonlinear,
and, in most circumstances, it is possible to detect only the macroscopic output of physiological
functions. Electroencephalographic (EEG) signal represents an example of macroscopic output of
brain activity; its analyses are based on different approaches such as the Fourier transform technique,
which assumes linearity and stationarity of the EEG signal [1]; granger causality, which can be used to
measure connectivity across brain regions [2–5]; and independent component analysis and general
linear models (GLM) [6]. However, due to the complex and dynamical characteristics of brain systems
and hemispheric differences, nonlinear approaches are expected to be more appropriate for exploring
the physiological mechanisms of brain activity [1].
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Hemispheric structural and functional differences have been well documented in healthy
individuals. Several aspects make the brain structure asymmetrically distributed in the two hemispheres,
such as white matter structure, gray matter volume, connections, and cortical thickness. These structural
differences are assumed to be associated with hemispheric lateralization of functional specializations,
including visuospatial processing, language, motor, and cognitive control [7].

EEG activity has been widely discussed in relation to functional neuronal mechanisms [8,9].
In this regard, it is of major interest to investigate how brain electric oscillations are synchronized in
physiological or pathological brain states (e.g., in resting state or during an epileptic seizure) or by
external and internal stimulation (event-related potentials (ERP) or evoked potentials (EP)). The study
of the network of the cerebral hemispheres in the resting condition and related differences at the base
is interesting as well. This matter can be investigated by applying nonlinear methods to the analysis of
the EEG signals because changes in EEG activity even in resting-state conditions could be considered
as a transition from a disordered to an ordered state (or vice versa) [10].

To assess hemispheric differences, several studies have used different methodological approaches,
both from an instrumental point of view, using functional magnetic resonance imaging (fMRI) [11]
and EEG [12], for instance, and concerning the parameter that has been used as an index of those
differences. Indeed, data analysis can consist of graph theory approaches such as the small-world
index [13,14], rich-club organization [15,16], and modularity [17,18].

Although linear approaches have shown the presence of a structured organization in
brain networks [19], nonlinear approaches for resting EEG analysis may show differences in
network organization.

For example, the entropy, defined as the measurement of predictability in any system, represents a
nonlinear approach widely used in EEG analyses and is used to quantify the complexity of brain areas’
changes. Higher entropy values are usually associated with more random and less ordered systems.

The concept of entropy was introduced at the end of the 19th century by Clausius [20], the first one
to enunciate the second law of thermodynamics by saying that “entropy always increases” [21]. Thus,
the concept of entropy was initially conceived in the field of thermodynamics and statistical physics.
During the same period, Boltzmann firstly enunciated the logarithmic connection between entropy
and probability. Starting from 1948, Shannon [22,23] applied this concept to information theory and
proposed a large number of applications in information science.

To explore the nonlinear dynamics of the physical systems, Kolmogorov entropy and Renyi
entropy have been widely used [24,25]. To quantify the complexity of biological signals in the human
system, such as heart rate, breathing, or EEG signals, different types of entropy measure can be
applied, such as approximate entropy (ApEn) [26], sample entropy (SampEn) [27], and multiscale
entropy (MSE) [28,29]. In the present study, we selected ApEn as the approach for the analysis,
because of its good properties; in fact, this approach is one of the most used measures for entropy
evaluation nowadays. In particular, ApEn is an index able to measure the regularity of sequences
and time-series data and has been extensively used in studies of physiologic time series to assess the
degree of randomness [30,31]. Several ApEn properties facilitate its usage: it can be applied with good
reproducibility to time series of at least 50 samples; it is almost unaffected by noise; it is finite for
composite, stochastic, and noisy deterministic processes [32]; and it detects the changes in underlying
episodic behavior undetected by peak occurrences or amplitudes [33]. For all the exposed reasons,
ApEn would be extremely helpful in brain function understanding, given the complex and dynamical
characteristics of cerebral systems.

ApEn differs substantially from the entropy measure that most scientists have in mind, that is
the Shannon entropy. ApEn measures the predictability of future amplitude values of time series
based on the knowledge of the general one or two previous amplitude values; instead, Shannon
entropy measures the predictability based on the probability distribution of amplitude values already
observed in the signal [34]. Unlike the Shannon entropy, the calculation of ApEn is not predicated on
the underlying distribution of the data; instead, it is based on sequence recurrence. This allows ApEn
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to be applied to signals of shorter length, and makes model estimation unnecessary, removing the risk
for misestimating based on poor model selection [35].

Although entropy algorithms have been widely used in the analysis of EEG signals in different
contexts [36–38], a very few studies have evaluated entropy applying ApEn measure to assess
hemispheric differences in brain networks analysis.

For example, Hogan and colleagues [39] have examined entropy applied to EEG in young adults’
groups across different experimental conditions, in three brain regions (Frontal, Temporal, and Parietal)
applying the sample entropy measure. Their results show entropy differences in young adults between
the right and left hemisphere, in particular, higher entropy in the left than the right hemisphere in
posterior brain areas.

Taking in mind all the mentioned and suggested studies and in order to verify and improve
previous evidence, the present study investigates brain networks applying ApEn measure (an already
implemented function available to all researchers) for assessing the hemispheric EEG differences,
focusing on more regions (Frontal, Central, Parietal, Occipital, and Temporal), in particular, five regions
instead of three, with respect to the previously mentioned study [39]. We also used 54 channels
instead of 36; moreover, an additional aim of the present study was to evaluate the reproducibility
and stability of ApEn measure over time across separate recording sessions at both a few minutes and
1-week distances.

2. Subjects and Methods

2.1. Participants

Twenty healthy volunteers were recruited for the present study (10 females and 10 males; mean
age = 26.1 ± 0.7 (standard error) and mean education = 16.4 ± 0.4 (standard error)).

Exclusion criteria included a history of neurological or psychiatric disorder and current
treatment with vasoactive or psychotropic medication. All subjects were right-handed on Handedness
Questionnaire [40]. Subjects were submitted to eyes-closed resting EEG recording in four separate
sessions of about 3 min each, for 80 recordings. The EEG sessions were structured as follow: between
the first and second resting EEG sessions, there was a 1-min break; between the second and third
sessions, there was a 1-h break; and between the third and fourth ones, there was a 1-min break.

Informed consent was obtained from each participant. Experimental procedures were conformed
to the Declaration of Helsinki and national guidelines.

2.2. Data Recordings and Preprocessing

The four EEG recordings of each subject were carried out with the same digital EEG machine
(BrainAmp by Brain Products) from 64 electrodes positioned according to the International 10–20 system.
Two separate channels, vertical and horizontal EOGs, were used to monitor eyes blinking. Impedance
was kept below 5 KΩ and the sampling rate frequency was set up at 1000 Hz. Electroencephalographic
signals were measured at rest, in 3 min of eyes closed and no task condition. During the recording,
subjects were sitting in a comfortable armchair, placed in a dimly lit, sound-damped, and electrically
shielded room.

The data were processed in MATLAB (MathWorks, Natick, MA, USA) using scripts based on the
EEGLAB toolbox (Swartz Center for Computational Neurosciences, La Jolla, CA, USA) [41].

The EEG recordings were downsampled at 512 Hz and band-pass filtered from 0.2 to 47 Hz using a
finite impulse response (FIR) filter. Imported data were divided into 2 s duration epochs and principal
artifacts in the EEG recordings (i.e., eye movements, cardiac activity, and scalp muscle contraction) were
removed with Infomax ICA algorithm [42,43], which enables the separation of statistically independent
sources from multichannel EEG recordings [44–47] as implemented in the EEGLAB. At the end of
the artifact removal procedure, at least 2.5 min remained for each session. One subject was rejected
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because the recording was too noisy and showed a small number of artifact-free epochs (less than 2
min for all conditions).

2.3. Entropy Analysis

Entropy analysis was computed on the artifact-free epochs utilizing a homemade software
developed in MATLAB. The core of the software is the ApEn evaluation, which was realized using
the algorithm already implemented in MATLAB, i.e., approximateEntropy function estimates the
approximate entropy of the uniformly sampled time-domain signal by reconstructing the phase space.
The software is implemented as follows: for each channel and each epoch, a value of ApEn is computed;
later, those values are averaged among the epochs, in order to obtain only one ApEn value for each
channel and each EEG session.

Two input parameters, a pattern length, m, and tolerance factor, r, are specified to compute it.
The ApEn generates a unitless number from 0 to 2, where an ApEn value equal to 0 corresponds to a
perfectly regular time series, whereas an ApEn value equal to 2 is produced by random time series [48].

The ApEn is computed as follows [35]:

1. The first sequence of length m is compared to all the other sequences of the same length point
by point. Those sequences for which all points are within r of their corresponding point in the
original sequence are counted. r is also known as similarity criterion, and more clearly is a
tuning parameter used to identify a meaningful range in which fluctuations in data are similar.
So, a point of a sequence is similar to its corresponding point in the original sequence, when its
value is not above its original value plus r.

2. The same process is applied to sequences of length m + 1, starting with the first sequence of m +

1 points.
3. The amount of similar sequences for m + 1 long one is divided by the one resulting from m long

sequences comparison. The natural logarithm of the ratio is taken.
4. The process is repeated for all possible sequences.
5. All logarithms results are summed and normalized for N, the total number of data samples, and m.

Summarizing, the ApEn is calculated as ApEn = Φm −Φm+1, where

Φm = (N −m + 1)−1
N−m+1∑

i = 1

log(Ni).

Moreover, Ni, the number of within range points, namely, the amount of points that are within r
of their corresponding point in the original sequence, at the point i

Ni =
N∑

i = 1,i,k

(‖Yi −Yk‖∞ < r).

In the present study, the MATLAB default values for the input parameters were selected: so m
was equal to 2 and r to 0.2 * variance (x) [35,49–51], where x is a 2 s long epoch of a specific channel.

These well-established values are selected because they have been demonstrated to produce good
statistical reproducibility for time series of length N > 60 [26]. Normalizing r in this manner gives
ApEn a translation and scale invariance; in this way, it remains unchanged under uniform process
magnification, reduction, or constant shift to higher or lower values [32]. In the present study, since
the sampling frequency was set to 512 Hz, time series of 2 s were 1024 points long [51].

Through the homemade software, ApEn was evaluated on every single epoch for each channel.
Only later, the ApEn values were averaged over the epochs to get a single value of ApEn for each
channel [52].
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Once computed, in order to obtain a single value of entropy for each region of interest (ROI), the
ApEn values evaluated in each electrode were averaged over ten ROIs (five left and five right: Frontal
Left, Frontal Right, Central Left, Central Right, Parietal Left, Parietal Right, Occipital Left, Occipital
Right, Temporal Left, Temporal Right), grouping the electrodes as shown in Table 1. The electrodes
along the midline were excluded (Figure 1).

Table 1. The table shows the grouping of the electrodes for each region of interest (ROI) and for
each hemisphere.

Brain Region Electrodes

Frontal Left FP1 AF3 AF7 F1 F3 F5
Frontal Right FP2 AF4 AF8 F2 F4 F6
Central Left FC1 FC3 FC5 C1 C3 C5

Central Right FC2 FC4 FC6 C2 C4 C6
Parietal Left CP1 CP3 CP5 P1 P3 P5 P7

Parietal Right CP2 CP4 CP6 P2 P4 P6 P8
Occipital Left PO3 PO7 O1

Occipital Right PO4 PO8 O2
Temporal Left F7 FT7 T7 TP7 TP9

Temporal Right F8 FT8 T8 TP8 TP10
Medial FPz Fz Cz CPz Pz POz Oz
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2.4. Statistical Evaluation

Analysis of variance (ANOVA) was used between the ROIs computed in the five regions for each
hemisphere of the brain for all the recordings. Greenhouse and Geisser correction was used for the
protection against the violation of the sphericity assumption in the repeated measure ANOVA. Besides,
post hoc analysis with the Duncan’s test and significance level at 0.05 was performed.

A three-way ANOVA design was performed between the factors: Side (Left and Right), ROI
(Frontal, Central, Parietal, Occipital, and Temporal), and Time (four sessions) with a statistical cutoff

level of p < 0.05.

3. Results

The ANOVA for the evaluation of ApEn showed no statistically significant interaction
(F (12, 288) = 0.30605, p = 0.98808) among all factors, namely, Side (Left and Right), ROI (Frontal,
Central, Parietal, Occipital, and Temporal), and Time (four sessions). More specifically, the ApEn
analysis highlighted an optimal reproducibility of this measure in the sessions. Indeed, the statistical
analyses showing that no interaction including Time resulted significant underlines the stability of the
present methodology at least when carried out on relatively brief EEG epochs within a short time frame.

Furthermore, the same ANOVA showed a statistically significant interaction (F (4, 288) = 3.5825,
p = 0.00719) only between the factors Side (Left and Right) and ROI (Frontal, Central, Parietal, Occipital,
and Temporal), thus independently by the Time (Figure 3). The Duncan post hoc testing showed higher
entropy values in the occipital left compared to the right side (p < 0.001251). It is also evident that
higher values of entropy are represented almost exclusively in the left hemisphere, in fact, the main
factor Side was also statistically significant (F (1, 72) = 4.4118, p = 0.03919), showing a higher level of
entropy in the left compared to the right hemisphere.
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Figure 3. The figure shows the ANOVA analysis for the evaluation of entropy using the approximate
entropy (ApEn) measure. For each region and each hemisphere, the ApEn values averaged across the
population and the relative standard errors are reported. In the two hemispheres, there is a statistically
significant interaction (F (4, 288) = 3.5825, p = 0.00719) between the factors Side (Left and Right) and
ROI (Frontal, Central, Parietal, Occipital, and Temporal). Post- hoc testing showed higher entropy
values in occipital left compared to the right side (p < 0.001251), as highlighted by the asterisk.
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Control Analyses

To evaluate the stability and reproducibility of the present measure, a control analysis was
performed on a separate group of 36 young adults (18 females; mean age = 24.7 years, SD = 3.1).
Subjects were submitted to resting EEG recording in two separate sessions of about 3 min each, for
72 recordings. Between the first and second resting EEG sessions, there was a 1-week break. The EEG
recordings were acquired and analyzed with the same methodology as the main analyses.

The ANOVA for ApEn stability evaluation showed no statistically significant interaction
(F (4, 140) = 0.21604, p = 0.92916) among all factors: Side (Left and Right), ROI (Frontal, Central,
Parietal, Occipital, and Temporal), and Time (session 1 and session 2), underlining the stability of the
ApEn measure as evaluated with the present methodology even when performed within a longer
time frame.

The shapes for the analysis of stability and reproducibility of the ApEn are not shown since the
trend of the measure was the same represented in the main analysis (Figure 3).

Moreover, a comparative analysis aiming to test another measure of entropy to assess hemispheric
differences was performed. In particular, the Shannon entropy has been chosen to evaluate if another
measure could be able to detect the same or even more hemispherical differences than ApEn did.
Shannon entropy has been largely employed not only in EEG analysis [34,53–55] but also in other
fields, such as ECG one [56,57].

The comparative analysis was performed on the same group of subjects as the main analysis, thus
on the same EEG recordings. The same ANOVA design of the main analysis was used.

The results showed a trend that is very close to that of ApEn. However, no statistically significant
interaction (F (4, 68) = 2.0142, p = 0.10222) has been revealed between the factors Side (Left and Right)
and ROI (Frontal, Central, Parietal, Occipital, and Temporal). In particular, only a tendential trend
(p = 0.1) has been found in the occipital region between the left and the right hemisphere, while the
ApEn proved to be able to differentiate the two hemispheres in the mentioned area.

4. Discussion

The present study aimed to evaluate brain hemispheric differences using the nonlinear entropy
property, evaluated specifically through the measurement of ApEn, applied to eyes-closed resting
EEG recordings. Furthermore, we evaluated the reproducibility and stability of ApEn measure across
separate recording sessions within a relatively brief period. From now on, we will refer to ApEn simply
by entropy, without forgetting that entropy is a broad concept, while ApEn is the alternative, among
the many ones, which has been chosen in the present study to measure entropy from data.

Entropy applied to EEG data has been demonstrated to clearly differentiate a normal awake brain
state from a vegetative one and to represent a good predictor for recovery [58].

Our results showed significant differences in the occipital region, with higher values of entropy,
measured by ApEn, in the left hemisphere than in the right one. Moreover, no significant interactions
were found when the Time factor was included; this underlies the stability of the present methodology,
at least when carried out in a short time lap.

The present finding in the occipital asymmetry is in line with previous evidence showing that
entropy is higher in the left posterior regions than in the right ones [39].

We could speculate that this brain behavior stems from the different functions that the occipital
areas of the two hemispheres support. Over the last decades, in effect, the brain interhemispheric
differences have been widely explored to understand the neural basis of functional asymmetries and
the factors that modulate cognitive specialization in the brain.

From a morphofunctional point of view, the brain can be seen as a set of partially independent
neuronal systems, each dedicated to carrying out its specific function. However, the functional
specificity of the cerebral neuronal systems does not imply their complete segregation, i.e., their
activities are indeed coordinated by reciprocal links and by centers with diffuse projections that ensure
the unity of brain activities [59].
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In particular, the posterior regions of the brain receive information from the external world
through the primary sensitive areas of parietal, occipital, and temporal lobes [60].

Besides, all the visual information is processed in the occipital lobe, including the information on
posture and balance; indeed, one of the most important functions of the occipital lobe is receiving and
interpreting visual information. Through the neurons of the visual areas, the occipital lobe is involved
in functions such as reading, understanding of written language, visual perception, recognition of
colors and shapes of objects, perception of depth, and recognition of moving objects. [61,62].

Several studies have explored the functions of the occipital lobe in different experimental conditions,
showing how posterior brain regions of different hemispheres become active with different intensity
also in closed-eyes conditions.

For instance, an fMRI study [63] exploring the differences in the hemisphere activation for two
types of emotions, namely, basic emotions (e.g., anger and surprise) and self-conscious ones (e.g., pride
and embarrassment) has found more activation for the latter than the former in left middle occipital
regions in subjects inferring other people’s emotional states (decoding process).

Interestingly, injury to the occipital lobe appears to cause problems in object recognition such as
in Anton syndrome, a disorder called cortical blindness where, while preserving intact peripheral
environmental vision, subjects are unable to recognize objects [64].

A recent study has also found a relationship between the activity of the occipital regions and
anxiety [65]. The left and right hemispheres of the brain are involved in different mechanisms for
anxiety; indeed, the left hemisphere seems to be involved in its arousal. Moreover, it seems that the
occipital cortex activity may reflect the anxiety state of healthy individuals.

Several studies have shown how the occipital areas of the two hemispheres are engaged differently
in the cerebral functions [66,67]. Our data analysis showed a distribution of entropy that reflects how
the hemispheres become active with different intensity. Entropy is a measure of signal predictability
and quantifies the degree of the disorder of a system and the complexity of dynamic changes, so we
could hypothesize that the high or low randomness values of the revealed electrical activity of a specific
hemisphere are the result of the subject’s mental state and predisposition to the current activity. Both
nonlinear and linear measures have certain advantages and disadvantages in the study of bioelectrical
signals but due to the nonlinear and nonstationary properties of brain activity, nonlinear approaches to
EEG analysis, such as entropy measurement, proved to be useful tools for researching physiological
and pathological features of the brain networks [1].

The measurement of the ApEn represents an interesting probe to study brain networks. Thanks to
the stability of this measure, further studies could evaluate its trend in the two hemispheres
through different experimental conditions and different groups of subjects. Furthermore, in a clinical
context, this technique might provide more insight into the pathophysiological processes underlying
age-related brain disconnection as well as for monitoring the impact of eventual pharmacological and
rehabilitation treatments.
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