
Research Article
DetectionofDiabeticRetinopathyUsingBichannelConvolutional
Neural Network

Shu-I Pao,1 Hong-Zin Lin,2,3 Ke-Hung Chien,1,4 Ming-Cheng Tai,1,4 Jiann-Torng Chen,1

and Gen-Min Lin 4,5,6

1Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
2Department of Ophthalmology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
3Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
4Department of Medicine, Hualien Armed Forces General Hospital, Hualien 971, Taiwan
5Department of Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 114, Taiwan
6Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA

Correspondence should be addressed to Gen-Min Lin; farmer507@yahoo.com.tw

Received 10 March 2020; Accepted 18 May 2020; Published 20 June 2020

Academic Editor: Enrico Peiretti

Copyright © 2020 Shu-I Pao et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Deep learning of fundus photograph has emerged as a practical and cost-effective technique for automatic screening and diagnosis
of severer diabetic retinopathy (DR). ,e entropy image of luminance of fundus photograph has been demonstrated to increase
the detection performance for referable DR using a convolutional neural network- (CNN-) based system. In this paper, the
entropy image computed by using the green component of fundus photograph is proposed. In addition, image enhancement by
unsharp masking (UM) is utilized for preprocessing before calculating the entropy images. ,e bichannel CNN incorporating the
features of both the entropy images of the gray level and the green component preprocessed by UM is also proposed to improve
the detection performance of referable DR by deep learning.

1. Introduction

Retinopathy often refers to retinal microvascular damage
resulted from abnormal blood flow and may cause visual
impairment. Frequently, retinopathy is an ocular manifes-
tation of diabetes or hypertension. It is predicted that around
600million people will have diabetes by 2040, with one-third
estimated to have diabetic retinopathy (DR). Early detection
of DR by regular clinical examination and prompt treatment
are essential for the prevention of vision impairment and to
raise living quality [1–4]. Fundus photography has been
widely used worldwide to be an ophthalmologic screening
tool utilized for detecting DR [5]. Retinal telescreening with
remote interpretation by an expert for evaluation of DR may
be useful in helping rural and medically underserved pa-
tients [6]. However, some diabetic patients cannot afford the
cost of an ophthalmologist visit [7]. In addition, the as-
sessment of DR severity needs specialized expertise, and the

agreement of interpretation results may vary from the
graders [8]. Automated assessment systems for DR image
may provide clinically effective and cost-effective detection
of retinopathy and therefore help the prevention of diabetic-
associated blindness [9].

Artificial intelligence has the potential to revolutionize
the traditional diagnosis method for eye disease and bring
out a significant clinical impact on promoting ophthalmic
health care service [10–13]. Automated DR detections have
been previously studied [14–18]. Deep learning of fundus
photograph has emerged as a practical technique for au-
tomatic screening and diagnosis of DR. ,e effective deep
learning system is able to correctly and automatically
identify severer DR with equal or better accuracy than the
trained graders and retina specialists [19], and thus, it can
benefit the patients in medically underserved areas that have
limited numbers of ophthalmologists and rare medical re-
sources. ,e convolutional neural network (CNN), a core
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model of deep learning in computer vision, has yielded
impressive results in terms of prediction and diagnosis in
medical image classification. ,e entropy image of lumi-
nance of fundus photograph, which involves measuring the
complexity of a retinal image, has been demonstrated to
increase the detection performance of referable DR for a
CNN-based system in [18].

Several image processing methods have been discussed
for the retinal image to meliorate microaneurysm detection
in [20]. An image enhancement method is proposed to
increase the contrast and improve the overall appearance of
retinal image by taking the information of color models in
[21]. ,e green component of the RGB retinal image is used
for preprocessing of improved blood vessel and optic disc
segmentation in [22]. In [23], the green component of retinal
image is also used to train a network to segment the macular
region. In this paper, we extract the green component of
color fundus photograph and enhance the details by unsharp
masking (UM), a classical tool for sharpness enhancement
[24] and has been applied to fundus photograph [25, 26] and
medical images [27, 28], before calculating the entropy
images. ,e proposed bichannel CNN is trained by incor-
porating the features of both the entropy images from the

gray level and the green component of fundus photograph
preprocessed by UM to heighten the detection of referable
DR.

2. Materials and Methods

2.1. Dataset and Grading. ,e total of 35,126 color fundus
photographs with the sizes from 433× 289 pixels to
5184× 3456 pixels is obtained from the publicly available
“Kaggle Diabetic Retinopathy” dataset [29–34], which is
acquired by using various digital fundus cameras in several
eye centers in California and around the United States. We
select 21,123 color fundus photographs with good image
quality. ,e experimental setup is the same with that in [18].

,e retinal images obtained from the Kaggle dataset have
been independently graded by well-trained clinicians
according to the International Clinical Diabetic Retinopathy
Disease Severity Scale: no apparent retinopathy (grade 0),
mild nonproliferative DR (grade 1), moderate non-
proliferative DR (grade 2), severe nonproliferative DR
(grade 3), and proliferative DR (grade 4) [35]. ,e image
numbers for grade 0, grade 1, grade 2, grade 3, and grade 4
are 16,500, 1,333, 2,000, 645, and 645, respectively. Referable
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Figure 1: ,e dataflow of preprocessing for the retinal images.
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Figure 2: ,e diagram of the proposed bichannel CNN model.
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DR is defined as the presence of severe DR grades 2–4 (3,290
images, 15.6%) that requires a referral to the eye specialist
and used as the output for the deep learning in this paper.

2.2. Data Augmentation. ,e 21,123 eligible color fundus
photographs are resized to a resolution of 100×100 pixels.
,e resized images are increased by data augmentation using
flipping and rotation. ,e retinal images of grade 1–grade 4
are randomly selected from the augmented images to the
numbers 4,375 (13.26%), 4,375 (13.26%), 3,875 (11.74%), and
3,875 (11.74%), respectively, for a total of 16,500 images
balanced with grade 0 (16500, 50%). In total, 33,000 images
are used for experiments. To compose a total of 30,000 retinal
images in the training set, 15,000 images of grade 0 and 15,000
images of grade 1–grade 4 (4,000, 4,000, 3,500, and 3,500,
respectively) are randomly chosen.,en, the remaining 1,500
images of grade 0 and the 1,500 images of grade 1–grade 4
(375, 375, 375, and 375, respectively) are utilized as the test set.

2.3. Preprocessing of Retinal Images. Figure 1 illustrates the
dataflow of preprocessing for the retinal images in the pro-
posed method. After resizing to a resolution of 100×100 from

original retinal fundus photograph, the green component is
extracted from the retinal image with the RGB color model.
,e luminance conversion is calculated from red (R), green
(G), and blue (B) components of color retinal fundus pho-
tograph by equation (1) to obtain the gray level image as in [18].

Gray Level � 0.299∗R + 0.587∗G + 0.114∗B. (1)

In order to enhance of the details of the retinal image, the
UM technique is utilized to amplify the high-frequency parts
of the gray level (luminance) and the green component of the
retinal image before computing the entropy images. An
unsharp mask is obtained by subtracting a Gaussian blurred
image from the original image. ,e unsharp mask contains
high-frequency information associated with edges. ,en, a
scaled mask is added to the original image to create an
enhanced image.

,e entropy image of luminance of fundus photograph
represents the complexity of the original retinal image and
benefits the training of the CNN-based deep learning system
[18]. ,e values in the entropy image are calculated locally
from n x n blocks tomeasure the heterogeneity.,e entropy is
a function of the probability distribution of the local intensity.
Equations (2) and (3) represent the values in the entropy
images for the two inputs of the proposed bichannel CNN.

Egray � − 
i

Pgray UM(i) × log2Pgray UM(i), (2)

Egreen � − 
i

Pgreen UM(i) × log2Pgreen UM(i), (3)

where Pgray_UM (i) and Pgreen_UM (i) denote the relative
frequencies associated with the i-th intensity within a n x n
block in the gray level and the green component of retinal
image, respectively, after processing by UM. Since the result
of n= 9 reaches the maximal accuracy among the various
block sizes as exhibited in [18], accordingly, n= 9 is also
chosen to calculate the entropy images of the gray level and
the green component of retinal image after applying UM in
our experiments. ,e entropy images use the statistical
characteristics of the local areas and present the local
structural information of the retinal images.,e pixels of the
entropy image with intensities between 0 and 255 are
rescaled to the values between 0 and 1 to be the CNN inputs.

2.4. Deep Learning by Bichannel Convolutional Neural
Network. ,e convolutional neural network (CNN) is used
for the feature learning of referable DR in this study. We

Table 1: Performance comparison of various input images of the CNN for referable DR.

Input images of the CNN Accuracy (%) Sensitivity (%) Specificity (%)
Original photograph [18] 81.80 68.36 89.87
Entropy image of the gray level [18] 86.10 73.24 93.81
Entropy image of the green component 87.27 76.70 93.07
Bichannel, entropy images (gray and green) 87.37 76.93 93.57
Entropy images of unsharp masking gray level 86.87 75.09 93.86
Entropy image of unsharp masking green component 87.41 76.75 93.28
Bichannel, entropy images (unsharp masking gray level and green component) 87.83 77.81 93.88
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Figure 3: AUC of the ROC curve comparison of deep learning by
the proposed method and the original photograph.
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construct a bichannel CNNmodel to simultaneously process
the entropy images of luminance (gray level) and the green
component after processing by UM as shown in Figure 2.
For each channel, 4 convolutional layers are with 5× 5
kernels, and the numbers of filters are 32, 64, 64, and 128 in
successive layers. Maximum pooling, rectified linear unit
activation function, and dropout (set to 0.3), to prevent
overfitting, are used. After flattening from the two channels,
the fully connected layers are linked to statistically deter-
mine the detection of referable DR. ,e proposed referable
DR detection method is coded by TensorFlow software with
Python. ,e cross-entropy loss function and the Adam al-
gorithm with learning rate 0.0001 are adopted for training
the network.

3. Results and Discussion

Performance evaluation consists of several standard mea-
surements including accuracy, sensitivity, specificity, and the
area under the receiver-operating characteristic curve (AUC
of the ROC curve) of the automatic screening for the
presence of referable DR. We use the clinically defined
referable DR in the Kaggle dataset as the benchmark to
validate the proposed algorithm.

Table 1 compares the detection accuracy, sensitivity, and
specificity for referable DR by various retinal image inputs to
the CNN. As revealed in [18], the result of the entropy image
of the gray level outperforms that of the original photograph.
,e proposed method utilizing the entropy image of the

green component provides better accuracy and sensitivity
than the entropy of luminance in the fundus photograph.
Employing the entropy image of the green component can
improve the accuracy and prevent under diagnosis by ele-
vating sensitivity with a negligible loss of specificity. By
applying the bichannel CNN with the two inputs of the
entropy images from the gray level and green component,
the performance is better than that of the single-channel
CNN of individual input.

All of accuracy, sensitivity, and specificity increase when
the entropy image is obtained from the preprocessed gray
level or green component by UM. Since the contrast is
enhanced by UM, the corresponding bichannel CNN yields
the best results for deep learning. ,e measurements of the
proposed bichannel CNN model regarding accuracy, sen-
sitivity, and specificity are 87.83%, 77.81%, and 93.88%,
respectively, which are better than 86.10%, 73.24%, and
93.81%, respectively, of the previous study [18], which only
implements the single-channel CNN by training the entropy
image of the gray level of fundus photograph alone.

Furthermore, the AUC of the ROC curve is used as the
integral performance index. As shown in Figure 3, the
proposed bichannel CNN method obtains the AUC of 0.93,
which is better than 0.87 of the CNN trained by original
photograph.

Figure 4 shows the color fundus photograph of DR grade
3 with the resolution of 2592×1944, the respective inten-
sities of monochromatic R, G, and B components, and the
histograms. Excluding the peak values for all of R, G, and B
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Figure 4: Original retinal photograph (grade 3) and the histograms. (a) Original color (2592×1944). (b) Red component. (c) Green
component. (d) Blue component. (e) R, G, and B histograms.
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components with very low intensities in the histograms
resulting from the dark background, broader distribution of
the green component is observed from Figure 4(e). ,e
histogram in Figure 4(e) can depict the amount of contrast,
which is the measurement of brightness difference between
light and dark regions in the retinal image. Broad histogram
expresses the image with significant contrast, whereas
narrow histogram represents less contrast.

From the observation of red, green, and blue components
for monochromatic fundus photograph in previous studies
[36, 37], green light provides the best overall view of the retina
and displays excellent contrast because the retinal pigmenta-
tions reflect green lightmore than blue light. Hence, green filter
is utilized for enhancing the visibility of retinal vasculature,
drusen, hemorrhage, and exudate. ,is finding motivates us to
extract the green component from color fundus photograph
before calculating the entropy image for the input of the CNN.
It benefits the learning of the CNN to recognize lesions using
the local features by entropy images.

Figure 5 illustrates the resized, preprocessed, and en-
tropy images in the dataflow of the proposed system for
Figure 4(a). Our proposed approach utilizes UM to increase
contrast, which can display a significant visual impact by
emphasizing texture in the retinal image. From Figures 5(f)
and 5(h), more structural information is enhanced by UM
than from Figures 5(b) and 5(d). Severer DR gives rise to
higher heterogeneity than mild or no DR in a retinal image.
To discriminate the characteristics of no or mild DR and
severer DR, the complexities of the gray level and green
component images are analyzed by computing local entropy.
,e low-entropy image has low complexity; instead, the
high-entropy image represents high complexity among
neighboring pixels. Severer DR images may contain neo-
vascularization or the lesions more than just micro-
aneurysms and thus have more heterogeneous areas with
high local entropy values; on the contrary, no or mild DR
images may have more homogenous regions with low local
entropy values.

Based on the training of the CNN by the entropy image
of the gray level as shown in [18], the green component, UM,
and bichannel CNN model are incorporated in this study to
improve the detection performance and may assist oph-
thalmologists in evaluating retinal images for more accurate
diagnoses.

4. Conclusions

A deep learning system can increase the accuracy for
detecting or diagnosing retinal pathologies in patients with
diabetes. ,e methodology of the proposed method first
includes the green component of the RGB image. ,e en-
tropy image of the green component can improve the ac-
curacy and the sensitivity. Preprocessing by UM can provide
better detection accuracy, sensitivity, and specificity. ,e
bichannel CNN with the inputs of both the entropy images
of the gray level and the green component preprocessed by
UM further advances the detection of referable DR. ,e
proposed deep learning technology can assist ophthalmol-
ogists in referable DR diagnosis and will be beneficial to the
automated retinal image analysis system.
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Figure 5: Resized (100×100), preprocessed, and entropy images of the retinal image (grade 3). (a) Color. (b) Gray level. (c) Entropy of (b).
(d) Green component (e) Entropy of (d). (f ) UM of (b). (g) Entropy of (f ). (h) UM of (d). (i) Entropy of (h).
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