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Abstract

Habitat loss and fragmentation are imminent threats to biological diversity worldwide and thus are fundamental issues in
conservation biology. Increased isolation alone has been implicated as a driver of negative impacts in populations
associated with fragmented landscapes. Genetic monitoring and the use of measures of genetic divergence have been
proposed as means to detect changes in landscape connectivity. Our goal was to evaluate the sensitivity of Wright’s Fst,
Hedrick’ G’st, Sherwin’s MI, and Jost’s D to recent fragmentation events across a range of population sizes and sampling
regimes. We constructed an individual-based model, which used a factorial design to compare effects of varying population
size, presence or absence of overlapping generations, and presence or absence of population sub-structuring. Increases in
population size, overlapping generations, and population sub-structuring each reduced Fst, G’st, MI, and D. The signal of
fragmentation was detected within two generations for all metrics. However, the magnitude of the change in each was
small in all cases, and when Ne was .100 individuals it was extremely small. Multi-generational sampling and population
estimates are required to differentiate the signal of background divergence from changes in Fst, G’st, MI, and D associated
with fragmentation. Finally, the window during which rapid change in Fst, G’st, MI, and D between generations occurs can be
small, and if missed would lead to inconclusive results. For these reasons, use of Fst, G’st, MI, or D for detecting and
monitoring changes in connectivity is likely to prove difficult in real-world scenarios. We advocate use of genetic monitoring
only in conjunction with estimates of actual movement among patches such that one could compare current movement
with the genetic signature of past movement to determine there has been a change.
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Introduction

Habitat loss and fragmentation are considered to be among the

most imminent threats to biological diversity worldwide and thus

are fundamental issues in conservation biology [1–4]. Fragmen-

tation is a complex phenomenon that is simultaneously a

consequence of habitat loss and a process in and of itself [5–7].

It is a function of the extensiveness of individual patches, distances

among those patches [8–10], the nature of the intervening

landscape [11], and how individual species are affected by each

of those aspects [12]. Understanding the joint and independent

effects of loss and configuration of the remaining habitat has long

been a major focus of landscape ecology due to conservation

implications e.g., [13–17].

Although the two phenomena are intertwined, when they are

examined separately habitat loss has repeatedly been shown to

have larger detrimental effects than fragmentation alone [5,7,18–

21]. Still, increased isolation has been implicated as a driver of

population extinctions [22], declining population size of interior

species [13,23], altered social behavior [24], reduced population

viability [25,26], demographic change in general [11,27,28], and

spread of invasive species [29]. Reduced migration under lower

levels of connectivity will have genetic consequences of reduced

effective population size (Ne) and increased rates of inbreeding and

genetic drift within newly isolated habitat patches that will affect

short- and long-term potential for survival [30–33].

Changes in landscape composition and configuration associated

with the fragmentation process have been quantified and

monitored using an extensive array of landscape indices [34–40].

Assessing the consequences of these changes for populations and

processes fundamentally requires linking the structural attributes

of landscape pattern with potential or actual movement of

individuals among patches [8,40–43]. Movement is often docu-

mented using habitat suitability, mark-recapture, radio-telemetry,

experimental removal-recolonization studies [19,41] and demo-

graphic monitoring [44–46]. Unfortunately, such studies can be so

data- and time-intensive that there may be little practical

application for conservation of most species e.g., [47,48].

Observing physical movement of cryptic or primarily sessile

organisms in which mobility is limited to particular life stages is

especially challenging [49,50].

Genetic monitoring [51] has been proposed as a minimally

invasive, relatively cost-effective means of quantifying genetic

effects of changes in landscape structure. Population genetic

parameters may be more sensitive for detecting changes in

connectivity than traditional demographic estimates that have

large error components [52]. Thus, although in many cases

conservation biologists are concerned about genetic diversity for its
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own sake, here we are interested in the potential for using genetic

changes that result from fragmentation to quantify changes in the

ecological process of movement.

Direct genetic methods have been developed to detect actual

dispersal events [53–57]. However, it is more common for

investigators to document fragmentation using indirect methods

that quantify the amount of divergence in populations in putatively

fragmented habitat. Although potentially more powerful analytical

methods have been developed [58–61] and are being tested

[62,63], most investigators use Wright’s Fst [64] and its analogues

[65–73].

Despite its fundamental importance and strong theoretical

foundations, detecting genetic effects of fragmentation in the wild

has not been as straightforward as one might expect. Attempts to

link indices of landscape structure to ecological and evolutionary

processes have not yielded consistent relationships and many

empirical investigations of fragmentation fail to detect definitive

effects [74–76]. In particular, empirical data are often equivocal

relative to predictions of the impacts of fragmentation on genetic

divergence. Inconsistent relationships may result from non-

monotonic relationships between many landscape metrics and

landscape configuration [10] or non-linear or threshold-like

population responses along the fragmentation gradient. Addition-

ally, not all habitat that is perceived as fragmented by humans is

actually fragmented from the perspective of a species of interest,

thus some investigations may be trying to quantify effects of

fragmentation where it actually does not exist. As mentioned

above, the point at which discrete patches are functionally

fragmented depends on the scale at which a species perceives

and interacts with the landscape [77–79]. For species in patchy

habitats, connectivity ultimately depends on the degree to which

land cover types between discrete patches are barriers, versus

filters, versus easily traversable; information that is lacking for most

species. Moreover, even if movement through a landscape is

impeded or precluded through anthropogenic change, long-lived

individuals that pre-date the fragmentation event would provide a

genetic signature of connectivity that no longer exists [74]. These

issues can be addressed through careful study design in which

temporal and spatial sampling scales match potential scales of

fragmentation based on the biology of the focal organism.

Of greater concern is the potential that characteristics of Fst-

related values might make them insufficient for detecting habitat

fragmentation on time scales that are relevant for conservation

management. Wright’s Fst and subsequent derivations have a

number of specific assumptions that are almost always violated in

natural systems and complicate interpretation of genetic diver-

gence and gene flow among populations [80–83]. Because Fst

integrates over evolutionary time it is difficult to separate current

from historical processes based on a single estimate of pattern

alone and it may be slow to reflect changes in migration following

a fragmentation event, especially if Ne remains large. Additionally,

the alleles that are most likely to be lost through drift are at low

frequencies in populations and these alleles contribute little to Fst

values [84]. Slow response may also arise from the fact that when

connectivity is only reduced rather than eliminated entirely,

estimates of Fst may remain close to zero [83]. Finally, measures of

genetic structure (e.g., Fst, Gst, Wst) can be depressed when within-

subpopulation heterozygosity or variance is high relative to

among-subpopulation levels, which is common with highly diverse

markers e.g., microsatellites [85–89]. Fst–related measures calcu-

lated from such data will never approach unity regardless of the

underlying patterns of allelic diversity, and they do not behave

monotonically. Hedrick [86] sought to overcome the dependence

of Gst (a generalization of Wright’s Fst to include multiple alleles) on

levels of heterozygosity by standardizing the measure against the

maximum Gst possible for the observed amount of heterozygosity.

The resulting statistic, G’st varies from 0–1 in a way that better

reflects the underlying patterns of genetic diversity [86], but

remains fundamentally based on heterozygosity. Jost [85]

proposed a measure of genetic divergence based on allelic diversity

(D) that varies between 0 and 1 regardless of within-population

heterozygosity, and it is suggested to better reflect population

differentiation. Heller and Siegismund [90] found that values of

Jost’s D calculated from data in 34 published studies were ,60%

greater than the corresponding Gst values, and that G’st values were

,85% greater than Gst. The increased magnitude of both G’st and

Jost’s D and potential wider range of values may provide greater

ability to detect recent fragmentation events. Additionally, D is

expected to be more sensitive because it is calculated based on

allele diversity which will decline more rapidly than heterozygosity

[84]. More recently Sherwin has proposed a standardized mutual

information (MI) index [91,92] based on Shannon’s index that also

varies between 0 and 1 and is independent of heterozygosity with

the added property weighing all alleles according to their

frequency (i.e. neither favoring rare nor common alleles).

Because we were interested in effects of fragmentation

independent of habitat loss, we evaluated the ability to detect

genetic effects of fragmentation with Fst, G’st, MI, and D over

timeframes associated with anthropogenic habitat modification

(i.e., ,200 years) while controlling for population size. The

number of generations necessary to make such an evaluation

renders the task infeasible in a field setting. Therefore, we

developed an individual-based population model to simulate

genetic divergence among recently fragmented populations and

measured Fst, G’st, MI, and D over time. Potential for detecting

change in these metrics will vary based on the amount and nature

of migration among populations; therefore, we simulated two

severe cases of fragmentation. In the first, migration among a set of

historically panmictic populations was abruptly and completely

stopped. In the second, limited gene flow among populations was

allowed and subsequently ceased. The first scenario provides the

most ideal situation for detecting change – going from a base

condition of a Wright-Fisher population to complete isolation. The

second provides a more realistic starting condition in which there

is a pre-existing level of divergence among populations onto which

anthropogenic fragmentation is imposed. We complement a recent

investigation of the effect of dispersal distance among individuals

on the time required to detect an abrupt barrier to gene flow [63]

by examining multiple discrete populations and by quantifying the

influence of population size, overlapping generations, and

sampling effort in terms of individuals and loci on ability to detect

a significant change in four measures: Fst, G’st, MI, and Jost’s D.

Methods

Model Description
We generated six homogeneous panmictic populations of equal

size at the start of each run. Panmixia among populations was

created by allowing mating at random among individuals in all

populations. The model allows variation in distances among

individual population pairs but for the purposes of this evaluation

all populations were equally isolated. Census size maxima (Nmax)

within populations were set to 25, 75, 100, 500, 1000, and 3000

individuals (Ne was subsequently calculated) which encompasses

the size ranges of populations of most plant species listed under the

U.S. Endangered Species Act (Neel unpublished data), and 71% of

minimum viable population estimates for plant species world wide

[93]. Initial size of each population was set to 75% of the size limit

Can Genetic Differentiation Detect Fragmentation?
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for each run and the size cap was reached within one or two

generations.

At initiation, individuals were assigned two alleles at each of 20

unlinked microsatellite loci. Allele size ranged between 5 and 50

repeat units. Alleles for each locus could take on any value within

the given range, and were drawn from a normal distribution with

parameters m= mean of the size range of the locus and s2 = 5.

Drawing initial allele frequencies from a normal distribution allows

for accurate simulation of the stepwise mutational model of

microsatellite evolution throughout a simulation [94]. These

starting conditions yielded between 7 and 42 alleles per locus at

the start of each simulation depending on the population size.

Mutations occurred every 0.004 gamete transfer events [94]. By

using a stepwise mutational model of microsatellite evolution,

small changes in allelic state were more likely than large changes

and the direction of mutation tended toward the mean size range

of each locus [94].

Individuals were simulated to be hermaphroditic, annual plants

that were self-compatible, but that did not self-fertilize more than

what would be expected at random, and therefore the amount of

selfing depended upon population size. All individuals had an

equal probability of mating each generation. Individuals from

within a population had an equal probability of being a father for

all individuals within that population. The proportion of

individuals contributing seed to the next generation varied around

a normal distribution with the parameters m= 50% total popula-

tion size and s2 = 1. The number of seeds produced per female was

drawn from a normal distribution with parameters m= 35 and

s2 = 5 to provide stochastic variation around a likely number of

seeds per plant. Each seed had a randomly selected father. When a

seed bank was included in the model, those seeds not germinating

entered the seed bank; otherwise, seeds that did not germinate

immediately were removed. Germination potential of seeds in the

seed bank decreased over time following a negative exponential

function. As the size of each population approached the

population size limit, the number of viable seeds produced was

reduced to reflect density dependence [95].

Each cap size was run under four conditions that independently

varied presence or absence of a seed bank (i.e., non-overlapping

versus overlapping generations) and presence or absence of

preexisting population structure prior to population isolation. To

simulate absence of population structure, panmictic populations

were immediately isolated to yield an abrupt fragmentation event

with the highest likelihood of being detected. To more closely

reflect realistic conditions, we simulated preexisting population

structure by limited seed and pollen migration as described below

for 500 generations prior to stopping all migration.

At least 85% of pollen grains remained within a population and

15% had some probability of moving. Probability of dispersal from

a population followed a Laplace distribution (m= 0.4, b = 0), a

commonly used dispersal kernel for plants that reflects a range of

common dispersal syndromes [96–99]. Seeds produced from

matings within populations could either stay within the population

in which they were generated or they could disperse. Probability of

dispersal followed the same dispersal kernel described above. After

the dispersal step, seeds had a 10% chance of germinating the year

after they were produced and their ultimate fate depended on

whether or not generations overlapped. Although the specific

values for seed production, seed germination, and pollen and seed

dispersal were arbitrary, they were within the range of values that

have been documented for plant species [100–106].

Simulations with preexisting population structure ran under the

above conditions for 500 generations prior to complete isolation,

those that began from panmixia were immediately isolated.

Following isolation in both simulation types, the model proceeded

for 200 additional generations with no migration among the 6

populations. We conducted 200 independent simulations for each

of the four conditions for each of the six population size caps,

yielding 24 model configurations. The resulting 4,800 simulations

were run on The Lattice Project, a Grid computing system [107–

110].

During simulations, individual populations were allowed to go

extinct and to be recolonized with migrants from other popula-

tions (when migration was allowed) or from the seed bank (when

overlapping generations were present). At small population sizes,

individual populations would frequently go extinct. When all

populations went extinct, the simulation was restarted. However,

extinction of all six populations occurred in only ,1/100 cases.

We determined the total number of alleles, observed (Ho) and

expected (He) heterozygosity at each generation.

In simulations without overlapping generations, we calculated

the inbreeding Ne at each generation as Ne~
N k{1ð Þ

k{1z Vk=kð Þ where k

is the mean number of progeny and Vk is the variance in the

number of progeny at each generation [111]. In simulations with

overlapping generations, Ne was calculated as Ne = T(Nb) where T

is generation time defined as the average age of parents including

dormancy [112] calculated following Vitalis et al. [113] and Nb is

the effective number of breeders in a given year [114]. Effective

population size for each population, and for each run was

calculated as the harmonic mean across all generations and then

averaged across simulation runs.

At each generation we calculated Weir and Cockerham’s [115]

unbiased estimate h, Hedrick’s G’st [86], Sherwin’s standardized

MI, and Jost’s D [85] using the estimator Dest_Chao following Chao

et al. [116]. We estimated the four measures from the total

number of individuals using all 20 loci at each generation to

provide the census or ‘‘true’’ estimate of h, G’st, MI, and Dest_Chao

for comparison with the subsamples of individuals and loci

discussed below.

We assessed the number of generations required for h, G’st, MI,

and Dest_Chao to reach equilibrium by visually assessing asymptotic

behavior. We used Fisher’s exact tests to assess whether each

estimated value was significantly different from 0, assuming

individuals were members of a global population and then

randomly reallocated to populations while maintaining sample

sizes at the realized values, and recalculating each statistic [117].

The actual value for each run was compared with the distribution

of 2000 such randomizations to obtain a p-value. The number of

generations after population isolation at which h, G’st, MI, and

Dest_Chao became significantly different from values at the last

time-step with gene flow was tested using a one-way Dunnet

multiple mean comparison test in R v2.14.1 [118]. To determine

the power to detect differences we calculated the proportion of

runs at each generation that was significantly different from 0. The

magnitude and rate of change between consecutive generations

was calculated for the first 24 generations following fragmentation

for all simulations.

We sampled factorial combinations of 10, 15, and 20 loci, and

20, 30, and 50 individuals (as allowed by total maximum

population sizes) at every generation over the course of each

simulation run. To evaluate the effect of sample size on potential

to detect fragmentation, we compared estimates of h, G’st, MI, and

Dest_Chao calculated for all factorial combinations of individuals

and loci to the corresponding census value using a Tukey multiple

comparison test in R. In addition, we tested estimates of each

measure from all factorial combinations for significant departure

from 0 using the methods described above.

Can Genetic Differentiation Detect Fragmentation?
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Results

All Individuals and Loci
As expected, the number of alleles, Ho and He tended to be

higher through time in larger populations (Figure 1). Model runs

with overlapping and non-overlapping generations yielded similar

average allelic diversity for any given Nmax (2–42 alleles per locus).

However, model runs with overlapping generations tended to yield

higher average Ho and He through time than did runs with non-

overlapping generations, and differences were more pronounced

at smaller Nmax (Figure 1).

In absence of overlapping generations, the harmonic mean

values of Ne estimates for each of the six subpopulations based on

all individuals averaged over all runs were 13, 40, 52, 265, 531,

1601 individuals. These Ne values represented roughly half the

actual Nmax values of 25, 75, 100, 500, 1000, and 3000,

respectively. With overlapping generations, the harmonic mean

of Ne estimates for each subpopulation averaged over all runs was

roughly twice the Nmax: 43, 143, 193, 975, 1994, 5994 individuals,

respectively.

As expected from theory, behavior of h, G’st, MI, and Dest_Chao

at a given time point depended on three factors: Nmax, presence or

absence of overlapping generations, and presence or absence of

population sub-structuring prior to fragmentation. Smaller Nmax

predictably yielded larger values for any given time step (Figures 2,

3, 4, 5) except for Dest_Chao when Nmax = 25 and generations did

not overlap. For a given Nmax, measures were most often lower in

simulations with overlapping generations than those without

(Figure 2, 3, 4, 5). In simulations with population sub-structuring

prior to fragmentation, h and G’st values followed similar

trajectories to those in which isolation occurred immediately after

a period of panmixia (Figures 2 & 3). Dest_Chao and MI values after

isolation were lower when prior population sub-structuring was

included whereas h and G’st were of similar magnitude (Figures 4 &

5).

Across all simulations, values of G’st, MI, and Dest_Chao were

generally larger than h under the same conditions when there was

no limited migration prior to isolation (Figures 2, 3, 4, 5). When

population sub-structuring preceded fragmentation and genera-

tions did not overlap, the magnitudes of MI and Dest_Chao were

lower than h for Nmax = 25, across all 200 generations of isolation

both with and without overlapping generations (Figures 4 & 5).

When G’st, MI, and Dest_Chao were calculated for Nmax = 25 with

non-overlapping generations and population sub-structuring, it

had a similar rate of increase to Nmax = 75 and Nmax = 100 under

the same conditions (Figure 3, 4, 5). We found two additional

anomalies: a small peak in G’st, MI, and Dest_Chao existed at the

start of simulations that included migration when Nmax #100

individuals (Figure 3, 4, 5).

An asymptote in values of all four measures is expected as

mutation-drift equilibrium is reached [85,86]. For h, this

asymptote was not reached during the 200 generation model runs

when generations overlapped (i.e., with or without prior migration;

Figure 2). For simulations without overlapping generations (with

Figure 1. Values of Na, Ho, and He for 20 loci and all individuals across all simulation conditions. Lines from top to bottom represent the
Nmax’s of 3000, 1000, 500, 100, 75, and 25 individuals.
doi:10.1371/journal.pone.0063981.g001
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or without prior migration, h values reached equilibrium after 60

generations when Nmax = 25 individuals, and approached equilib-

rium by the 200th generation, when Nmax = 75 or 100 individuals

(Figure 2). G’st, MI, and Dest_Chao failed to reach equilibrium with

either overlapping or non-overlapping generations when there was

prior migration, but rapidly did so for Nmax #100 when isolation

occurred from panmixia (Figures 3 & 5). Thus, when Nmax $500

individuals, there was no asymptote in h, G’st, MI, or Dest_Chao

values within time scales that would affect monitoring of

anthropogenic landscape change, under any of the simulation

conditions.

When calculated using all loci and individuals, it took two

generations after cessation of gene flow for all measures to become

significantly different from zero in runs starting from panmixia

and from the magnitude at the final time step with migration in

the runs with pre-existing structure (Table 1). For the four

combinations of pre-existing structure versus panmixia and

overlapping versus non-overlapping generations, the magnitude

of h, when it became significant following the fragmentation event,

was between 3.461024 and 0.059. The magnitude of change in

G’st at the point of significance was between 0.003 and 0.30

depending on the case. At the same time point, the magnitude of

change in MI was between 0.003 and 0.19 and in Dest_Chao was

between 0.003 and 0.47. Regardless of the simulated conditions,

when Nmax.500 the absolute magnitude of change between

generations was exceedingly small (h,0.0033, G’st ,0.03, MI,

,0.001, Dest_Chao,0.03).

Beyond the second generation post-isolation, the magnitude of

change in G’st, MI, and Dest_Chao between generations in the

scenario with highest likelihood of detection (i.e., no overlap in

Figure 2. Average h calculated from all individuals through time for all Nmax sizes. Negative generations indicate generations with
migration prior to the fragmentation event.
doi:10.1371/journal.pone.0063981.g002
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generations and isolation occurred from panmixia) decreased

sharply for a given Nmax (Figure 6). The decline in changes in h
between consecutive generations was more subtle, especially

through generation 10 in smaller populations, and the overall

magnitude of values was much lower until generation 14–16. The

effect of Nmax was complicated in that changes between

generations were reduced in both small populations and large

populations, but for different reasons. The magnitude of change

between generations when Nmax = 25 was relatively constant over

time and was smaller than for Nmax = 75 because most populations

of size 25 have already gone to fixation by the second generation,

thus leaving no possibility for further divergence except through

mutation. Populations with Nmax.75 had sufficient Ne sizes to

prevent substantial divergence between subsequent generations.

Populations with Nmax = 75 thus have the largest magnitude of

change between generations until later generations when these

populations also became fixed (Figure 6). Once fixation occurred

within populations, the magnitude of change between generations

decreased to ,0.0005 for all measures. In the worst-case scenario

for detecting change (overlapping generations and isolation from

prior population sub-structure), the decline in magnitude across

generations was pronounced for all four estimators and the effect

of Nmax was more straightforward in that they declined with

increasing population size. However, the average magnitude of

those changes never exceeded 0.04 and most often was ,0.02

(Figure 6) and thus would be unlikely to be detected in field

situations. Results for the remaining two cases, 1) generations

overlapped and isolation occurred from panmixia and 2)

generations did not overlap and prior population structure was

included were intermediate to the presented cases (data not

shown).

Figure 3. Average G’st calculated from all individuals through time for all Nmax sizes. Negative generations indicate generations with
migration prior to the fragmentation event.
doi:10.1371/journal.pone.0063981.g003
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Estimates from Samples
Values of h, MI, and Dest_Chao calculated from samples were

statistically indistinguishable from the census estimate at all time

points sampled, across all simulation conditions (Tukey multiple

comparison tests not shown). Thus, for h, MI, and Dest_Chao the

samples are unbiased and accurate estimates of the census values.

In contrast, G’st for Nmax = 25 was significantly larger than the

census for the first 2 generations following isolation when 20

individuals were sampled, regardless of the number of loci

sampled. When Nmax = 75, G’st sample values were significantly

larger than the census value for all generations when 20

individuals were sampled. Finally, when Nmax.75 values of G’st
calculated from samples were significantly larger than the census

value for all generations and for all sample sizes.

All sample size combinations were sufficient for detecting

significant differences in h, G’st, MI, and Dest_Chao values from 0

(when starting from panmixia), or the value prior to isolation

(when prior migration was allowed) in 100% of replicates at

generation 2 when Nmax,500 (as opposed to census values, which

yielded significant differences by generation 2 at all Nmax values).

When Nmax$500, number of individuals and loci had a large effect

on power to detect differences and greatly increased the time

needed to reliably detect differentiation. For example, when

samples of 20 individuals and 10 loci from populations with

Nmax = 3000 with overlapping generations and isolation occurring

from panmixia required 60 generations for 100% of samples to be

significantly different from 0. For the same sample sizes, 18

generations were required when Nmax = 1000, and 12 generations

were required when Nmax = 500. When generations did not

overlap the time required for 100% of replicates to be significantly

different from 0 was reduced by 50–66% (Figures 7 and 8). It took

slightly longer for all samples to be significantly different from pre-

isolation values when prior population structure was included

(data not shown). The time required to detect a value greater than

Figure 4. Average MI calculated from all individuals through time for all Nmax sizes. Negative generations indicate generations with
migration prior to the fragmentation event.
doi:10.1371/journal.pone.0063981.g004
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zero decreased with either larger numbers of individuals or

numbers of loci (Figure 8). The addition of 10 sampled loci

provided an equivalent gain to that provided by addition of 10–20

sampled individuals (Table 2).

Discussion

Ideally, detecting changes in connectivity will provide early

warning that biologically relevant habitat fragmentation has

occurred so management action can be taken before the

consequences become irreversible [51,119]. The potential utility

of indirect genetic methods for this purpose relies on a substantial

and significant increase in genetic divergence following the end of

migration relative to preexisting structure, as well the ability to

detect that change under realistic field sampling conditions. We

documented changes in h, G’st, MI, and Dest_Chao of sufficient

magnitude for detection (e.g., .0.05) under several combinations

of population size and life history in our models. However, because

the conditions under which changes in gene flow are likely to be

detected by any of the measures were fairly restricted and because

the values that could indicate fragmentation had occurred can also

be obtained with natural subdivision. As such we suggest that these

measures alone are likely to be problematic for confirming changes

in landscape connectivity in time frames that will inform

management.

On the positive side, all census estimates of h, G’st, MI, and

Dest_Chao were significantly different from 0 and from pre-

fragmentation values within 2 generations of isolation when

populations supported ,500 individuals. This result is substan-

tially more optimistic than that of Landguth et al. [63], which

suggested that .100 generations were required for Fst to indicate

fragmentation of a continuous population of 1000 individuals

divided in half by a barrier to gene flow. Because of the lag time in

response of Fst they recommend using Mantel’s r, which required

Figure 5. Average Dest_Chao calculated from all individuals through time for all Nmax sizes. Negative generations indicate generations with
migration prior to the fragmentation event.
doi:10.1371/journal.pone.0063981.g005
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only 1–15 generations for detection based on approaching

equilibrium [63], and mention that G’st responds more similarly

to Mantel’s r, but provided no corroborating data. Because they

did not report the magnitude of change in the metrics or effective

population sizes, further direct or detailed comparisons with our

results are not possible. Our timeframe for potential detection of

significant differences was also similar to that found by England

et al. [62] based on changes in Ne from a single population of 1000

that was abruptly isolated into 10 demes of 100. Our model differs

from both Landguth et al. [63] and England et al. [62] in that we

altered connectivity alone while maintaining population size

whereas they simultaneously changed connectivity and population

size.

Although we obtained significant differences within two

generations, the magnitudes of the differences were often so small

that detection in the field could be difficult. Magnitudes were

largely dependent on the size and demography of the populations

under investigation. In the best-case scenario for detecting change

(Nmax = 25 with no overlap in generations and isolation occurring

directly from panmixia), the magnitude of h two generations after

isolation compared with the last generation with migration

increased by 0.049 resulting in an average h value of 0.04, which

would be difficult to detect as biologically significant. In the same

scenario, G’st increased by an average of 0.3 (resulting in an

average G’st of 0.56), MI increased by an average of 0.18 (giving a

average MI of 0.31) and Jost’s D increased on average by 0.42

(yielding an average value of 0.45) greatly increasing the potential

for detection relative to h estimates. In populations with $500

individuals, the change in h from prior to fragmentation to the

second generation post-fragmentation was #0.002, which would

be viewed as biologically insignificant. Although G’st, MI, and Jost’s

D all had larger magnitude increases for the same scenario

(Table 1), detecting the increases could still be difficult. In the most

difficult circumstances for detecting change (when a seed bank was

present and population sub-structuring was established prior to

isolation) none of the changes in h, G’st, MI, nor Dest_Chao exceeded

0.04 within two generations, which is well within the range of

sampling error in real populations [81,120,121]. The lower rate of

change in presence of a seedbank is likely due to the doubling of

the effective population size that occurred under these conditions.

In total, these results indicate that detecting change from a

baseline condition in two generations will be possible only when

populations are ,500 individuals and only when generations do

not overlap.

As a practical matter, detection of changes in genetic structure

due to fragmentation presumes having samples that represent

conditions prior to fragmentation for comparison. It is more likely

that connectivity will be assessed only after changes in habitat

amount and configuration have occurred because most often

species are not studied prior to becoming of conservation concern.

Despite the fact that genetic monitoring by definition requires a

multi-year approach to be effective [51], few published studies of

fragmentation have included such temporal sampling e.g., [122–

127], and even these efforts have generally not extended more

Figure 6. Magnitude of change between consecutive sets of two-generations over the first 24 generations following termination of
migration. Bars from left to right are Nmax = 25, 75, 500 and 3000 with standard error. Note the scales in the upper panel differ from those in the
lower panels.
doi:10.1371/journal.pone.0063981.g006
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than a few generations. Without pre-fragmentation data, it is not

possible to attribute significant values of genetic differentiation

measures to anthropogenic changes because such values can result

from natural subdivision of smaller populations [128]. For

example, h values at the second generation post-isolation when

Nmax.500 individuals and there is no prior migration, were

identical to cases with limited ongoing migration when Nmax#100

individuals (Figure 2). Without having precise population size

estimates, it would not be possible to determine whether a given h,

G’st, MI, or Dest_Chao value reflected small population size with a

low level of migration or lack of migration among larger

populations.

The lack of data collected prior to landscape change can be

overcome by sampling from multiple demographic cohorts

representing generations that originated before and after the

putative fragmentation event by, for example, examining differ-

ences between adults and more recent recruits [129] or sampling

across strata in a soil seed bank [130]. Several approaches can

potentially overcome lack of pre-fragmentation data when

sampling demographic cohorts is not possible. Chiucchi and

Gibbs [128] have suggested comparing estimates of gene flow from

multiple analytical approaches that reflect different time frames as

a way to compare long-term and short-term levels of differenti-

ation from a single sample. Another approach is to compare

multiple populations from similar interpatch distances in different

habitat matrix types in which there is strong contrast in gene flow,

or in locations with versus without barriers to gene flow, or by

sampling locations at varying distances from one another [131–

133]. Alternatively, one can sample the same populations at

multiple time points after landscape change and quantify the

amount of change in divergence between generations. In absence

of recent change, populations are expected to be at migration drift

equilibrium, at which point changes between generations will be

minimal (e.g, cases with limited migration, pre isolation in

Figures 2, 3, 4, 5). After fragmentation that eliminates gene flow,

rapid changes towards a new equilibrium are observed. The

average magnitude of change across generations exceeded change

seen in absence of fragmentation or in populations with

substructuring due to limited migration prior to fragmentation

(Figures 2, 3, 4, 5), indicating that samples at multiple time points

after isolation could allow detection of fragmentation and thus

provide a solution to the lack of pre-fragmentation data. However,

this signature lasts only 8–10 generations (Figure 6) when

populations are #100 individuals; beyond this point, post-isolation

the rate of change between two consecutive generations is

indistinguishable from that seen in populations prior to fragmen-

tation even though the absolute values of h, G’st, MI, or Dest_Chao

were higher than they were pre-fragmentation. In populations

with .100 individuals, divergence continued increasing for the

200 generations we modeled (Figure 6), thus providing a longer

temporal window for detecting changes across generations.

However, when Nmax$500 the magnitude of change that we

observed across generations may not be large enough for detecting

signatures of fragmentation in field conditions especially when

generations overlap and thus a time series would be inconclusive

regarding any contemporary change in genetic connectivity

(Figure 5).

Additionally, for all but annual species with no seedbank, the

number of years required to sample across generations could be

too large to provide reasonable recommendations in timeframes

that are responsive to management concerns. If generation time is

5–10 years, the 10–20 years necessary to yield a clear signal of

fragmentation relative to pre-fragmentation conditions or across

generations post-fragmentation does not constitute an early
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warning. These timeframes are also too long to be suitable for

documenting if management actions have successfully reestab-

lished connectivity in an adaptive management framework [134],

which requires regular and rapid assessment of the effects of

management treatments. Although we did not simulate restoration

of connectivity, others have found the signature of restricted gene

flow (e.g. high Fst) can persist for 15–300 generations after a barrier

to gene flow is removed depending on the dispersal distances [63].

A legacy of historical isolation within currently connected

populations would result in misidentifying such populations as

not connected by gene flow.

Should the issues surrounding sampling within the correct time

window and for a sufficient length of time be overcome, the lack of

power associated with sampling subsets of individuals and loci

could prevent detection of changes in genetic divergence in

populations of $500 individuals. Below that population size,

sample size had no effect on the power to detect significant genetic

divergence in that 100% of runs were significantly different from

pre-fragmentation values. In the extreme case (Nmax = 3000), when

generations were overlapping it took 8 generations for at least 50%

of model runs to be significantly different from zero when 50

individuals and 10 loci were sampled; this time could be reduced

to 6 generations if 20 loci were sampled. In contrast, when 20

individuals and 20 loci were sampled from each population, it took

more than 20 generations for 50% of runs to become significantly

different from zero (Figure 8). When generations were not

overlapping, these times decreased to ,4 generations for 50

individuals and ,8 generations for 20 sampled individuals and

20 loci (Figure 8). The tradeoffs between loci and individuals were

similar to those found by England et al. [62]. Given that it is often

not cost effective or feasible to obtain both additional individuals

and loci, it is encouraging that both options can improve estimates.

It is important to note that our recommendations apply only to use

of genetic data to detect a shift in genetic connectivity and are not

generalizable to all types of genetic estimates. However, our results

indicate the need for sample sizes for large populations that are

similar to those recommended for reliable and unbiased estimates

of trends in effective population sizes (a minimum of 60

individuals, sampled at least 5 years apart, and genotyped at

15 loci [135]).

In general, over the first few generations after isolation we found

that Dest_Chao MI, and G’st represented genetic divergence more

rapidly than did Wright’s Fst across all simulation conditions. This

is not that surprising given that these three measures avoid biases

related to high sample heterozygosity [85–87] in that Dest_Chao and

MI are calculated directly from allele frequencies and G’st controls

for maximal observed heterozygosity. Although there has been

disagreement surrounding the appropriateness of use of Dest_Chao

to the exclusion of heterozygosity-based measures [136,137], it has

been shown to behave appropriately across a wide range of allele

diversities, heterozygosities, and mutation rates [85,88,138]. G’st
and Dest_Chao generally had a higher magnitude of change

compared to h, and higher overall values, except for Dest_Chao

when there was prior population structure occurred and

Figure 7. Percentage of 200 replicate runs that yielded significant h, G’st, MI, and Dest_Chao values beginning at two generations after
the cessation of migration from panmixia for 20 sampled individuals and 10 sampled loci in populations overlapping generations
and non-overlapping generations. Open bars Nmax = 500, closed bars Nmax = 1000, gray bars Nmax = 3000.
doi:10.1371/journal.pone.0063981.g007
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Nmax = 25. MI was consistently lower than G’st, and Dest_Chao, but

was lower than h when prior population structure was included in

the model and when Nmax ,100. The equilibrium value of MI

when generations did not overlap and isolation occurred from

migration was also lower than the equilibrium h value. During the

initial 70 generations when migration was occurring and Nmax

#100, there was a peak in G’st, MI, and Dest_Chao, which resulted

from drift overwhelming migration, or from the initial increase in

the number of individuals as the population cap size is reached.

Estimates of h and G’st exceeded Dest_Chao when Nmax was small

(e.g., Nmax = 25) and migration was present prior to isolation. The

combination of small population size and migration lead to

fixation of common alleles in several populations. The pattern of

fixation is what subsequently resulted in inflation of h and G’st
relative to Dest_Chao. Because Wright’s Fst and G’st are based on

Figure 8. Effect of number of individuals (20, 30 and 50), number of loci (10, 15, 20), and overlapping versus non-overlapping
generations on the percentage of the 200 replicate runs that yielded significant Dest_Chao values 2 to 50 generations after cessation
of migration for Nmax = 3000. Closed bars 10 loci, open bars 15 loci, grey bars 20 loci. Data for h, MI, and G’st are nearly identical and are not
shown.
doi:10.1371/journal.pone.0063981.g008
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heterozygosity, which does not account for particular allelic states,

identical alleles that are fixed within multiple populations do not

contribute to within-population heterozygosity and thus contribute

to inflation of values of h and G’st are unable to account for the

shared alleles and is therefore artificially high (Table 3). The

magnitude of h and G’st will be a function of the number of fixed

alleles, but in all such cases h and G’st are misrepresenting the

underlying pattern of differentiation, and are consequently over

estimating the degree of genetic differentiation relative to Dest_Chao.

Our results from samples show that even relatively few sampled

individuals (20) or loci (10) provided unbiased estimates of h, MI,

and Dest_Chao. In contrast, when population sizes were $100,

estimates of G’st were always significantly larger than the census

values regardless of the number of sampled individuals or loci. As

proposed by Hedrick [86], we calculated G’st based solely on

measures of heterozygosity, and did not include any adjustments

for differences in population size. Without controlling for

population size, it is not surprising that the values of G’st were

biased relative to the census values. It is possible to calculate a

corrected fixation index that accounts for bias that arises when

from sampling a limited number of populations [139]. However,

the method we used to calculate G’st is the formulation commonly

calculated in population genetic software e.g., SMOGD [140];

GenoDive [141], is what was originally proposed by Hedrick [86],

and was the formulation used in comparison of metrics conducted

by Heller and Siegismund [90].

To conclude, we find that use of Fst-related statistics, G’st, MI, or

D for detecting and monitoring changes in connectivity among

discrete populations is problematic in many real world scenarios.

The conditions under which these indirect methods can best be

applied include when populations support between 75 and 500

individuals, when sampling is done across multiple generations,

and estimates of population size are available to allow distinguish-

ing of the signal of background differentiation from changes

associated with the loss of genetic connectivity. This multi-

generation sampling must occur within the window during which

rapid change in the estimators is occurring to yield conclusive

results. Unfortunately, the number of years required to span a

sufficient number of generations to detect a change may preclude

utility. For these reasons, we caution against using indirect

techniques alone for detection of fragmentation events, and

advocate their use only in conjunction with direct estimates of

actual movement among patches such that one could compare

current movement with the genetic signature of past movement to

determine that there has been a change.
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