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Abstract: For underwater acoustic covert communications, biomimetic covert communications have
been developed using dolphin whistles. The conventional biomimetic covert communication methods
transmit slightly different signal patterns from real dolphin whistles, which results in a low degree of
mimic (DoM). In this paper, we propose a novel biomimetic communication method that preserves
the large DoM with a low bit error rate (BER). For the transmission, the proposed method utilizes
the various contours of real dolphin whistles with the link information among consecutive whistles,
and the proposed receiver uses machine learning based whistle detectors with the aid of the link
information. Computer simulations and practical ocean experiments were executed to demonstrate
the better BER performance of the proposed method. Ocean experiments demonstrate that the BER
of the proposed method was 0.002, while the BER of the conventional Deep Neural Network (DNN)
based detector showed 0.36.
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1. Introduction

For military underwater acoustic (UWA) communication systems, low probabilities of
detection/intercept (LPD/LPI) are important parameters [1–7]. In general, since the energy of the
received signals is measured for detecting the existence of an enemy, covert communications have
been developed to reduce the power spectral density of the communication signal that spreads the
transmission energy over a wide bandwidth to make it appear similar to background noise [1–7]. In the
UWA communications, however, the available bandwidth is too small to spread the signal energy [1–7].
Even though low energy transmission methods with narrow bandwidths have been developed, these
schemes suffer from a large bit error rate (BER) [1–7].

As an alternative, biomimetic covert UWA communications which mimic the biological sounds
of underwater animals have been developed to overcome the problem of the conventional covert
communications [8–15]. The mimicked bio-sounds enable the enemy to confuse the communication
signals with the underwater animal sounds. Since the mimicked sound does not need to reduce
the transmission energy, a better BER performance can be achieved than that of the conventional
covert communications [8–15]. Thus, the biomimetic covert communication schemes for the UWA
communications have been considered as one of emerging covert communications and dolphin whistles
have been utilized for the covert underwater animal sounds [8–15]. Many bio-mimetic communication
schemes are listed in Table 1.
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Table 1. List of bio-mimetic communication schemes.

Author Title Year

Han. X. et al. Covert underwater acoustic communication using dolphin sounds [8] 2013

Liu. S. et al. Bionic communication by dolphin whistle with continuous-phase based on
Minimum Shift Keying (MSK) modulation [9] 2016

Liu. S. et al. Biologically inspired covert underwater acoustic communication by mimicking
dolphin whistles [10] 2017

Jian. J. et al. Bio-inspired steganography for secure underwater acoustic communication [11] 2018

Ahn. J. M. et al. Multipath combining method for frequency shift keying underwater
communications mimicking dolphin whistle [12] 2018

Ahn. J. M. et al. Mimicking dolphin whistles with continuously varying carrier frequency
modulation for covert communication [13] 2019

Ahn. J. M. et al. Machine learning based dolphin whistle transceiver for bio-inspired underwater
covert communication [14] 2019

Lee. H. J. et al. Time-frequency modulation based mimicking dolphin whistle for covert
underwater acoustic communication [15] 2020

Bio-mimetic communication schemes have been researched since 2013. The authors in [8]
developed the Pulse Position Modulation (PPM) based dolphin whistles. This method was tested
in river experiments and its BER performance was not analyzed by the computer simulations. Only
selected whistles were tested to obtain better BER results. In [9], the phase shift keying (PSK) modulation
with dolphin whistles was utilized, but BER at an Signal to Noise Ratio (SNR) range of 5 dB to 10 dB
showed 10−2, which was inappropriate for communication, and the scheme was not tested in ocean
experiments. Chirp spread spectrum (CSS), frequency shift keying (FSK) and PSK were utilized based
on the dolphin whistle contour [10–13]. However, the schemes in [10–13] distorted dolphin whistles
due to allocating binary information to the whistles, and had low covertness. Even though the methods
in [14,15] were developed to utilize dolphin whistles without distorting the whistles, the algorithm
in [14] showed a relatively large BER performance (10−2) at an SNR range of 5 dB to 10 dB, and the
scheme in [15] had to utilize only high auto-correlated whistles for modulation, which decreased the
covertness. Thus, a low BER performance in the ocean experiments and covertness, i.e., degree of
mimic (DoM), are the most important issues of the biomimetic communication scheme.

In this paper, we propose a biomimetic covert communication scheme that modulates the
information bits into various whistle patterns to increase the DoM with the link information among
consecutive transmitted whistles, and detects the distorted whistles—via the link information—with
the UWA channel using a machine learning based detector. The proposed method divides a large
number of dolphin whistles into groups based on the similarity of the patterns. Each group is used
as a symbol and mapped to information bits. To convey information bits and maximize the DoM,
the randomly selected whistle in a chosen group is transmitted, and different whistles are sequentially
transmitted. When a number of transmitted whistles pass through the UWA channel and background
noise is added, the conventional machine learning based detectors suffer from detecting many distorted
whistles. However, the proposed scheme, that utilizes a multi-stage directional acyclic graph (DAG)-net
and a long-short term memory (LSTM), attains a low BER and large DoM.

The main contributions of the proposed method are as follows,

- For a large the DoM, we directly utilize many real dolphin whistles for the modulation.
- For a small BER, we optimally classify the real dolphin whistles with large distances, and develop

a trellis structured transmission algorithm using the information link matrix, without sacrificing
the DoM.

- For increasing the detection performance of the nonlinear characteristics of many transmitted
whistles, we develop a DAG-net based machine learning detector.
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- For increasing the BER performance, we combine the DAG-net and LSTM, i.e., D-LSTM, which
utilizes the link information to demodulate the distorted whistles received by the UWA channels.

- The performance of the proposed algorithm has been proved through computer simulations and
practical ocean experiments.

The paper is organized as follows. Section 2 describes the characteristics of the dolphin whistles
and the whistle classification by groups. Section 3 proposes the modulation method that allocates
bit information into whistles using the link information. Section 4 mentions the DAG-net based
LSTM demodulator. In Section 5, the learning process of the proposed method is shown. Section 6
demonstrates the BER performance by using computer simulations and practical ocean experiments.
Section 7 concludes the paper.

2. Whistle Classification

Dolphins communicate with each other using whistles. The general dolphin whistles have a time
duration that varies from several hundred milliseconds to two seconds, and a frequency bandwidth
that varies from several hundred Hz to tens of kHz [16–20]. The variation of frequencies over the
time duration is referred to as the frequency contour or whistle pattern [16–20]. In Figures 1 and 2,
the whistle spectrograms of the false killer whales and white sided dolphins, respectively, are displayed.
The frequency components of the dolphin whistles vary in time. In Figures 1 and 2, many dolphins
generate many different or similar whistle patterns.
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In Figures 1 and 2, the similar whistle patterns are marked by rectangular and circular boxes.
In Figure 1, the rectangular and circular boxes contain up-chirps with a different frequency variation
and a large variation, respectively. In Figure 2, the rectangular and the circle boxes are marked for
flat-downward scoops and down chirps, respectively. In practice, more whistle patterns than in the
above examples can be found. If the whistles with similar patterns are classified as the same group
and binary bits are allocated to the whistle group, we can transmit binary information with the same
dolphin whistle patterns. Thus, the proposed method transmits one of the randomly selected whistle
patterns in the group, which preserves a larger DoM and greater covertness than the conventional
biomimetic UWA communication methods.

When all whistles are classified as groups, the distance between groups needs to be kept as far as
possible to attain the low BER. Thus, we classify the whistles to maximize the distance based on the
whistle features.

For whistle classification with the maximum distance, firstly, we set a whistle feature vector
(V) whose elements present the dominant features of the whistle, e.g., L frequencies of the whistle,
whistle duration, maximum and minimum frequencies, chirp rate, etc., and secondly, we maximize the
distances based on the vector(V). V is set as below,

V = [ f (τ1), · · ·, f (τL), · · ·, max f (t), min f (t), · · ·] (1)

If V consists of the j elements, V has a vector space of R j and the classification with the maximum
distance is performed in R j space.

For the classification, we change the classification problem of maximizing distances among
different whistle groups, to a new problem of minimizing the distances in the same groups. Since the
k-means clustering algorithm is known as a good classification method for minimum variance [19,20],
the k-means clustering algorithm is utilized for classifying the whistles as groups.

Let Kopt be the number of groups, in which the variance of whistles in the same group is minimum,
and the set of classified groups be G = (G1, G2, · · ·, Gk, · · ·, GKopt). Assume that the N whistle vector
and the average vectors of the k-th group Gk is µk. Then, the k-means algorithm for classifying the
whistles is written as [21,22],

argmin
G,Kopt

Kopt∑
k=1

∑
Vn∈Gk

∣∣∣Vn − µk
∣∣∣2 (2)

Equation (2) minimizes the variance of the vectors (Vn) which belongs to the same group, i.e., the
distance among groups is maximized. Then, Kopt groups are obtained, and the whistles in the same
group have similar patterns.

For the biomimetic UWA communication, the information bits are allocated to G = (G1, G2, · · · ,
Gk, · · ·, GKopt) and randomly selected whistles in the group are transmitted. When a large number
of information bits are inputted and all whistles are transmitted, the large DoM is attained. At the
receiver, the conventional maximum likelihood (ML) based detector can be used to estimate the group
index (k) from the received whistles. The ML based detector determines the transmitted bits by
extracting the feature vector (V̂n) in Equation (1) and comparing all feature vectors of the whistles (Vn),
finding the closest one.

When the conventional ML detector detects the received whistles, the ML detector suffers from
two problems: for the first problem, when the number of real whistles is large, a low BER is not
obtained. The maximum distance by the k-means algorithm between groups may not be large enough
to overcome the background noise and the UWA channel distortions. If some whistles in the group are
picked to keep the larger distance and the error correction schemes are used, the BER performance can
increase. However, the DoM and the data rate decreases. Thus, we need to develop a communications
method without scarifying the DoM and the BER. For the second, when the received whistles are
distorted by the UWA channel, the distorted whistles cannot be compensated by the equalizer. Even
though the channel is estimated by the pilots, the frequency bandwidth and time duration of the
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whistles are larger than the coherent frequency and the coherent time, respectively. In addition, the
repeatedly transmitted pilots reduce the DoM.

The small distance problem may be resolved by the modern machine learning detection scheme,
whose detection capability is better than the ML. When the whistle patterns are represented as a
2-D image, e.g., spectrogram, the machine learning technique easily learns the overall contours and
the detail features of the whistles. However, the distorted whistle problem of the UWA channels
may not be overcome by the conventional machine learning methods. This is because the detection
accuracy of the conventional machine learning methods may not be enough to satisfy the common
BER requirements of the communications.

Therefore, we propose a biomimetic communication scheme: the transmitter modulates the
whistles with the larger distances and DoM based on the link information among adjacent whistles,
and the receiver demodulates and detects the distorted whistles using a DAG-net based LSTM with
additional link information among whistles. The proposed modulation and demodulation method are
described in the following sections.

3. Biomimetic Covert Whistle Transmitter

For a low BER, the conventional digital communication utilizes the forward error correction
(FEC) method. The FEC provides a connection rule to concatenated additional symbols and corrects
the erroneous bits, but requires the additional bits that reduce the data rate [23,24]. In cases of
small bandwidth UWA communication systems, the data rate is one of the important parameters.
Thus, the proposed biomimetic communication scheme is developed to obtain a low BER and large
DoM, without sacrificing the data rate. The proposed method reclassifies the real whistles into a large
number of subgroups to have larger distances among subgroups and provide link information among
subgroups to utilize all subgroups. The detailed procedure and an example are described in this section.

Assume that the maximum number of groups for the optimum accuracy is given as Kopt, and the
maximum number of bits per whistle is given as Mopt =

⌊
log2 Kopt

⌋
, and Kopt may not be the same

as 2Mopt . To increase the BER performance and preserve the same data rate, the proposed method
reclassifies the Kopt groups into enlarged subgroups Ktot = (2α ×Kopt), and generates many subgroup
sets, in which one subgroup set consists of 2Mopt subgroups among Ktot subgroups. The possible
number of the subgroup sets with the size of 2Mopt is very large, but in this paper, Ktot subgroup sets
that have large distances are chosen. If we carefully select the subgroup sets whose distances are larger
than those of the first classified Kopt group sets, we attain a lower error rate performance.

The proposed link information that connects all subgroup sets is determined by the link matrix
(H) with the size of Ktot × 2Mopt that one row consists of the one subgroup set with a size of 2Mopt and
the total number of rows is Ktot. The i-th column index is mapped to input bits for the binary allocation,
e.g., binary counter or Gray code, and every element value of H indicates the current subgroup and
the row number for the next input bits. Then, the link information between two subgroup sets is
established. In order to avoid falling into a short loop by the subgroup loop indexing, the element value
of a row of H is not allowed to include the same row index and the elements of the one subgroup set is
not the same as that of other subgroup sets, and all indices occur evenly 2Mopt times. This additional
link information helps the receiver to decode the distorted received symbols and attain a better BER
performance. A link matrix H is given as below,

H =



h1,1 · · · h1,i · · · h
1,2Mopt

...
hk,1 · · · hk,i · · · h

k,2Mopt

...
hKtot,1 · · · hKtot,i · · · h

Ktot,2
Mopt


(3)
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Assume that a N bit stream is represented as the vector of B = {b1, · · ·, bn, · · ·, bN}, where the size of
bn is equal to Mopt. When b1 is input, the b1 binary value is translated to a decimal number which is the
index of the column of the first row. The selected element of the first row indicates the subgroup index
for b1, and a whistle in the indicated subgroup is randomly chosen and transmitted. Subsequently,
the element selected by b1 also provides the row number of H for the next input b2. For b2, the same
procedure is performed for the input b1. This procedure is executed to all elements of B. If the size of B
is large, all elements of H will be picked and all whistles will be utilized for the transmission, which
preserves the large DoM.

As an example, Figure 3a shows the H matrix for α = 2, Kopt = 2, Mopt = 1, Ktot = 8, and the
links, and Figure 3b displays the sequential link connections.
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Figure 3. (a) Link between adjacent whistle subgroups; (b) sequential link by H with input 0001.

In Figure 3a, the first and the second columns of H are mapped to “0” or ”1”, respectively, of input
bits. No same subgroup set, e.g., (7,2), (6,4), etc., is observed and the subgroup numbers are randomly
distributed and appear two times, i.e., 2Mopt . Let the n-th transmitted whistle be Wn, and the subgroup
index of the whistle be Xn. If the input bit stream is 0001 and the first bit starts with the first row, the
first bit “0” is mapped to the first column of the first row in H. The first column of the first row of H
reads “7”. One whistle (W1) in the seventh subgroup (X7) is randomly selected and transmitted as the
first symbol. For the next bit, the “7” also indicates the next row number of H. For the second bit “0”,
the first column of the seventh row reads “8”. One whistle (W2) is randomly selected from the eighth
subgroup (X8) and transmitted for the second symbol, and “8” also indicates the eighth row for the
third input bit. Similarly, for the fourth bit “1”, the subgroup selection is performed in the fifth row
which is chosen by the third bit. Since the input bit is 1, the second column of the fifth row is selected
and reads “1”. One whistle (W4) of the first subgroup (X1) is randomly picked and the first row is
chosen for the fifth input bit. This sequential link result is depicted in Figure 3b.

Therefore, the proposed modulation method utilizes all whistles that obtain a large DoM, and
provides the large distance among the subgroup sets and the additional link information, which
attains the low BER. For the demodulation using the link information, a machine learning based
sequential detection is proposed since the machine learning detection outperforms the conventional
feature detection methods and the sequential link information also enhances the detection performance.
The detailed demodulation scheme is described in the next section.

4. Machine Learning Based Mimetic Whistle Receiver

The conventional machine learning detector may not obtain a great enough BER performance for
the communications. Thus, a novel biomimetic demodulation method is proposed that detects the
received bits from the distorted whistles by the UWA channel, using the additional link information.
Please note that the proposed method does not estimate the UWA channels.
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The transmitted biomimetic N whistles (W = {W1, W2, · · · , Wn, · · · , WN}) go through the UWA
channel (H) and reach to the receiver sensor, and the noise (N = {N1, N2, · · · , Nn, · · · , NN}) is added.
The received whistle (Y = {Y1, Y2, · · · , Yn, · · · , YN}) is modeled as,

Y = H ∗W + N (4)

where ∗ denotes a convolutional operation and all parameters are composed of vectors. As in Section 3,
the n-th element (Wn) of the transmitted whistle vector (W) represents randomly selected whistles
chosen from the n -th subgroup (Xn) in the vector X.

The purpose of the proposed method is to estimate the transmitted group index X̂ from the
received whistle Y using the additional link information among sequential whistles. This estimation
can be performed by finding a maximum probability of X̂ for Y, and expressed as,

X̂ = max
X̂1,··· ,X̂N

p
(
Y1 ∈ X̂1, · · · , Yn ∈ X̂n, · · · , YN ∈ X̂N

)
(5)

In Equation (5), in general, maximum likelihood sequence detection (MLSD) can be performed
for the link information to increase the estimation performance of X̂. However, when the transmitted
whistles pass through the UWA channel, the received whistles are severely distorted by the UWA
channel, and the maximum likelihood (ML) detector itself does not have a great enough detection
performance. Thus, the MLSD does not provide a useful detection performance, despite the additional
link information [23,24].

In order to achieve the large BER performance, the detection performance of the whistle itself needs
to be improved, and then, the link information among whistles is jointly utilized. In Figures 1 and 2,
the whistles have a nonlinear time-frequency change property, and are heavily distorted by the UWA
channel. Thus, this paper develops a sophisticated machine learning detection method for attaining
the large detection performance and the LSTM for utilizing the link information among whistles.

4.1. Machine Learning Network Structure for Biomimetic Receiver

The proposed machine learning network is designed to extract the features of whistle subgroups
from the received whistles with the link information. For the training data, two test sets with classified
real dolphin whistles are made: one set is obtained by only adding the noise, and the other set is
made by passing the UWA channel and adding the noise. The test whistles are transformed into the
2-D time-frequency plane using the spectrogram. In this paper, the DAG-net that is composed of the
parallel convolutional layers (CLs) and the merging layers is proposed, and is shown in Figure 4.
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Figure 4. Directional acyclic graph (DAG)-net structure.

In Figure 4, the parallel CLs of the DAG-net are constructed to simultaneously extract the nonlinear
contours and the detail whistle features from the input spectrogram. The extracted features are merged
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and transferred to the next stage [25–27]. The final stage extracts the detailed features and estimates
the subgroups. The parallel CL structure of the DAG-net shows a better feature extraction performance
than the conventional Deep Neural Network (DNN) in the simulation section.

The misdetection performance of the designed DAG-net for the distorted whistles shows
approximately a 10−2 order, which is better than that of the ML detector and may be enough for
some applications. However, this detection performance may not be acceptable to the communication
systems [28–32]. In this case, the link information plays an important role in increasing the detection
performance, and the LSTM utilizes the link information. Among many LSTMs, Bi-directional Long
Short Term Memory (Bi-LSTM) stores the input information in both long and short term memories
and effectively analyzes the link information back-and-forth [33,34]. Thus, we design the D-LSTM
that consists of the DAG-net and the Bi-LSTM, in which the DAG-net is for extracting the features of
whistles and the Bi-LSTM is for utilizing the link information between whistles. The proposed D-LSTM
method shows a lower BER than the DAG-net without the link information. The proposed D-LSTM
structure is shown in Figure 5.
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Figure 5. DAG-net and LSTM (D-LSTM) network structure. LSTM: long-short term memory.

In Figure 5, the spectrogram sequence of Y is input and the estimated bits are output. The analyzed
features of the whistles by the DAG-net are transferred to the Bi-LSTM, which extracts the link
information and demodulates received bits. The following section describes the training and detection
methods of the proposed D-LSTM.

4.2. D-LSTM Training Method and Biomimetic Receiver

The spectrogram of Y in Equation (4) is obtained from taking Short Time Fourier Transform (STFT)
and is used for the input training data of the machine learning networks. The proposed D-LSTM
network learns the spectrogram of Y to check the accuracy between the input bits (B) and the estimated
bits (B̂). Figure 6 shows the training process of the proposed D-LSTM.
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The length of the transmitted whistle sequence depends on the number of input bits. If the bit
length is long and the machine learning networks demodulate all bits, a large memory is needed for
the D-LSTM and the computational complexity increases. Thus, the block window is used for the finite
memory and the overlapped processing is performed to track the link information. The window size
of the proposed D-LSTM is three and the one window span is shifted for overlapping. The window
processing procedure is depicted in Figure 7.
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In Figure 7, for the processing of the n-th window, the propose D-LSTM receiver detects the
bits not only from the n-th window but also from the (n−1)-th windows, and updates the whistle
information for the next window. This window processing enables the receiver to use the memory
dynamically and reduces the memory size and the computational complexity. The following section
mentions the classification and implementation of the processes of the D-LSTM.

5. Real Whistle Classification and D-LSTM Implementation

In this section, the classification of the recorded real whistle data is executed, and bit allocation is
performed for the reclassified subgroups. Several machine learning networks are also proposed for
the implementation.

5.1. Whistle Classification

The training whistle data for the proposed biomimetic communication scheme were obtained
from Watkins marine mammal sound database. The whistles of white sided dolphin were chosen and
the total number of collected whistles was 704 [35]. The feature vectors in Equation (1) were calculated
from the 704 whistles and classified into groups using k-means algorithm by Equation (2). The optimal
number (Kopt) of groups by Equation (2) was eight, and the maximum number (Mopt) of bits per one
whistle was three.

For increasing the BER and DoM performances, the eight groups were reclassified into the lager
number of subgroups. An expanding factor of α was set as two, and the groups were reclassified into
32 subgroups, i.e., Ktot = 32. Figure 8 represents some examples of classified 704 whistles by the eight
groups and 32 subgroups.
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In Figure 8, the horizontal and vertical axes denote the time and the frequency, respectively.
Figure 8a,b represents the examples among the classified eight groups by Equation (2), and Figure 8c,d
shows the examples of the reclassified 32 subgroups from Figure 8a,b, respectively. Figure 8a,b displays
the down chirp patterns and scoop shapes, respectively. The whistles of the subgroups in Figure 8c
were separated by the frequency and the time duration which are one of dominant features of the
whistles. The whistles of the subgroups in Figure 8d were reclassified by the chirp shape that is another
feature of the whistles.

The element averages, e.g., µ1,µ3,µ7,µ8, of the subgroups from V(1) to V(3) are shown in
Figure 9a. In Figure 9a, the distance between G3 and G8 is the farthest.

The proposed method generates H that presents the link information among subgroups. Multiple
H values can be available as described in Section 3. In this example, the number of the subgroup was
32 and the size of one subgroup set was eight. For H, all possible subgroup sets were listed in the
order of the largest distance among subgroups, and the short link loop within a few subgroup sets
were avoided, and all subgroups were evenly shown in the H matrix. Then, H was made with the size
of 32 × 8. Since the size of H is large, we omit the example of H, but a link example is displayed in
Figure 9b. In Figure 9b, the blue line and the red line denote the link information for bits 000 and 001,
respectively. For the transmission, as in Section 3, the input bits are mapped into a whistle subgroup
indicated by H and one of whistles in the subgroup is randomly chosen and transmitted.

In the next subsection, the structures of the proposed machine learning networks and the learning
results are presented.
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5.2. Implementations of the Proposed Machine Learning Networks

The proposed D-LSTMs learnt the spectrograms of the whistles to demodulate the input bits.
The spectrum size of the one whistle was set as 65 × 550. For the whistle feature extraction, we
utilized three machine learning networks such as DNN, DAG-net1 and DAG-net2, shown in Figure 10.
In Figure 10, the DAG-net2 had two stages of the parallel Convolution Neural Network (CNN)s with
merging, while the DAG-net1 had one stage with merging. All CLs of the DNN, DAG-net1, and the
second stage of DAG-net2 had the same structure with the same filter size. For the link information,
Figure 11b,c are combined with the Bi-LSTM, which are named as D-LSTM1 and D-LSTM2, as in
Figure 5. The D-LSTM1 and the D-LSTM2 were developed since the conventional DNN and DAG-net
does not attain a great enough BER performance.Sensors 2020, 20, 6166 12 of 18 
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Figure 10. Proposed network architectures (a) DNN; (b) DAG-net1; (c) DAG-net2.

The performances of three structures are compared in Section 6. The DAG-net1 and the DAG-net2
outperformed the conventional DNN, and the DAG-net2 showed a better performance than the
DAG-net1. As the number of stages of the DAG-net increases, the performance of networks also
increases. Figure 11 demonstrates some examples of filter coefficients in the CLs of each network
when the training is done. In Figure 11, all networks show some concentrated values of the filter
coefficient dimension.
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Figure 11. Trained network coefficients (a) DNN: Conv layer1 (48 × 48); (b) DAG-net1: Conv layer1
(48 × 48); (c) DAG-net1: Conv layer1 (128 × 128); (d) DNN Conv layer5 (24 × 24); (e) DAG-net1: Conv
layer5 (24 × 24); (f) DAG-net2: Conv layer10 (24 × 24).

For all networks, when the layer number increased, the large value coefficients tended to converge
to some specific regions. Among three methods, DAG-net2 demonstrated highly concentrated values
at a certain spot, while the DNN and the DAG-net1 showed spread coefficients. This observation
means that the DAG-net2 seems to effectively come up with the features of the whistle patterns.

In the next section, the computer simulations and practical ocean experiment results are shown
for the communication performance comparisons of the proposed biomimetic methods with the
conventional methods.

6. Simulation and Ocean Experiments

This paper proposes a biomimetic modulation method using real dolphin whistles with link
information and a detection scheme using the D-LSTM for the UWA channel distorted whistles.
The performance comparisons were focused on two aspects: the first one is the whistle-by-whistle
detection capability of the proposed machine learning networks. For the whistle-by-whistle detection
comparisons, the BERs of the DAG-net1 and the DAG-net2, and the conventional ML detection, and
the conventional DNN were compared. The second one is the detection performance by the additional
link information. The BER performances of the D-LSTM1 and the D-LSTM2 were compared with those
of the DAG-net1 and the DAG-net2. These comparisons were tested in computer simulations and
practical ocean experiments.

The communication parameters used for the comparisons were Mopt = 3, Kopt = 8, α = 2,
Ktot = 32 which are the same as in Section 5. For fair comparisons, the same DoM was kept for all
algorithms, i.e., all 704 whistles were utilized for the transmissions. The learning processes of all
algorithms were executed for one million whistle spectrograms in the computer simulation and the
learning results were also used for the practical ocean experiments.

6.1. Simulation Result

For the learning process, the whistles with the Additive White Gaussian Noise (AWGN) channel
and with the time varying multipath channel of a shallow water in Figure 12a were utilized.
The simulation models of the ocean depths, the distance between the transmitter and the receiver, and
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the depth of each transmission source and receiver hydrophone are also shown in Figure 12a. For the
UWA channel, SNRs vary from −16 dB to 14 dB by a 2 dB step, and 150 cases were generated for a SNR
to obtain statistical reliability. At every iteration, Doppler frequencies of each multipath randomly
and independently varied from 0 Hz to 2 Hz. These procedures were executed for all 704 whistles.
Thus, 3.4 million training samples were utilized to train the D-LSTM network. Please note that the
UWA channel had long multi-path delay times, which covered other conventional UWA channels.
The efficacy of this learning process was proven in computer simulations and ocean experiments. For
the over-fitting problem of the machine learning performance test, the different ocean environments
with different multipath channels, given in Figure 12b, were also used.
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In Figure 13, the BER performances of the tested algorithms are displayed. The dashed lines
denote the BERs of whistle-by-whistle detections. The solid lines denote the BERs of the proposed
link information aided detection methods. The black, the green, the pink, and the blue dashed lines
denote the BERs of the conventional ML detectors, the conventional DNN, DAG-net1, and DAG-net2,
respectively. The pink and the blue solid lines denote the BERs of the D-LSTM1, and the D-LSTM2,
respectively. Figure 13a–c exhibits the BERs of the AWGN channel, the UWA channel of Figure 12a,
and the different UWA channel of Figure 12b, respectively.

In Figure 13, all BER results of the dashed lines exhibited the error flows by the limitation of the
whistle-by-whistle detection. The error-floors started with 10−2, which were considered as a low value
in the conventional image detection applications. These values, however, may not be acceptable for
the communications. Among the tested whistle-by-whistle detectors, the DAG-net1 and the DAG-net2
showed better BER performances than the other conventional algorithms, and had error-floors at 10−3.
As the number of the DAG-net stages increased, the detection performance also increased. Thus, the
proposed D-LSTM1 and D-LSTM2 were tested for detection of the link information. In Figure 13, the
proposed D-LSTM2 method demonstrated better BER performance than other algorithms, and did not
have the error-floor. In Figure 13c, the BER results were obtained by the UWA channel in Figure 12b,
which was not used for the training. Even though the trainings were executed by AWGN and the
UWA channel in Figure 12a, the BER results of the proposed method for the different UWA channel
in Figure 12b, also demonstrated the lowest BER value. Please note that the multipath of the UWA
channel severely distorts the transmitted signals and the maximum delay time of the multipath is one
of the important parameters of the UWA communications. The multipath delay time of the trained
UWA channel in Figure 12a was larger than that of Figure 12b. Therefore, the proposed algorithm was
expected to attain the good BER results for practical ocean experiments. In the next subsection, the
BERs of the practical ocean experiments are demonstrated.
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6.2. Ocean Experiments

The practical ocean experiments were performed for evaluating the BER performance of the
proposed method based on the D-LSTM and the conventional CNN based method. The learning
process of the proposed D-LSTM was the same as the simulation subsection, which was different from
the practical ocean channel. For the ocean experiments, the location and depths and the delay profile
of the transmitter and the receiver are shown in Figure 14. The transducer was Neptune-D17B with a
bandwidth from 12.5 kHz to 19.5 kHz, and the hydrophone was TC4032. The location of the ocean
experiments was at a point in the west Sea of South Korea, which was 4.2 km apart from Sinzindo. In
Figure 14c, the UWA channel of the practical ocean is shown, and the UWA channel was estimated by
the Linear Frequency Modulation (LFM)-chirp that was attached before the data transmission only for
the observation of the UWA channel. Note that the LFM-chirp was not used when the proposed signal
was demodulated, and the practical ocean UWA channel is different from those of the simulations in
Figure 12a,b.

The parameters of the transmission modulator and the machine learning networks used for the
ocean experiments were the same as those of computer simulations. The spectrogram examples of the
received signal in the practical ocean experiments are displayed in Figure 15.

For the BER performance calculation, 5000 whistles were transmitted, i.e., 15,000 bits were
transmitted. The BER results of the ocean experiment are calculated in Table 2.

In Table 2, the BERs of the whistle-by-whistle detection methods of the ML and the DNN are shown
to be 0.36 and 0.37, respectively, which were large and not useful to the practical communications.
The DAG-net1 and the DAG-net2 displayed better BER performances than the ML and the DNN,
but the BERs of the DAG-nets themselves are still large. However, the proposed D-LSTM1 and
D-LSTM2 that utilized the link information, demonstrated lower BER values than other algorithms.
These results were well matched with those of the computer simulations. In addition, the fact that
the proposed learning process is enough to obtain a low BER without learning of the practical ocean
UWA channel is proven.
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Table 2. BERs of the ocean experiments.

Detection Schemes ML DNN DAG-net1 DAG-net2

Whistle-by-whistle detection (Kopt = 8) 0.37 0.36 0.09 0.046
With additional link information (Ktot = 32) - - 0.012 0.002

Therefore, the proposed D-LSTM2 showed the best BER performance compared to other
algorithms, and the whistle-by-whistle detection scheme was not used for the whistle based biomimetic
communications, and the additional link information played an important role in increasing the BER
performance. In addition, the proposed algorithm utilizes all whistles and preserves the maximum
DoM, which is crucial to the UWA covert communications.

7. Conclusions

In this paper, we propose a machine learning based biomimetic covert acoustic communication
method that mimics dolphin whistles without whistle distortion and preserves the maximum DoM
with a low BER. For the transmission, the proposed method modulates the whistle itself for the bit
allocation and provides the link information among consecutive whistles. For the receiver, the proposed
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method utilizes the D-LSTM that extracts the whistle features and detects the bits using the link
information. Computer simulations and the practical ocean experiments were performed for the BER
comparisons of the proposed algorithm with those of the other conventional detection algorithms.
The BER performance of the proposed D-LSTM2 outperforms other conventional detection methods in
both computer simulations and the practical ocean experiments.

Many dolphins live together and communicate at the same time. Thus, for the future work, the
transmission and the detection of multiple dolphin whistles needs to be developed to obtain a larger
DoM and to increase the data rate.
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