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Abstract

Hyperspectral imaging enables researchers and plant breeders to analyze various traits of

interest like nutritional value in high throughput. In order to achieve this, the optimal design

of a reliable calibration model, linking the measured spectra with the investigated traits, is

necessary. In the present study we investigated the impact of different regression models,

calibration set sizes and calibration set compositions on prediction performance. For this

purpose, we analyzed concentrations of six globally relevant grain nutrients of the wild bar-

ley population HEB-YIELD as case study. The data comprised 1,593 plots, grown in 2015

and 2016 at the locations Dundee and Halle, which have been entirely analyzed through tra-

ditional laboratory methods and hyperspectral imaging. The results indicated that a linear

regression model based on partial least squares outperformed neural networks in this partic-

ular data modelling task. There existed a positive relationship between the number of sam-

ples in a calibration model and prediction performance, with a local optimum at a calibration

set size of ~40% of the total data. The inclusion of samples from several years and locations

could clearly improve the predictions of the investigated nutrient traits at small calibration

set sizes. It should be stated that the expansion of calibration models with additional sam-

ples is only useful as long as they are able to increase trait variability. Models obtained in a

certain environment were only to a limited extent transferable to other environments. They

should therefore be successively upgraded with new calibration data to enable a reliable

prediction of the desired traits. The presented results will assist the design and conceptuali-

zation of future hyperspectral imaging projects in order to achieve reliable predictions. It will

in general help to establish practical applications of hyperspectral imaging systems, for

instance in plant breeding concepts.
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Introduction

Cereals form the basis of human nutrition all over the world, since they provide us with our

daily food [1,2]. Their grains do not only contain energy in form of carbohydrates, but also

proteins, fiber and nutrients [3–6]. They represent a source for processed food products like

wheat flour for baking [7] and barley malt used in the beverage industry [6,8]. Moreover, cere-

als supply livestock breeding with fodder, which has specific quality requirements for animal

nutrition [9,10].

Barley (Hordeum vulgare ssp. vulgare) is one of these cereals and the world’s fourth most

important cereal crop regarding production [8,11]. It serves mainly as source for fodder, malt

and food [6,8]. In each of these uses, barley and processed barley products need to meet pre-

scribed quality requirements [12–14]. In this regard the protein concentration of mature

grains defines if barley can be used for malt (10–12% grain raw protein concentration) or fod-

der (no restrictions) production [12,15]. Another example would be the mineral content or

rather nutritional value of barley grains, which is important if humans or animals consume

barley. For example, about one billion people suffer from low intakes of proteins and nutrients,

especially iron, zinc and calcium [16–18].

The majority of grain quality measurements is based on wet chemistry analysis, like the

determination of the nutritional value of seeds or the digestibility of animal fodder. The results

obtained from these techniques are precise and trustworthy, however the methods themselves

are time-consuming, labor-intensive and expensive [19–21]. In addition, in most cases they

are destructive, i.e. the plant material (e.g. seeds) is destroyed during the analysis. These draw-

backs prevent the standardized application of quality analysis of high numbers of genotypes in

breeding programs, especially in early stages of selection [22,23]. Spectroscopy-based technol-

ogies have been successfully implemented in the last decades to circumvent the stated draw-

backs, and are frequently applied by plant breeders and scientists [19,24,25]. The most

common technique is near infrared spectroscopy (NIRS), which is based on the emission of

near infrared radiation (750–2500 nm) that is absorbed by O-H, C-H, C-O and N-H bonds,

the main compounds of plant tissues [19,26], resulting in a unique reflection spectrum for

each compound. Therefore, the specific chemical composition of the analyzed material results

in a spectral fingerprint [19,26].

A major constraint of NIRS is the missing information about the exact location of individ-

ual chemical components inside the sample. This can be resolved by combining spectroscopic

and vision techniques, officially termed as hyperspectral imaging (HSI) [27,28]. A hyperspec-

tral image consists of a two-dimensional (classic) image and spectral data as a third dimension.

Both are obtained by hyperspectral camera systems creating a so-called three-dimensional

data cube [29], which contains the information about the locally different spectral reflectance

[27,28]. It should be noted that both NIRS and HSI are much more complex and can only

briefly be introduced here (for details about NIRS see Foley et al. [19] and Cen and He [26];

for HSI see ElMasry and Sun [27] and Park and Lu [28]). Both technologies have already been

used in a multitude of different fields [30,31], including grain quality analysis [32–34].

However, the spectral data acquisition of NIRS and HSI cannot stand alone, since both

need the calibration of models to relate the measured spectra with phenotypic values (e.g.

ingredient concentrations or digestibility) [26,27,35,36]. The calibration models are based on a

smaller number of samples, which often is a sub-sample of the whole investigated dataset.

These samples should ideally reflect the range of variation of the investigated dataset and are

analyzed using standard laboratory methods [37]. To a high extent, the quality of the calibra-

tion defines the accuracy and precision of predicting the values of the trait of interests by
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spectral technologies [19,26,27,35,36]. One open question is how to size the calibration dataset

to obtain high prediction accuracy while keeping wet chemistry costs low.

The specific objective of the present study was the examination of different calibration

model designs and their impact on prediction performance of hyperspectral imaging as high-

throughput tool for grain quality analysis using the wild barley population HEB-YIELD [38].

Therefore, we investigated the protein and nutrient concentrations of mature grains via wet

chemistry analysis (ICP-OES) and hyperspectral imaging at two European locations in two

successive years. The hyperspectral imaging results have been compared to those originating

from wet chemistry analysis. Several regression models, calibration set sizes and calibration set

compositions have been tested to evaluate the impact of calibration quality on phenotypic

value estimation.

Materials and methods

Plant material

HEB-YIELD [38], a subset of the wild barley nested association mapping (NAM) population

Halle Exotic Barley-25 (HEB-25, [39]), was used in this study. HEB-25 originated from cross-

ing 25 diverse wild barley accessions (Hordeum vulgare ssp. spontaneum andH. v. ssp. agriocri-
thon) with the German elite spring barley cultivar Barke (Hordeum vulgare ssp. vulgare,
released in 1996 by breeder Breun). HEB-25 comprises 1,420 BC1S3 derived lines (backcrossed

with Barke), grouped into 25 families (for more details see Maurer et al. [39]).

The HEB-YIELD subset consists of 48 HEB-25 lines that were selected from HEB-25 to

ensure good threshability and the absence of brittle rachis, whereby enabling accurate yield

estimation in field trials.

Field trials

The HEB-YIELD population was grown at two locations during two years (2015 and 2016),

resulting in four environments. The locations were Dundee (United Kingdom; 56˚28’53.71"N

3˚6’35.17"W) and Halle (Germany; 51˚29’46.05"N 11˚59’29.58"E). At both locations the plants

were cultivated under regular fertilization and under nitrogen deficiency together with local

checks in four replications. Under nitrogen deficiency the lines received no additional mineral

N fertilizer. The difference between both treatments regarding N were among 60 and 70 kg/N

per hectare in both years by considering the results of the Nmin analysis, which was performed

in early spring prior to sowing to determine the availability of N for the HEB-YIELD lines. A

detailed description is given in Wiegmann et al. [40].

The studies were conducted on land owned by the authors’ institutions. The research con-

ducted complied with all institutional and national guidelines.

Phenotypic data

In this study grain elemental concentrations of six agronomically important traits were investi-

gated, including nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), iron (Fe),

and zinc (Zn). A list of these traits is given in S1 Table, including their method of measurement

and in which location and year the traits were scored.

In a previous study, based on the same wet chemistry data, it could be shown that the nutri-

ent concentration of grains was not influenced by the conducted N treatment [40]. Therefore,

the results of the present paper are based on merged data from both N treatments.

Standard descriptive statistics on raw phenotype data of the investigated traits (see above)

were calculated and the coefficient of determination (CV) was defined as standard deviationarithmetic mean .
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Hyperspectral image recording

Hyperspectral images have been taken in a unique high-throughput phenotyping platform,

whose main components are: (1) object plate, (2) white reference, (3) light source, (4) HSI

camera and (5) electronically controlled railed carriage (S1 Fig). The phenotypic platform was

developed in collaboration with the Fraunhofer Institute for Factory Operation and Automa-

tion (IFF).

For achieving a low and homogenous reflection background across the investigated wave-

lengths the object plate was coated in black fleece. As white reference the Zenith Lite diffuse

reflectance target (SphereOptics GmbH, Herrsching, Germany) with a reflection of 95% (spec-

tralon) was used and scanned for each grain sample. The grain samples haven been illuminated

through two 150 W quartz halogen lamps in combination with two reflectors to avoid a loss of

radiation intensity. These lamps were positioned in a 45˚ and 135˚ angle relative to the hori-

zontally placed grains on the object plate. In addition, the image acquisition was conducted in

a shaded room without external light sources, except the mentioned halogen lamps and the

phenotyping platform was covered with black molleton. The heart of the whole platform was

the HySpex SWIR 384 hyperspectral pushbroom camera (HySpex, Skedsmokorset, Norway),

which had the capacity to encompass a spectral range of 970 to 2500 nm (near-infrared region)

with 288 bands. These bands were equally spaced across the spectral range. The camera was

equipped with a lens of 30 cm fixed focal length. Both the HSI camera and the light source

were mounted on an electronically moveable railed system with a distance of 30 cm to the

grain sample underneath of it. With this setup 16 Bit digitized high resolution reflectance data

with 384 spatial pixels in line at a maximal achievable frame rate of 400 Hz were obtained.

The spectral data for the 1,593 grain samples investigated in this study have been obtained

through the above described phenotyping platform and all samples were subsequently ana-

lyzed via wet chemistry as described in the next chapter.

Nutrient analysis via wet chemistry

After air drying the harvested grains for two weeks, 6-8 g of grains of each plot were ground

and homogenized using the mixer mill MM 400 (Retsch GmbH; Haan, Germany).

The dry matter concentration (DM) of each sample was determined after drying the barley

flour for 3 hours in a drying cabinet at 105˚C (method 3.1 modified [40]).

The element N was measured with a CNS analyzer (vario EL cube; Elementar Analysensys-

teme, Langenselbold, Germany), which is based on combustion analysis [40].

For determination of the macronutrients (P, K & Mg) and micronutrients (Fe & Zn) induc-

tively coupled plasma—optical emission spectrometry (ICP-OES) was used (Varian 715-ES

ICP-OES; Varian, Palo Alto, California, USA). For more details about wet chemistry analysis,

see Wiegmann et al. [40].

Nutrient analysis via hyperspectral imaging

Hyperspectral image cubes were processed by the automated workflow system HawkSpex

Flow developed by the Fraunhofer IFF written in Matlab (Mathworks Inc.). In order to obtain

reflectance values, the white target was automatically marked and extracted. Reflectance calcu-

lation was performed using

Rl ¼
Il � IDCl
IWl � IDCl

where Iλ is the image pixel intensity at wavelength λ, IDC
l

the intensity when measured with
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closed shutter (“dark current”) and IW
l

being the intensity while recording the spectralon

device. For a number of images a Neural Gas algorithm [41] was used to cluster the principal

material groups in the image (spectralon, table surface, grains). The cluster mask representing

the grain material was manually selected and corrected. These segmentation masks defined the

identity of foreground (grain) and background (spectralon, table surface) pixels. A Radial Base

Function (RBF) Neural Network [42] was then trained as classifier to separate foreground and

background. This classifier was then applied to all grain images and yielded a robust and fully

automated separation of grains and background.

Pixels representing grain material were then collected and their respective spectrum per

grain image was averaged. These average spectra were used as input for a regression model,

where a nutrient served as target value. In order to test the effect of different sample sizes, sev-

eral validation schemes were performed with 5%, 10%, 20%, 40%, 60% or 80% of the target val-

ues being randomly included in the calibration set. Sample selection was independent of

genotype replications, but stratified for the treatment (1:1). In each validation round, the given

percentage of samples was then used to calibrate the regression model while the remaining sam-

ples served as test samples. In total, 100 validation rounds with the respective random split were

calculated. Additionally, a leave-one-out scheme was used where in each validation round one

sample is left out of the training set (= N-1; for simplicity referred to as 99%). In this scheme,

the number of samples in a particular set determines the number of validation rounds in the

modelling. In the leave-on-out scheme, no random sample drawing is performed.

As performance measure for prediction, the coefficient of determination (R2) was used. R2

was defined as the squared Pearson correlation coefficient:

R2 ¼

Pn
i¼1
ðyi � �yÞðti � �tÞ
bsy bst

 !2

where yi is the nutrient prediction for sample i, while ti is the target (true) nutrient value with �y
and �t being their respective averages as well as bsy and bst being their respective standard devia-

tions. A perfect prediction is achieved with an R2 of 1.0. The threshold of R2 values, above

which a sufficient prediction is achieved, is debatable.

As regression models, a Partial Least Squares (PLS) Regression Model, which is a basic

method in optical chemometrics [43], along with two neural network types, a Radial Base

Function with Transfer Learning (tRBF) Neural Network [44] and a Multi-Layer Perceptron

Network [45] were applied (for more details see Table 1).

A PLS model finds a linear regression model by projecting the predicted variables and the

observable variables to a new space similar to a principal component analysis (PCA). In con-

trast to a PCA, PLS is finding hyperplanes of maximum variance between the response or tar-

get value and independent or observed variables. PLS model parameters are found by least

squares method. The number of PLS components was manually set to 20.

Table 1. Regression model details.

Model Hyperparameters Learning Rule

Partial Least Squares (PLS) PLS Components = 20 Method of the smallest squares

Radial Base Function Network with Transfer Learning (tRBF) Radial Basis Function = 20

Metric = Euclidean Distance

Scaled Non-Linear Conjugate Gradient;

Matlab Package minFunc

Multi-layer Perceptron (MLP) Two Hidden Layers

Hidden Layer 1 = 30 Neurons

Hidden Layer 2 = 10 Neurons

Hidden Layer Activation = tansig

Output Layer Activation = linear

Levenberg–Marquardt;

Matlab Neural Network Toolbox

https://doi.org/10.1371/journal.pone.0224491.t001
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Data-driven learning methods like Artificial Neural Networks (tRBF and MLP) try to

model a system behavior not by formulating a physical model but parameterizing a general

purpose numerical structure. In general, an Artificial Neural Network derives its idea from the

information and learning process in the human brain, where a large number of simple process-

ing units are linked together by weighted connections. Technically, a neural network is a uni-

versal function approximation system. A numerical model generates an output from an input

via structure neurons. The output is compared to a target value (or ground truth value) and an

error value is calculated, the so-called loss function. The learning parameters then adjust the

weighted connections of the network iteratively so that the error produced by all training sam-

ples is minimal. In that way, a generic numeric function is fitted to an input/output problem

and generates in our case a regression model for predicting nutrient concentration (output)

from spectral reflectance measurements (input) without the need to model a physical process

how a reflectance is produced by a nutrient concentration. The parameters of the applied tRBF

and MLP neural networks are found by numerically optimizing the objective function of mean

squared error (MSE) between target and prediction value. Optimization is performed using a

gradient descend approach and stopped if a number of epoch (1000) is reached or the MSE

converges, e.g. changes in MSE fall below a defined threshold of 1e-05.

The tRBF models the dataspace as a weighted mixture of Gaussian kernel functions calcu-

lated via distance calculation of the input sample towards prototypical patterns retained in the

model, while MLP tries to model the data via the use of hyperplanes.

Calibrating a number of different regression models is a typical approach in machine learn-

ing since it is difficult to assess the nature of a high-dimensional dataspace and to decide

whether the systematic relationship between the spectrum and the nutrient is linear (PLS) or

non-linear (tRBF, MLP).

Modelling was performed on separate datasets for single environments, as well as for a two-

year model per location and across all four environments. In order to test the transferability of

the models, samples that were not used for model training were predicted and the prediction

quality was assessed with the R2 measurement as described above.

Cost benefit analysis

In order to estimate the relative prediction performance gain with increasing sample number,

a cost benefit analysis was carried out between two consecutive calibration set sizes, each based

on the following formula,

Dprediction performance
Dsample number

with Δ indicating the difference between two consecutive calibration set sizes with regard to

prediction performance (e.g. R2
10%—R2

5%) and sample number (e.g. N10%—N5%), respectively.

Statistical analyses

SAS 9.4 (SAS Institute Inc., Cary, NC, USA; [46]) was used to estimate variance components

for each environment separately with PROC VARCOMP by including the random factor geno-

type to explain a trait. Based on the estimated variance components repeatabilities (rep) were

calculated within each environment:

rep ¼
Vg

Vg þ
Vr
R

, where
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Vg = genotype variance (based on 48 genotypes)

Vr = residual variance

R = number of replicates (4)

The different regression models and calibration set compositions have been investigated for

statistical significance regarding their prediction performance through the results of a one-fac-

torial (factors regression model and calibration set composition, respectively) ANOVA (R

package “stats” 3.6.1) and a subsequent Tukey’s test ([47]; R package “agricolae” 1.3.1). A Fish-

er’s z transformation ([48]; R package “psych” 1.8.12) was applied over Pearson’s correlation

coefficients of prediction performance to account for non-normal distribution. We checked

for homogeneity of phenotypic variances between the random sampling of the three regression

models (PLS, MLP, tRBF) to rule out that differences in prediction performance between them

were caused by differences in phenotypic variances by applying Fligner-Killeen tests ([49]; R

package “stats” 3.6.1).

All figures were created using R 3.6.1 [50] with the package “ggplot2” 3.2.0 [51], except S14

Fig, which was created with SAS PROC SGPANEL.

Results and discussion

Phenotypic data

Every spectral-based technology depends on measuring a subset of the samples via wet

chemistry analysis to generate a calibration model to link the spectra with the phenotypic

values determined in the laboratory [27,35,36,52]. In the present study the full set of all

1,593 samples from the wild barley introgression population HEB-YIELD, grown in

Dundee (United Kingdom) and Halle (Germany) in 2015 and 2016, has been measured

using wet chemistry to determine six grain nutrients, including four macronutrients (N,

P, K & Mg) and two micronutrients (Fe & Zn) (S2 Table). The majority of these traits

showed a considerable amount of variation indicated by the coefficient of variation

(CV), which ranged from around 6% for Mg in Halle 2015 to more than 23% for Fe in

Dundee 2016 (S2 Table). Moreover, the average repeatability of 0.93 for the six nutrient

traits indicates that the effect of the genotype on these traits is high and the residual vari-

ance is comparatively low, also hinting on trustworthy wet chemistry measurements (S2

Table).

Prior to the wet chemistry analysis, the hyperspectral reflectance of each grain sample has

been captured via HSI by using the same grains that were utilized for subsequent wet chemis-

try analysis. Finally, all 1,593 samples were analyzed via wet chemistry (S3 Table) and hyper-

spectral imaging to determine grain nutrients.

The resulting dataset was used in a case study to investigate the impact of different calibra-

tion models on prediction performance of hyperspectral imaging for nutrients in mature bar-

ley grains. The calibration models varied based on the applied regression model, the number

of samples used for the calibration set, as well as the sample selection for the calibration sets,

which was either conducted within a single environment, across years, or across environments.

The coefficient of determination (R2) serves as measure for the prediction performance of the

calibration models throughout the study.

Comparison of regression models

Independent of the material (e.g. grains, food or landscapes) that is scanned by a HSI camera

system, the resulting spectra need to be linked to a target trait (e.g. phosphorus content, free

fatty acids or soil type) by applying an adequate regression model [27,35,36]. Three regression

models, based on multi-layer perceptron (MLP), radial base function network with transfer
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learning (tRBF) and partial least squares (PLS), were tested to evaluate if the model type affects

prediction performance of grain nutrients.

In accordance to a multitude of spectral-based studies originating from various fields of

research [53–57], the choice of a suitable calibration model is also critical for predicting grain

nutrients.

The combined data of the four environments, averaged across all six nutrients, revealed a

clear ranking of the regression models, where the best predictions were achieved with PLS fol-

lowed by tRBF and MLP (Fig 1). This trend was also valid by looking at the results for single

environments (S2 Fig; S3 Fig; S4 Fig; S5 Fig) and single nutrients (S6 Fig). A Tukey test con-

firmed the low performance of the MLP model, since its predictions were significantly below

the average prediction performances of the two remaining models (S4 Table). The predictions

made with the tRBF model were in all calibration set sizes, except the largest one (99%), below

the average of PLS, although statistically not always significant (S4 Table).

Fig 1. Regression model comparison—Across environments—Across traits. Comparison of the investigated regression models in regard to prediction

performance (R2) across the four environments (DUN15, DUN16, HAL15 & HAL16) and the six nutrient traits (N, P, K, Mg, Fe & Zn) for different calibration

set sizes from 5% to 99%. The color of the boxplots differentiates the three different model types MLP (multi-layer perceptron, blue), tRBF (radial base function

network with transfer learning, green) and PLS (partial least squares, red). The diamonds inside the boxes indicate the arithmetic mean. Letters (a, b, c) in the

upper part of the figure indicate significant (P<0.05) differences between the models based on a Tukey test (S4 Table). Furthermore, numbers above the letters

indicate the change in prediction performance compared to the next smaller one.

https://doi.org/10.1371/journal.pone.0224491.g001
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Furthermore, the regression models can be differentiated based on their computing

demand, which increases in the following order: PLS < tRBF < MLP (on average 0.2 s< 20

s< 50 s per single model in our dataset). It should be noted that the computing demand to

generate the calibration models is substantial, even if high computing performance systems

are available. Therefore, it represents an additional factor in choosing an adequate model.

Due to the good prediction performances of the PLS model and the lowest computing

demand all following results are exclusively based on PLS (results of MLP and tRBF are avail-

able in Supplementary Tables). The PLS model is the basic model in optical chemometrics [43]

and a well-suited tool for the analysis of spectral data [58,59]. It has been successfully applied

in various fields of spectroscopy [60–62]. However, one should note that the suitability of cer-

tain regression models is highly dependent on the dataset for the task at hand and an approach

of testing different regression methodologies should be followed. In this context it should also

be noted that if larger wet lab datasets were available machine learning methods like MLP and

tRBF will most likely benefit, giving the possibility of reaching higher predictive abilities.

Comparison of calibration set sizes

In the present study all samples were entirely analyzed via wet chemistry, which enabled to

flexibly adjust calibration set sizes to find the minimal size for achieving good predictions. As

already indicated in Fig 1, the size of a calibration set affects the quality of the calibration

model and, finally, the prediction performance of HSI. If money and time would not be limit-

ing factors the best way to obtain trustworthy grain ingredient data would certainly be the

analysis of all samples by standard laboratory methods [19–21]. In reality, however, an ideal

calibration set has to be defined based on a cost-benefit analysis. On the one side a calibration

set needs to be large enough to enable reliable predictions, on the other hand it should not be

larger than necessary to avoid excessive wet chemistry costs. Esteve Agelet and Hurburgh [52]

indicated that the choice of the right calibration set is frequently underestimated, even though

it defines the quality of spectroscopy-based analyses. Therefore, we created individual calibra-

tion models with seven different sample sizes (5% 10%, 20%, 40%, 60%, 80% and 99%, reflect-

ing an approximate sample number of n�20, 40, 80, 160, 240, 320 and 400 in each

environment, respectively) for the six nutrient traits. On average, in each environment an

enhancement of the calibration set resulted in an improvement of the prediction performance.

This increase can be described through a regression based on the natural logarithm in all four

environments (mean R2 of 0.96; Fig 2; S5 Table).

The effect of the calibration set size has also been investigated for each nutrient across the

four environments (Fig 3; S5 Table), as well as within each of them separately (S5 Table; S7

Fig; S8 Fig; S9 Fig; S10 Fig). For all nutrients the same trends regarding the calibration set size

effect on prediction performance could be observed. By far the best values could be obtained

for N, reflecting the grain raw protein content, which reached R2 values>0.9. For this nutrient,

a calibration set of 40 samples (10%) was sufficient to achieve reliable measurements with an

average R2 of 0.65. The good predictions for N are in agreement with trustworthy prediction

of N by using NIRS [35,63,64]. For instance, Velacso and Möllers [63] found an R2 of 0.94

between NIRS and combustion analysis for protein content in rapeseed. The nutrients P, K,

Mg, Fe and Zn were characterized by intermediate prediction performances, indicated by

mean R2 values of>0.48 at a calibration set size of n = 160 (40%).

The effect of the calibration set size on prediction performance was different for each trait.

However, a general pattern existed that appreciable improvements were possible until a cali-

bration set size of 160 samples (40%) was reached (Fig 3; S11 Fig; S12 Fig; S13 Fig). From this

stage on a plateau was reached and each further added sample could only marginally increase

Hyperspectral imaging procedure optimization in grain nutrient predictions in barley
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R2 by�0.0004 (S6 Table). This finding may be explained by the fact that the variation of the

samples in the calibration set at this stage already adequately reflects the variation of the whole

dataset, which is one requirement for valid predictions [37,52]. With increasing calibration set

size the range of covered trait values also increases, which might lead to a better predictive

model. The high mean correlation coefficient of 0.93 between the trait value range covered by

the calibration set and the prediction performance (R2) confirms this assumption (S14 Fig).

By looking at the impact of calibration set size on prediction performance in each environ-

ment individually (S7 Fig; S8 Fig; S9 Fig; S10 Fig; S11 Fig; S12 Fig; S13 Fig), it is frequently

observable that the performance fluctuates in smaller calibration sets (5%, 10% and 20%). This

is especially pronounced in Halle 2015 for the 10% calibration set size, which gives worse pre-

dictions than the 5% calibration set size (S9 Fig). We also observed this in the remaining envi-

ronments like in Dundee 2015 for Fe (S7 Fig), in Dundee 2016 for K and Fe (S8 Fig) and in

Halle 2016 for N, P and Mg (S10 Fig). This observation is unexpected, since in general larger

calibration sets should lead to more trustworthy predictions [65]. It may be explained by the

Fig 2. Calibration set size comparison—Within environments—Across traits. Impact of calibration set size on prediction performance (R2) in each of the

four environments (DUN15 = dark blue, DUN16 = light blue, HAL15 = orange, HAL16 = yellow) across the six nutrient traits (N, P, K, Mg, Fe & Zn). A

logarithmic function was fitted, which indicates the gain in prediction performance (R2) with increasing calibration set sizes. The formulas of these four

functions are shown in the upper left corner.

https://doi.org/10.1371/journal.pone.0224491.g002
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fact that in small calibration sets the probability is higher that by chance the selected samples

do not adequately reflect the variation of the investigated population. The importance of hav-

ing representative samples in a calibration set is well-known and has already been investigated

decades ago [37,66–68]. Also overfitting might play a role in this context, which was observed

in small calibration set sizes (0.05 and 0.1), indicating that results gathered from these calibra-

tion set sizes should be taken with caution (S5 Table).

However, the general trend that higher calibration set sizes positively influence prediction per-

formance is undisputable and based on the results the recommended calibration set size should

be around 160 samples to achieve reliable predictions with an R2 of 0.5 for P, K, Mg, Fe and Zn,

whereas for N already 80 samples are adequate. It should be stated that most measurements

related to plant breeding are affected by population-specific effects [69–71], which will also apply

to the HSI analysis of grain ingredients. Therefore, the presented results should always be evalu-

ated against the background of the examined wild barley population HEB-YIELD.

Expanding calibration set models

It is well-known that different years and locations impact plant characteristics like height or

grain yield [69,72,73], which also holds true for the concentration of nutrients in mature grains

in barley [40]. Therefore, calibration models should be recurrently upgraded to increase their

Fig 3. Calibration set size comparison—Across environments—Within traits. Impact of calibration set size on prediction performance (R2) across the four

environments (DUN15, DUN16, HAL15 & HAL16) for each of the six nutrient traits (N, P, K, Mg, Fe & Zn). The color of the boxplots represents the six

different traits and the diamonds inside the boxes indicate the arithmetic mean. The numbers in the upper part of the figure indicate the change in prediction

performance compared to the next smaller one.

https://doi.org/10.1371/journal.pone.0224491.g003
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flexibility [33,37,68]. The studies of León et al. [74] and Roger et al. [75], conducted in olive

fruits and wheat grains, respectively, support the negative impacts of uncontrollable effects

(e.g. year) on prediction performance, which can be alleviated by expanding the calibration

models through the inclusion of samples from several years.

Therefore, the calibration models have been expanded by duplicating (across years) or even

quadruplicating (across environments) the sample number of the calibration sets by using

equal sample numbers from each year or each environment. For instance, if in the single envi-

ronment approach 80 samples were used, 160 were used for the across years and 320 for the

across environments approach, respectively. This resembles the common procedure in NIRS

where the calibration models are expanded successively by including data from several years

and locations [52,76–78]. Both the across years and the across environments approach clearly

improved the predictions of grain nutrients, especially in calibration sets with a lower sample

size (Fig 4; S5 Table; S7 Table). Furthermore, both approaches clearly reduced the variance of

the predictions, as indicated by a lower range as well as smaller coefficients of variation for

Fig 4. Calibration model comparison—With additional samples—Within environments—Across traits. Comparison of the three calibration set

compositions (within environments, across years & across environments) across the six nutrient traits (N, P, K, Mg, Fe & Zn) in Dundee and Halle. The color

of the boxplots represents the combination of the different calibration set models and environments. The resulting extension of the total number of samples

used for the respective model composition is indicated in parentheses (n�1 = single number of samples, n�2 = duplicated number of samples &

n�4 = quadruplicated number of samples). The diamonds inside the boxes indicate the arithmetic mean. Letters (a, b) in the upper part of the figure indicate

significant (P<0.05) differences between the model compositions based on a Tukey test (S7 Table). Furthermore, numbers above the letters indicate the change

in prediction performance compared to the next smaller one.

https://doi.org/10.1371/journal.pone.0224491.g004
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sample sizes <160 (S8 Table). By looking at the second smallest calibration set (n = 40) in

Halle, the average R2 was 0.14 in 2015, whereas the mean R2 was increased to 0.45 and 0.56

when predicting based on the across years approach and the across environments approach,

respectively (S8 Table). The extension of the calibration model with data of two years could

triplicate the average prediction performance in comparison to the single environment

approach Halle 2015, while the across years approach contained 80 samples versus 40 samples

in the single environment approach. However, further extension of the model with data from

two locations revealed only a smaller increase to 0.56 at a calibration set size of 160. The across

environments approach reached its maximum prediction performance in the calibration set

containing 40% (n = 640) of the samples with an average R2 of 0.66. Further sample enhance-

ments hardly impacted prediction, which might be the consequence of little additional varia-

tion from the additional samples. Only few nutrients showed better predictions in small

calibration set sizes with the single environment models (Fig 5; S5 Table). The results confirm

the advantage of adding samples from additional environments to calibration models to

improve prediction performance as commonly done in NIRS [52,76–78]. Finally, it should be

stated that the generation of such complex calibration models is time-consuming (up to several

years) and expensive since a higher number of samples from several environments needs to be

analyzed by means of wet chemistry.

Transferability of models

Since model implementation is complex, especially when upgrading it successively, a desirable

approach would be to develop only a single robust model, which could be transferred to all

kinds of environments without additional efforts (also known as external calibration). The

idea of transferring models or keeping them robust over longer times is not new [79] and has

been investigated in spectroscopic studies with diverse backgrounds [26,74,80], since it would

enable to circumvent the obstacles stated above.

Therefore, we investigated how far our developed models are able to predict each single

environment. In a first step each single environment model (e.g. Halle 2015; HAL15) was used

to predict the four environments (Dundee 2015, Dundee 2016, Halle 2015 & Halle 2016) to

obtain an idea of model transferability. As a result, none of the single environment models

could reliably predict another environment except its own (Fig 6; S9 Table). The single envi-

ronment models never reached R2 values above 0.5, averaged across the traits, in the non-

trained environments. This observation also holds true for each single nutrient, except for N

(S9 Table; S15 Fig). It is well-known that N is a reliably predictable nutrient [35,63,64], which

is in agreement to the present results where the predictions for N reached R2 values above 0.5

in the non-trained environments, even in calibration sets with only 10% of the maximum

number of samples. However, it should be stated that the predictions considerably varied

between calibration set sizes. By expanding the prediction models with samples from a second

year (e.g. DUN15 and DUN16 = DUN1516) they were able to predict both years, but still failed

to estimate the nutrient concentrations in both years of the other location. The next logical

step was to incorporate data from all four environments into one model (DUNHAL1516) and

to use this model to predict the nutrient concentrations in the four environments. The out-

come was a full model that contains data from all investigated environments that is able to pre-

dict the nutrients in a reasonable order in all environments. Interestingly, the four within

environment approaches still outperformed the joint model in their own trained environment,

though only at higher calibration set sizes.

A transfer of models in the current scope of this study seems difficult. Since only two years

and two locations are available, the probability is high that due to variations between
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Fig 5. Calibration model comparison—With additional samples—Within environments—Within traits. Comparison of the three calibration set

compositions (within environments, across years & across environments) for each of the six nutrient traits (N, P, K, Mg, Fe & Zn) in Dundee and Halle. The

colors of the lines represent the different calibration set models. In addition, the legend contains the number of samples used for the respective model

composition (n�1 = single number of samples, n�2 = duplicated number of samples & n�4 = quadruplicated number of samples) in parentheses.

https://doi.org/10.1371/journal.pone.0224491.g005
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environments and years, the model performance is weakened. For a more robust model, more

years and locations should be considered to increase the probability that similar environments

are learnt with the calibration dataset. Other studies already pinpointed the expected

Fig 6. Model transferability—Within environments—Across traits. Evaluation of model transferability to predict grain nutrients in each of the four

environments (Dundee 2015, Dundee 2016, Halle 2015 & Halle 2016, shown as columns) across the six nutrient traits (N, P, K, Mg, Fe & Zn). Seven different

prediction models (within each environment, across years, across environments; shown as rows) were used to predict nutrient concentrations of the six traits in

the four investigated environments. Prediction models containing the respective environment to be predicted are visually emphasized. The three types of

prediction model compositions contain different numbers of samples: the four within environment models (DUN15, DUN16, HAL15 & HAL16) contain the

simple number of samples of the respective environment, the two across years models (DUN1516 & HAL1516) the duplicated number of samples and the

across environments model (DUNHAL1516) the quadruplicated number of samples.

https://doi.org/10.1371/journal.pone.0224491.g006
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complexity of a purely data driven approach [26,79,81]. Moreover, as we only investigated one

single highly diverse population, we cannot answer the question whether the results also hold

true for other less diverse populations and whether trans-populational prediction would be

possible.

Finally, a suggestion for users should be to analyze a relatively small number of samples in

each location over several years to keep the cost for wet chemistry as low as possible while

benefitting from the additional variation introduced through different locations and years into

the calibration model. The presented results indicate that the across environments approach

outperforms models within a single environment, especially if the sample number of calibra-

tion models is low (Fig 4). However, the quality of HSI predictions is excelled by classical labo-

ratory methods [40], which might be acceptable in specific situations. For instance, modern

breeding programs consist of thousands of individual genotypes, especially in early genera-

tions, where frequently a negative selection is applied to separate the wheat from the chaff. The

superior speed of HSI allows breeders to obtain quality-related data already in those early gen-

erations, which would be unaffordable with wet chemistry methods.

Conclusions

Hyperspectral imaging offers users the possibility to analyze their samples in high through-

put for a wide range of issues like soil composition and food safety [28,82]. Nevertheless,

every spectral-based technology measures only a unique spectrum of a sample to correlate it

to the investigated trait (e.g. protein content) based on a calibration model. The importance

of these models is frequently underestimated as mentioned by Esteve Agelet and Hurburgh

[52]. In the present study we evaluated different model design parameters and could pro-

vide information about the optimal model design, exemplified for nutrient content in

mature barley grains.

In the dataset presented in this study, a linear regression model based on partial least

squares (PLS, [43]) outperformed complex models based on neural networks, since it offered

the best prediction performance while minimizing computational demand. Furthermore, we

observed a positive relationship (mean R2 of 0.96 in a logarithmic regression) between calibra-

tion set size and prediction performance with a local optimum at a calibration set size of 160

samples, representing 40% of the data investigated in this study. Above this point further incre-

ments in calibration set size are dispensable, since they seem to add no more variability to the

calibration model. Models obtained in a certain environment were only to a limited extent

transferable to other environments, considering the scope of this study. Extending those mod-

els with additional samples from other environments considerably improved the calibration

performance. Models should be successively upgraded with new calibration data to enable a

reliable prediction of the desired traits in future studies and practical applications of hyper-

spectral imaging systems, for instance in future plant breeding concepts. Furthermore, model

transfer strategies should be investigated to transfer models to unknown environments.
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