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Is there a reliable brain morphological
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Abstract

Voxel-based morphometry (VBM) is a popular non-invasive magnetic resonance imaging technique to investigate
brain gray matter (GM) differences between groups. Recently, two VBM studies in migraine have been published in
The Journal of Headache and Pain. Reviewing the two and those previous published VBM studies, we found
considerable variations of the results. Spatially diverse brain regions with decreased and increased GM alterations
and null findings have been reported. It is interesting to know whether there is a reliable brain morphological
signature for migraine. Coordinate-based meta-analysis (CBMA) is increasingly used to quantitatively pool individual
neuroimaging studies to identify consistent and reliable findings. Several CBMA have been conducted, however,
their results were inconsistent. The algorithms for CBMA have evolved and more eligible VBM studies in migraine
have been published. We therefore conducted an updated CBMA using the latest algorithms for CBMA, seed-based
d mapping with permutation of subject images (SDM-PSI). The present CBMA of 32 VBM studies (41 datasets
comprising 1252 patients and 1025 healthy controls) found no evidence of consistent GM alterations in migraine.
Sensitivity analysis, subgroup meta-analyses, and meta-regression analyses revealed that the result was robust. This
negative result indicates that there is no reliable brain morphological signature for migraine. VBM investigations in
migraine remain a heterogeneous field. Many potential confounding factors, such as underpowered sample sizes,
variations in demographic and clinical characteristics, and differences in MRI scanners, head coils, scanning
parameters, preprocessing procedures, and statistical strategies may cause the inconsistences of the results. Future
VBM studies are warranted to enroll well-characterized and homogeneous subtype samples with appropriate
sample sizes, comprehensively assess comorbidities and medication status, and use well-validated and standardized
imaging protocols and processing and analysis pipelines to produce robust and replicable results in migraine.
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Background
Migraine is a prevalent and disabling neurological dis-
order [1]. However, its pathophysiology remains poorly
understood. Voxel-based morphometry (VBM) is a
popular non-invasive magnetic resonance imaging (MRI)
technique that enables us to investigate brain gray mat-
ter (GM) differences between groups [2]. In 2003,

Matharu and colleagues performed the first whole-brain
VBM study in migraine and found no significant GM al-
terations [3]. Since then, numerous VBM studies have
been conducted. Recently, two VBM studies in migraine
were published in The Journal of Headache and Pain [4, 5].
One study by Liu and colleagues showed decreased GM
volume in the right supramarginal gyrus and increased GM
volume in the right cerebellar crus II in patients with high-
frequency migraine relative to healthy controls [5]. The
other study by Bonanno and colleagues reported different
results and showed distinct patterns of GM abnormalities
in migraine patients with and without aura relative to
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healthy controls [4]. Such results are noteworthy, however,
reviewing the two and previous published studies, we found
considerable variations of the VBM results. Spatially diverse
brain regions with decreased and increased GM and null
findings have been reported (Supplementary Table 1). The
replicability and generalizability are increasingly concerned
in neuroimaging research. It is interesting to know whether
there is a reliable brain morphological signature for mi-
graine, which may be of clinical and translational
importance.

Main text
Coordinate-based meta-analysis (CBMA) is a powerful ap-
proach to quantitatively pool individual neuroimaging
studies to identify consistent and reliable findings [6, 7].
Several CBMA have been conducted to find consistent
brain GM abnormalities in patients with migraine [8–11].
The first CBMA published online on March 15, 2015
using the activation likelihood estimation (ALE) approach
included five VBM studies and found GM reductions in
the middle and inferior frontal cortices in migraine [8].
Published on May 2nd, 2015, Dai et al. conducted the sec-
ond CBMA using anisotropic effect size version of signed
differential mapping (AES-SDM), which included nine
VBM studies and showed consistent GM reductions in
the posterior insular-opercular regions, prefrontal cortex,
and anterior cingulate cortex [9]. Published on January 19,
2017, the third CBMA of eight VBM studies using ALE by
Jia and Yu was performed, who found GM reductions in
the bilateral inferior frontal gyri, right precentral gyrus, left
middle frontal gyrus, and the left cingulate gyrus in mi-
graine [10]. A most recent CBMA using ALE published as
a medRxiv preprint on February 20, 2020 by Masson et al.
included 27 VBM studies and detected no significant de-
crease of GM volume in migraine [11]. We noted that
these CBMA studies also demonstrated divergent results.
Several factors contribute to the divergences. First, the
former three CBMA included relatively low numbers of
VBM studies. It has been shown that at least 17 experi-
ments in the ALE analysis would achieve reasonable
power for statistical analysis [12]. Second, the algorithms
for the CBMA have evolved. The old versions of ALE or
use of uncorrected statistical threshold would yield spuri-
ous results [13]. The revised version of ALE applied in the
recent CBMA used strict statistical threshold [11]. Third,
differences of the algorithms applied in the AES-SDM and
ALE would yield inconsistent results. ALE only included
the studies with significant neuroimaging results. In con-
trast, AES-SDM quantitatively integrated both significant
and null findings [14]. Fourth, variations in inclusion and
exclusion criteria for the CBMA may also contribute to
the inconsistences. According to the recent best-practice
guidelines for CBMA, studies that applied region of inter-
est (ROI)-based analysis or small-volume correction

(SVC) have to be excluded [6, 7]. Reviewing the studies in-
cluded in the CBMA by Masson et al., several studies
should not be included.
Recently, a new generation algorithms for CBMA,

seed-based d mapping with permutation of subject im-
ages (SDM-PSI, https://www.sdmproject.com/), has been
presented and recommended [15, 16]. SDM-PSI makes
significant improvements, such as use of standard voxel-
wise tests, standard permutation of subject images (PSI),
unbiased estimation of effect sizes based on MetaNSUE
algorithms, random-effects models, Freedman-Lane-
based permutations, and threshold-free cluster enhance-
ment (TFCE) statistics. These improvements avoid the
drawbacks of the alternative procedures used in other
current CBMA methods, thus making the results more
accurate [15]. We therefore conducted an updated
CBMA of available whole-brain VBM studies using
SDM-PSI. After a comprehensive and careful literature
search and screen, our CBMA finally included 32 whole-
brain VBM studies (41 datasets) [3–5, 11, 17–44] involv-
ing a total of 1252 patients with migraine (988 females/
264males, mean age 37.63 years) and 1025 healthy con-
trols (794 females/231males, mean age 36.78 years). The
present CBMA using SDM-PSI did not find evidence of
consistent GM alterations in migraine (threshold-free
cluster enhancement corrected, p < 0.05 and cluster size
≥10 voxels). Complementary analyses, such as sensitivity
analysis, subgroup meta-analyses, and meta-regression
analyses confirm the result robust. The details of the
search strategy, study selection criteria, methods, the Ta-
bles regarding the demographic and clinical characteris-
tics (Supplementary Table 1), imaging methodological
information (Supplementary Table 2), and results of the
SDM-PSI meta-analysis were provided in the Supple-
mentary Materials.
The latest comprehensive CBMA with the largest

number of whole-brain VBM studies reveals that there is
no a brain morphological signature for migraine. Mi-
graine is a heterogeneous disorder. VBM studies have
shown that GM alterations are associated with attack
frequency [5, 30, 35, 40], disease duration [21, 35], dis-
ease severity [23], aura [4], migraine cycle (during or be-
tween attacks) [20], long-term outcomes [5], the number
of tablets taken per month [19], and medication overuse
[24]. In addition, age and female gender are potential
confounding factors that may affect GM alterations in
migraine [9, 45–47]. Migraine is associated with higher
rates of psychiatric disorders, such as major depression,
bipolar disorder, and anxiety disorders [48]. However,
these comorbidities have not been comprehensively
assessed and controlled in previous VBM studies. In
addition, sample sizes in most of the individual VBM
datasets were under 50 participants per group. Under-
powered studies with small sample sizes may produce
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unreliable results [49]. A software tool, called PowerMap
has been developed to undertake statistical power calcu-
lation in neuroimaging studies [50]. Furthermore, it has
been proposed that differences in MRI scanners, head
coils, scanning parameters, preprocessing procedures,
and statistical strategies may yield divergent results in
individual VBM studies [49, 51]. The inconsistences pre-
vent us to obtain robust brain morphological features
and limit the transdiagnostic effect in migraine. Lately, a
more reliable technique called surface-based morphom-
etry (SBM) was introduced to study groups’ cortical
thickness differences, which may provide more insights
regarding brain morphology for migraine.

Conclusions
VBM investigations in migraine remain a heterogeneous field.
The CMBA of available VBM studies found no evidence of
consistent GM alterations in migraine. The quantitative evi-
dence reveals that there is no brain morphological signature
for migraine. The search for neuroimaging biomarkers for mi-
graine is still on the way. Future VBM studies call for the con-
trol of potential confounding factors, such as the enrollment
of well-characterized and homogeneous subtype samples with
appropriate sample sizes, comprehensive assessment of co-
morbidities and medication status, and use of well-validated
and standardized imaging protocols and processing and ana-
lysis pipelines (use of high field strength MRI with high spatial
resolution, more recent software package, appropriate covari-
ates in the statistical model, such as total intracranial volume
or total GM volume, age, gender, and other comorbidity, and
corrected thresholds for multiple comparisons) to produce ro-
bust and replicable results in migraine.
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