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ABSTRACT
The outbreak of COVID-19 caused by SARS-CoV-2 virus continually led to infect a large population
worldwide. Currently, there is no specific viral protein-targeted therapeutics. The Nucleocapsid (N) pro-
tein of the SARS-CoV-2 virus is necessary for viral RNA replication and transcription. The C-terminal
domain of N protein (CTD) involves in the self-assembly of N protein into a filament that is packaged
into new virions. In this study, the CTD (PDB ID: 6WJI) was targeted for the identification of possible
inhibitors of oligomerization of N protein. Herein, multiple computational approaches were employed
to explore the potential mechanisms of binding and inhibitor activity of five antiviral drugs toward
CTD. The five anti-N drugs studied in this work are 4E1RCat, Silmitasertib, TMCB, Sapanisertib, and
Rapamycin. Among the five drugs, 4E1RCat displayed highest binding affinity (-10.95 kcal/mol), fol-
lowed by rapamycin (-8.91 kcal/mol), silmitasertib (-7.89 kcal/mol), TMCB (-7.05 kcal/mol), and sapaniser-
tib (-6.14 kcal/mol). Subsequently, stability and dynamics of the protein-drug complex were examined
with molecular dynamics (MD) simulations. Overall, drug binding increases the stability of the complex
with maximum stability observed in the case of 4E1RCat. The CTD-drug complex systems behave dif-
ferently in terms of the free energy landscape and showed differences in population distribution.
Overall, the MD simulation parameters like RMSD, RMSF, Rg, hydrogen bonds analysis, PCA, FEL, and
DCCM analysis indicated that 4E1RCat and TMCB complexes were more stable as compared to silmita-
sertib and sapanisertib and thus could act as effective drug compounds against CTD.
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Introduction

The current pandemic of COVID-19 (Coronavirus Disease-
2019) caused by a novel coronavirus strain, 2019-nCoV/SARS-
CoV-2 has led to over 27 million confirmed cases and more
than 8 lakhs deaths in over 200 countries since its emer-
gence in late 2019, in Wuhan, China, as of early-September,
2020 (https://covid19.who.int/). As the number of COVID-19
cases are continually increasing, there is a global need for
antiviral drug development at an accelerated pace which
brought drug repurposing as a promising strategy (Gil et al.,
2020; Prasad et al., 2020). SARS-CoV-2 has a single-stranded,
plus-sense, 30 kb RNA genome, which contains five major
open reading frames encoding nonstructural replicase poly-
proteins (NSPs 1-16) and structural proteins, that is, spike (S),
envelope (E), membrane (M), and nucleocapsid (N) (Zhu
et al., 2020). SARS-CoV-2 nucleocapsid (N) protein is an
essential conserved structural protein that binds to viral gen-
omic RNA (gRNA) and plays an important role in viral tran-
scription and translation (Baric et al., 1988). The N protein is
also involved in binding other viral proteins including the E
and M proteins to help the virus envelope formation and

particle assembly (He, Leeson, et al., 2004; Kuo & Masters,
2002; Tseng et al., 2014). The N protein has an N-terminal
RNA-binding domain (NTD), a C-terminal dimerization
domain (CTD), and an intrinsically disordered central Ser/Arg
(SR)-rich linker (McBride et al., 2014) (Figure 1).

Both RNA binding and oligomerization of N protein are
important for viral assembly (He et al., 2004; Nelson et al.,
2000). The oligomerization of N protein is necessary for viral
ribonucleoprotein (RNP) assembly that is crucial to protect
the viral genome and sustain viral replication (Luo et al.,
2006; Narayanan et al., 2003). The N-CTD has been shown to
directly contribute to N protein dimerization and oligomer-
ization (Ye et al., 2020; Yu et al., 2006). Furthermore, the N
protein regulates the host innate immune response by inhib-
iting interferon b (IFN-b) production (Lu et al., 2011), and
binds to host translation elongation factor 1a (EF1a) to
inhibit host cell proliferation, mainly through the N-CTD
(Zhou et al., 2008). N protein is also involved in different cel-
lular activities, including the formation of stress granule and
host translation shutoff (Raaben et al., 2007), inhibition of
nonsense-mediated mRNA decay (Wada et al., 2018) and cell
cycle regulation (Surjit et al., 2005). N protein is highly
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conserved and stable, with 90% homology and fewer muta-
tions over time (Grifoni et al., 2020; Holmes & Enjuanes,
2003). It is highly immunogenic and is abundantly expressed
during infection (Cong et al., 2020).

The first three-dimensional structure of the SARS-CoV-2 N-
CTD was determined at 2.05 Å resolution and at pH 7.5 (PDB
ID 6WJI; Center for Structural Genomics of Infectious
Diseases (CSGID), unpublished) (Figure 1). Three-dimensional
structures of N-CTD reveal a compact, tightly intertwined
dimer with a central four-stranded b-sheet comprising the
bulk of the dimer interface. This interface is composed of
two b-strands and a short a-helix from each monomer that
extend toward the opposite monomer and pack against its
hydrophobic core. Many recent studies also demonstrated
that N proteins of coronaviruses can be useful antiviral drug
targets for its importance in the RNA genomic packing, viral
transcription and replication (Chenavas et al., 2013; Lin et al.,
2014; Lo et al., 2013; Monod et al., 2015; Sarma et al., 2020).
These antiviral drugs either target the conserved RNA-bind-
ing sites to specifically block the formation of ribonucleopro-
tein during genome replication (Lejal et al., 2013; Tarus et al.,
2015), or disrupt the oligomerization of N protein (Gerritz
et al., 2011; Hung et al., 2012).

Very recently, Gordon et al (Gordon et al., 2020) presented
a SARS-CoV-2-Human interactome to reveal potential drug
targets against COVID-19. The authors identified 332 interac-
tions between viral and host proteins, largely targeting the
innate immune signaling pathway. The viral N protein targets
stress granule protein G3BP1/2, the mTOR translational
repressors LARP1, and the protein kinases CK2. The suppres-
sion of stress granules and host translation machinery is
beneficial for viral replication, as stress granules inhibit the
replication of viruses (Ivanov et al., 2019; Nakagawa et al.,

2018; Raaben et al., 2007). Using this information, they iden-
tified a series of anti-N drugs with a high potential to fight
COVID-19. These anti-N drugs inhibit the SARS-COV-2 prolif-
eration in-vitro and the mechanism of action of these drugs
are different like casein kinase-2 (CK-2) inhibitor, mTOR
inhibitor, translation inhibitor, SG inhibitor, multi-targeted
protein kinase inhibitor, etc. Moreover, these anti-N drugs
could modulate the nucleocapsid assembly by interfering
with CTD dimerization or oligomerization, and thus might be
considered as valid therapeutic strategies against SARS-
CoV-2.

Drug-repurposing is one of the well-versed techniques to
understand the importance of active compounds to block
the viral proteins during the process of infection. To explore
the molecular mechanism of antiviral activity of anti-N drugs,
here, a number of computational methods like molecular
docking and all-atom molecular dynamics (MD) simulation
has been performed on the SARS-CoV-2 CTD structure (PDB
ID: 6WJI) (Figure 1). The crystal structure was prepared and
the selected antiviral drugs such as 4E1RCat, Silmitasertib,
TMCB, Sapanisertib, and Rapamycin were subjected to dock-
ing to acquire the better binding orientation. The overall
results from the MD simulations revealed that the com-
pounds 4E1RCat and TMCB have high stable confirmations
and thus indicating their inhibitory activity toward the active
cleft of the SARS-CoV-2 CTD, further hindering the virion
assembly and interaction with the viral genome, which in
turn halts the translation and replication processes. Thus, this
mechanism-relevant study explored the binding conforma-
tions, spotted the important amino acid residues during the
binding process, and also elucidated the detailed molecular
level interactions between the protein-ligand complexes. The
results anticipated insightful information into the interactive

Figure 1. Graphical representation of the Nucleoprotein embedded N- & C- terminal domains, amino acid residues responsible for the dimerization of C-terminal
domain and the In Silico work flow followed in the current study.
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mechanism of the antiviral drugs toward CTD of N protein,
which may pave a way for future exploration of efficient
drug targets in COVID-19.

Methods

Molecular docking

Molecular docking approaches have broadly been used to
know the binding modes of ligand and receptor and is widely
used in drug discovery. We have used the crystal structure of
the C-terminal domain of SARS-CoV-2 nucleocapsid
protein (CTD) protein (PDB ID: 6WJI). The chemical structures
of the drugs, 4E1RCat (ZINC000009311298), Silmitasertib
(ZINC000058638454), TMCB (ZINC000058638742), Sapanisertib
(ZINC000073069271), and Rapamycin (ZINC000169289388)
were taken from the ZINC Database (Sterling & Irwin, 2015)
as MOL2 files and converted into three dimensional PDB files
and energy minimized using MM2 force field. Energy mini-
mized 3D structures were then converted into docking input
file format (i.e. PDBQT). We have used Autodock (version 4.2),
which is an extensively used automated tool for protein-lig-
and docking (G. M. Morris et al., 2009). The 3D-grid box was
set to be with dimensions 112� 100 x 92Å in XYZ axes, with
a grid point spacing of 0.375Å. The binding poses were gen-
erated by the Lamarckian Genetic Algorithm (Garrett M
Morris et al., 1998). Ten binding poses were generated for
each ligand. After docking, the 2D receptor-ligand complexes
were constructed using Schr€odinger visualizer and visualized
using PyMOL (DeLano, 2002).

Molecular dynamics (MD) simulations

The general methodology of MD simulations was carried out
on unbound CTD and CTD-drug complexes using GROMACS-
Version 5.18.3. The topology of CTD was generated by using
GROMOS 9643a1 force field (Van Der Spoel et al., 2005). Due
to the lack of suitable force field parameters for drug-like
molecules in the GROMACS software package, PRODRG ser-
ver (Schu�Ettelkopf & Van Aalten, 2004) was used for gener-
ation of molecular topologies and coordinate files. The CTD
systems were solvated using a simple point charge model
(SPC/E) in a cubic box. The initial system of the protein and
drug was set to a simulation grid size of 46.24, 42.89 and
33.14 on X-, Y- and Z-axis, respectively. The solvation system
resulted 28,356 water molecules for protein and 29,486 water
molecules for protein-drug complexes. To neutralize the sys-
tem, 0.15M counter ions (Naþ and Cl-) were added. The
energy minimization of all the neutralized systems was per-
formed using the steepest descent and conjugate gradients
(50000 steps for each). The equilibration phase was carried
out separately in NVT (constant volume) and NPT (constant
pressure), each for 500 ps. The temperature of all systems
was maintained at 300 K using Berendsen weak coupling
method (Berendsen et al., 1987) and the pressure was main-
tained at 1 bar using Parrinello-Rahman barostat (Parrinello &
Rahman, 1980). The SHAKE algorithm was used to confine
the H atoms at their equilibrium distances, and periodic

boundary conditions. Moreover, the Particle Mesh Ewald
(PME) method used to define long-range electrostatic forces
(Darden et al., 1993). The cutoffs for van der Waals and
columbic interactions were set at 1.0 nm. LINC algorithm was
used to constrain the bonds and angles. Using the NPT
ensemble, production runs were performed for the period of
100 ps, with time integration. The energy, velocity, and tra-
jectory were updated at the time interval of 10 ps. MD ana-
lysis of the root mean square deviations (RMSD), radius of
gyration (Rg), solvent accessible surface area (SASA) and root
mean square fluctuation (RMSF) was done using modules
such as g_rmsd, g_gyrate, g_sasa, and g_rmsf, respectively.

Principal component analysis (PCA) and free-
energy landscape

The principal component analysis (PCA) is one of the well-
known statistical techniques that extracts the rigorous
motion information in simulations which is essentially corre-
lated for biological function. PCA works on the variance/
covariance matrix which will be constructed based on the tra-
jectories after removal of the rotational and translational move-
ments. The eigenvalues that are identified by diagonalizing the
matrix with their projection along with the first two principal
components (PC1 and PC2) were calculated using essential
dynamics (ED) method by g_covar, g_anaeig modules.

PC1 and PC2 were selected as reaction coordinates for
the calculation of free energy, Ga using

Ga ¼ �kT ln PðqaÞ PmaxðqÞ½ �
where k is the Boltzmann constant, T is the simulation tem-
perature. P(qa) corresponds to the probability density func-
tion and was constructed using a joint probability
distribution of reaction coordinates (PC1 and PC2). Pmax(q)
signifies the probability of the most probable state. The pro-
tein movements and the dynamic motions of N-CTD and
ligands bound to N-CTD throughout the trajectories in the
subspace were further identified by Cartesian trajectory coor-
dinates projecting most important eigenvectors from the
complete analysis.

Results and discussion

Binding site exploration through molecular
docking analysis

To predict the binding site for performing the molecular
docking, a ligand-independent binding site search was done
on CTD using CASTp Server (Tian et al., 2018). The server
identifies a putative binding pocket with a solvent accessible
surface area of 907 Å2 and volume of 1166 Å3. This binding
pocket of CTD contains residues 259-264 (310 helix), 270, 274
(helix H1), 281-287 (turn and coil region between H1 and
H5), H2 (291, 292, 295-296), H3 (301, 304-306), H4 (310-311,
314-318), b2 (329-334), and C-terminal coil region (335-349)
(Figure S1, supplementary material). We have also used the
other two web-servers, PrankWeb (Jendele et al., 2019) and
COACH (Yang et al., 2013) for predicting the binding sites.
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These two servers also predict similar residues in the binding
pocket, with minor differences.

Interestingly, we found that most of the binding pocket
residues were predicted to be potential dimeric interfacial
residues through the InterProSurf analysis (Negi et al., 2007)
and the consensus Protein-Protein Interaction Site Predictor
(cons-PPISP) server (Chen & Zhou, 2005). The consensus

results from these two web-servers revealed that the resi-
dues involved in the dimerization of CTD are located in the
H4 (Ser310-Ser318), b1 strand (Arg319-Val324), b2 strand
(Gly328-Thr334) and in the coil regions adjacent to b2 strand
(Gly335-Leu339).

As per the information about the binding site and the
dimeric interfaces of the CTD, it is rational to look for the

Table 1. Molecular docking results of Nucleoprotein with compounds.

Compound
Binding affinity

(kcal/mol)
Hydrogen bond
interactions Weak interactions

ZINC000009311298 �10.95 Arg277, Lys261
and Tyr333

Thr282, Gln283, Gly284, Asn286, Gly287, Gly275, Phe274,
Ala273, Thr271, Val20, Ala264, Thr263, Arg262, Lys26,
Gln260, Arg259, Pro258, Thr332, Leu331, Trp330, Ile320,
Phe315, Phe315, Phe314, Ser312, Ala311 and Ser310

ZINC000058638454 �7.89 Arg277, Asn285
and Phe286

Phe274, Gly275, Gln283, Gly284, Gly287, Ile357, His356,
Leu353,
Arg259, Ile292, Lue291, Trp301, Glun303, Ile304, Ala305,
Gln306, Phe307, Ala308, Pro309, Ala336, Ile337, Lys338
and Leu339

ZINC000058638742 �7.05 Arg277 Phe274, Gly275, Gln283, Gly284, Asn285, Phe286,
Gly287, Val270, Lue291, Ile292, Gly295, Thr296, Trp301,
Arg259, Gln260, Lys261. Arg262, Thr263, Ala265
and Thr265

ZINC000073069271 �6.14 Lue331 and Tyr333 Pro258, Arg259, Gln260, Gln281, Thr282, Gln283,
Phe314, Arg319, Gly321, Glu323, Thr329, Trp330, Thr332,
Thr334 and Gly335

ZINC000169289388 �8.91 Arg277, Glu283,
Asn285 and Tyr333

Arg259, Val270, Phe274, Gly278, Pro279, Glu280, Gln281,
Thr282, Gly284, Phe286, Gly287, Ile357, Asp358, Lys361,
Trp330, Leu331, Thr332, Thr334, Gly335, Ala336, Ser318,
Arg319 and Glu323

Figure 2. Molecular docking interactions and orientations of five anti-N drugs with SARS-CoV-2 CTD (PDB ID: 6WJI). Two-dimensional (2 D) diagrams of ligand-pro-
tein interactions for (A) 4E1RCat, (B) Silmitasertib, (C) TMCB, (D) Sapanisertib, and (E) Rapamycin. The hydrogen-bond interactions with residues are represented by
a purple arrow directed toward the electron donor. The amino acids are colored according to their properties.
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interaction of these target residues with the ligand. For this,
we performed the focused molecular docking on the pre-
dicted binding site involving H4-b2 and nearby regions in
the three-dimensional structure of CTD. For the molecular
docking study, we utilized AutoDock, which is the most cited
software for docking. Through the molecular docking, we
evaluated the binding of five drugs to the N protein of
SARS-CoV-2 as shown by Gordon et al. (Gordon et al., 2020).
Most of these drugs are currently in clinical trials for the
COVID-19, though their antiviral mechanisms are still elusive.
Given the importance of N protein oligomerization, we here
investigated whether the inhibition of protein dimerization/
oligomerization may be a part of the mechanism of action.
The five drugs studied in this work are 4E1RCat
(ZINC000009311298), Silmitasertib (ZINC000058638454), TMCB
(ZINC000058638742), Sapanisertib (ZINC000073069271), and
Rapamycin (ZINC000169289388).

All these five drugs were docked against CTD and were
ranked based on their binding affinity and the maximum num-
ber of interactions with the target residues (Table 1). The pro-
posed binding mode for these drugs is presented in Figure 2.
Among the five drugs, 4E1RCat displayed highest binding affinity
(-10.95kcal/mol), followed by rapamycin (-8.91kcal/mol), silmita-
sertib (-7.89kcal/mol), TMCB (-7.05kcal/mol), and sapanisertib
(-6.14kcal/mol). The binding energy suggests that these drugs
bind with the CTD with a strong affinity with KD (KD ¼ expDG/RT)
values in the nanomolar to low micromolar range.

As shown in Figure 2A, 4E1RCat, a translation inhibitor by
inhibiting the eIF4E-eIF4G interactions, displayed the highest
binding affinity and forms four H-bonds with Lys261, Arg277,

and Tyr333 apart from thirteen hydrophobic and thirteen
polar interactions (Table 1).

Rapamycin is an mTOR inhibitor and has been shown to
reduce MERS infection by �60% in vitro (Kindrachuk et al.,
2015). It interacted with four target amino acid residues with
H-bond i.e. Arg277, Glu283, Asn285, and Tyr333 (Figure 2(B)).
Other amino acids involved in interaction comprising nine
hydrophobic interactions and ten polar interactions.

Silmitasertib inhibits CK2 and promotes the formation of SGs
(Reineke et al., 2017) forms four H-bonds with residues Arg277,
Asn285 and Phe286 along with ten hydrophobic and five polar
interactions (Figure 2(C)). Similar to silmitasertib, TMCB targets
CK2 protein and interacts with CTD through two H-bonds with
Arg277 along with six hydrophobic interactions and ten polar
interactions (Figure 2(D)). Sapanisertib, like rapamycin targets
LARP1 and mTOR inhibitor, interacted with target proteins by
forming three H-bonds with Lue331 and Tyr333 along with five
hydrophobic and ten polar interactions (Figure 2(E)).

Thus, the binding mode of these five drugs indicates that
hydrogen bonding, hydrophobic and polar interactions were
the driving forces for binding. The results obtained after
docking calculations for all drugs indicate that the most
common residues formed H-bonds with CTD are Arg277,
Asn285, and Tyr333 (Figure 3).

Evaluating the stability and conformational dynamics of
CTD-ligand complexes through MD simulation

To further characterize the binding induced structural and
conformational changes, all-atom MD simulations for 100 ns

Figure 3. The potential binding poses for the drugs. The yellow dotted line represents intermolecular hydrogen bond interactions.
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were performed to obtain the conformational sampling of
the unbound CTD and CTD-drugs complexes.

The selected docking conformations of CTD in complex with
drugs were sampled by 100ns MD simulation, and the dynamic
stability of the complex was elucidated by calculating the Ca-
RMSD values of the protein as the function of simulation time
(Figure 4(A)). The Ca-RMSD values for both free and drug-
bound protein changed during the initial 20ns simulation, and
became stable after 30ns. For CTD-Rapamycin and CTD-TMCB,
there were some fluctuations in the beginning and then these
complexes gradually reached equilibrium after 30ns simulation.
After 30ns of simulation, the fluctuation curve of CTD-bound
4E1Rcat, TMCB, and Sapanisertib was lower than the others,
suggesting the overall stability of the complex. For CTD-
Silmitasertib, fluctuations in RMSD was observed and reached
to the maximum value of 0.8nm at 70ns of simulation after
which it levels back similar to unbounded CTD. Overall, the
drug binding induces stability to the CTD, and the decreasing
order of the stability is arranged as: TMCB> Sapanisertib >

4E1Rcat> Rapamycin> Silmitasertib.
The analysis of the one-dimensional probability distribution

function (PDF) of Ca-RMSD for CTD-drug complexes indicated
that except silmitasertib, all other drugs impart the stability to
CTD upon binding (Figure S2A, supplementary material).

For prediction of the compactness of the protein-ligand
complexes, the Rg and SASA was calculated for CTD systems

(Figure 4(B, C)). The Rg is an effective parameter to evaluate
the structural integrity and compactness of the studied sys-
tems. It is defined as the mass-weighted root mean square
distance of a collection of atoms from their common center
of mass. SASA determines the accessibility of protein to the
solvent and thus indicates the unfolding of the protein dur-
ing MD simulation. The time evolution plot of Rg showed
that all systems were compact. In the case of CTD-drug com-
plexes, Rapamycin seems to be making the protein more
compact with lesser Rg and SASA values, as compared to
other drugs. With lesser Rg and SASA values, Rapamycin and
4E1Rcat are observed to be stably bound to CTD in compari-
son to other drugs. Silmitasertib and TMCB bound CTD com-
plex has increased Rg and SASA values, indicating the
potential unfolding effects of silmitasertib and TMCB on CTD.
Overall, the drug binding induces a decrease in compactness
and increases the flexibility in the order as: Silmitasertib>
TMCB> Sapanisertib > 4E1Rcat> Rapamycin.

The PDF of Rg and SASA indicates that the silmitasertib and
TMCB have a potentially unfolding effect on CTD and making it
unstable. (Figure S2B and S2C, supplementary material).

The RMSF displays the flexibility/mobility of each amino
acid residue in the CTD and CTD-drug complexes (Figure
4(D)). For the unbound CTD, high fluctuations were signifi-
cantly found in the b-sheet residues, 320-330 which is also a
predicted binding pocket.

Figure 4. Molecular dynamics simulations of drug-protein complexes during 100ns at 300K. (A) RMSD of the Ca backbone (B) Radius of gyration, Rg (C) SASA, and (D)
RMSF of residues. In all panels the color code is- CTD (black), 4E1RCat (red), Silmitasertib (green), TMCB (blue), Sapanisertib (yellow), and Rapamycin (brown).
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Also, these residues are the most conserved residues of N
protein according to multiple sequence alignment results
obtained from ESPript 3.0 (Robert & Gouet, 2014) (Figure S3,
supplementary material). According to a recent study, the
amino acids, 331-333 were the most conserved yet dynamic
site of N and involved in the multimerization of N protein
(Gupta et al., 2020). The multimeric structure of N revealed that
the conserved amino acids Val270, Phe274, Arg277, Asn285,
Gly287, Phe286, and Asp288 are clustered and surface exposed,
and thus could contribute to protein-protein interactions.
Recently, hydrogen-deuterium exchange mass spectroscopy of
CTD (PDB ID: 6WZO) results indicated that the residues 323-329
(located within a loop) are relatively exposed, while the residues
330-336 (within a b-strand) is strongly protected from H-D
exchange (Troyer & Brady, 2020). Our RMSF results of CTD are
consistent with these findings.

Compared to the unbound CTD structure, the CTD-drug
complexes showed decreased RMSF values for the C-terminal
region, especially for b1 (318-325), b2 (328-334), and a-helix,
H7 (345-355) residues, indicating significant stabilization of
these regions upon drug binding. Thus, the predicted binding
site (329-339) has become one of the most stable regions in
the CTD-drug complex system. However, silmitasertib binding
to CTD increases the fluctuations of extreme N-and C-termini of
the protein, but not to a greater extent and the average RMSF
is similar to that of unbounded CTD. Thus, according to RMSF

results, the overall fluctuations of the CTD decreased upon
drug binding and the maximum decrease were observed in the
case of TMCB bound CTD complex.

Hydrogen bonding is one of the most important interac-
tions for stabilizing the protein-ligand complex. Figure 5
shows the number of hydrogen bonds formed in CTD-drug
complexes during the last 60 ns trajectory. Sapanisertib,
4E1Rcat, and Silmitasertib bound CTD showed a greater
number of average hydrogen bonds, which proves them as
good inhibitor molecules. Whereas, hydrogen bonds forma-
tion in CTD-TMCB was unstable and absent most of the time
during the simulation. For the last 20 ns of simulation, the
number of intermolecular H-bonds is greater in the case of
CTD-Rapamycin and CTD-Silmitasertib system, indicating the
stable binding.

Secondary structure dynamics of CTD-drug complexes

To further understand the drug binding induced changes in
secondary structure, the time evolution of the secondary
structure profiles calculated through DSSP are shown in
Figure 6.

As can be seen, CTD adopts a compact fold rich in helical
structures (five a-helices and two 310-helix) along with two
b-strands. The detailed changes of the secondary structure of
unbounded CTD (Figure 6(A)) showed that H4 was the most

Figure 5. Number of hydrogen bond interactions formed during MD simulation in the case of CTD-4E1RCat (red), CTD-Silmitasertib (green), CTD-TMCB (blue), CTD-
Sapanisertib (yellow), and CTD-Rapamycin (brown).
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unstable secondary structure segment, which began to unfold
after �20ns of simulation. The helices, H3 and H4 are present in
the dimer interface of a subunit, and also involved in drug bind-
ing. A little distortion of b-sheets observed during the initial
10ns and then 30-60ns simulation. Notable changes in the sec-
ondary structure profile were observed in CTD-drug complexes.
In the case of 4E1Rcat bound CTD complex, the interactions
between the main-chain of strands b1 and b2 were decreased
at the beginning of the simulation and were lost significantly
after �20ns (Figure 6(B)). Moreover, the drug binding induces
the stability of the H4 structure which remained stable in the
presence of 4E1RCat during the simulation. Also, the turn resi-
dues between b2 to a5 were lost predominantly to coil.

Silmitasertib binding induces greater changes in the heli-
city of the protein (Figure 6(C)). The drug-binding overall
decreases the helicity of the protein. The helix, H1 lost after
50 ns of simulation, H2 also lost after 40 ns of simulation and
then reappear after 45 ns. H3 also partially lost during the
last �30 ns of simulation while H4 lost after �25 ns.
However, the helix H6 and the two b-strands remained sta-
ble throughout the simulation.

Most significant changes were observed in the case of
TMCB bound CTD complex structure (Figure 6(D)), where the
residues 25-30 form helix for half of the simulation period
and then transformed to coil. However, H4 gets disrupted
after �15 ns of simulation, and the strands lost after �75 ns.
For Sapanisertib bound complex (Figure 6(E)), the N-terminal
helices, H1 and H2 remained unstable with slight distortion
during the first 40 ns and then reappear for the rest of the
simulation. Interestingly, the helix H4 which remained lost in
CTD and other CTD-drug complexes, appears stable through-
out the simulation. The other helices, H3, and H5 also
remained stable during the simulation. The b-sheets also
remained stable with transient loss during the simulation.
Overall, the significant increase in helicity and structural sta-
bility was observed in the CTD-Sapanisertib complex. Similar
to Sapanisertib, rapamycin binding also induces the stabiliza-
tion of helices, H3, and H4 along with sheets (Figure 6(F)).
The N-terminal helices, H1 and H2 disappear and reappear at
the end of the simulation. The formation of other minor sec-
ondary structures like turn and bends are more prominent in
this complex.

Figure 6. Secondary structure changes during MD simulation of CTD-drug complexes. Time evolution of the secondary structure profiles (A) CTD, (B) 4E1RCat, (C)
Silmitasertib, (D) TMCB, (E) Sapanisertib, and (F) Rapamycin.
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Thus, DSSP information showed that the secondary structure
profile of the residues involved in drug binding has some differ-
ences among the complexes. For example, binding of the most
of the drug (except silmitasertib) to CTD increases the helicity
of the residues 54-62 (H4: 310-318 in original PDB). However,
the drug binding residues of b1 (319-325) and b2 (328-334)
behave differently in the presence of the drugs.

The drug silmitasertib, and rapamycin binding increases
the sheet content while the drug 4E1RCat, TMCB, and
Sapanisertib binding leads to the loos of sheets and thus
decrease the rigidity of the protein complex. Overall, the sec-
ondary structure content increases in the case of rapamycin
and sapanisertib binding while, 4E1RCat, silmitasertib, and
TMCB binding induces a decrease in secondary structure
content of CTD (Figure S4, supplementary material).

Evaluation of structural motions and conformational
sampling in CTD-drug complexes

Principal component analysis (PCA) was carried out to investi-
gate the important motions during drug binding. The covari-
ance matrix of atomic fluctuations was diagonalized for
predicting the eigenvalues. As the first few eigenvectors play

a central role in the motions of protein, we have shown here
the eigenvalue in decreasing order versus the corresponding
eigenvector for CTD systems (Figure 7(A)). As can be seen, the
first five principal components account for more than 70% of
motions observed for the last 40ns trajectories of the six CTD
systems. The correlated motions showed that unbound CTD
showed lesser correlated motions as compared to the CTD-
drug complexes. The results showed that the binding of the
drug reduced the motion during binding as in the
order: TMCB> 4E1RCat> Rapamycin> Sapanisertib> Silmitasertib.
Thus, it can be concluded that TMCB and 4E1RCat binding sig-
nificantly reduced the motion while silmitasertib binding mod-
erately increases the motion.

Further, the conformational sampling of CTD systems in
the essential subspace is shown in Figure 7B which shows
the global motions along with the PC1 and PC2 projected by
the Ca atom. The figure clearly indicates that unbounded
CTD showed fewer stable clusters as compared to CTD-drug
complexes, especially in PC1. In the case of the CTD-drug
complexes, CTD-TMCB, and CTD-4E1RCat complex showed a
more stable cluster than the CTD-Silmitasertib complex. This
has also been confirmed with the investigations of the resi-
due displacements along with PC1 and PC2 for the CTD

Figure 7. Principal component analysis of CTD-drug complexes during 100 ns MD simulation. (A) Plot of eigenvalues vs eigenvector index. First 20 eigenvectors
were considered. (B) Projection of the motion of the protein and drug-protein complexes in phase space along the PC1 and PC2. (C) Average Eigen RMSF values
for CTD systems were predicted for PC1 and PC2. The color code for the figure is: CTD (black), 4E1RCat (red), Silmitasertib (green), TMCB (blue), Sapanisertib (yel-
low), and Rapamycin (brown).
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systems (Figure 7(C, D)). Average fluctuation for CTD-drug
complexes were lesser along both the eigenvectors com-
pared to the unbounded CTD. Both CTD-4E1RCat and CTD-
TMCB bound complex induced fewer motions during binding
while CTD-Silmitasertib and CTD-Sapanisertib complex showed
a moderate increase in fluctuations and thus could influence
the protein motions during binding (Figure 7(C, D)).

Overall, the PCA results indicated that among the five
drugs, TMCB and 4E1RCat induces lesser motion and thus
more stable complex. The reduced conformational dynamics
of the CTD-drug complex may be due to a highly stable and
optimized interaction network, which effectively limits the
backbone dynamics of both the protein and drugs.

Free energy landscape (FEL)

To demonstrate the effects of drug binding on conform-
ational redistributions, free energy landscapes (FEL) for the
six systems were determined as a function of the top two
principal components, PC1 and PC2, and are shown in Figure
8. FEL can be used to effectively describe conformational
changes induced by ligand binding (Kumar et al., 2018;
Prakash et al., 2019). The FEL plots revealed DG value 0 to
16.7, 16.1, 13.8, 13.6, 14.7 and 16.3 kJ/mol (Figure 8) for
unbound CTD, CTD-4E1RCat, CTD-Silmitasertib, CTD-TMCB,
CTD-Sapanisertib, and CTD-Rapamycin complex, respectively.

In reference to Figure 8, we could visualize that unbound
CTD explores a single large conformational space along with
a single global energy minima (Figure 8(A)). The FEL of CTD
-4E1RCat complex was similar to that of unbound CTD, sug-
gesting minimal changes in conformational rearrangements
(Figure 8(B)). However, for CTD bound to silmitasertib or
TMCB, we observed that the protein explores a huge con-
formational space and displays several small local minima
along with a reversed population shift relative to the
unbound CTD (Figure 8(C)). This indicates that these drugs
induce diverse ensembles of flexible conformations during
the 100 ns simulation. Similarly, CTD-Sapanisertib and CTD-
Rapamycin bound complex explores different intermediate
conformations linked by low lying energy barriers (Figure
8(D)). Thus, compared to unbound CTD free energy surfaces,
there is a considerable population shift in all the CTD-drug
complex systems, suggesting global conformational switch-
ing to a number of metastable states. These results lead us
to the conclusion that silmitasertib and TMCB strongly mod-
ulates CTD protein conformations, and thus could regulate
the function of the protein.

Density distribution analysis

The atomic density distribution was further investigated to
observe the changes in the atomic orientation and

Figure 8. The free-energy landscape (FEL) of the simulated CTD and CTD-drug complexes based on the principal component analysis. (A) CTD, (B) CTD-4E1RCat,
(C) CTD-Silmitasertib, (D) CTD-TMCB, (E) CTD-Sapanisertib, and (F) CTD-Rapamycin. The color bar represents the free energy value according to kcal mol�1. Dark
blue spots indicate the energy minima and energetically favored protein conformations, and yellow spots indicate the unfavorable high-energy conformations.
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distribution due to drug binding. We plotted the partial
density distribution for CTD systems calculated using the
densmap analysis available in the Gromacs package (Figure
S5 a–f, supplementary material). The partial density area of
CTD was observed to be stable with a value of 2.29 nm�3,
whereas high density was noticed for drugs 4E1Rcat
(2.61 nm�3), silmitasertib (2.88 nm�3), and TMCB (2.47 nm�3).
However, the drugs sapanisertib (1.98 nm�3) and rapamycin
(2.05 nm�3) showed a lesser density area as compared to
CTD. The density maps thus indicated that drug binding
induced conformation changes to CTD which is much more
evident in the case of silmitasertib and sapanisertib. This
result was also in accordance with the DSSP results, further
indicating a major conformational loss in the presence of
these drugs (Figure 6).

Dynamic cross-correlation matrices analysis

To monitor the correlated conformational motions of CTD-drug
complexes, the dynamic cross-correlation matrices (DCCM) ana-
lysis was further analyzed (Figure 9). Here, highly positive
regions (red) signify a strong correlation in the movement of
residues in the same direction, while the negative regions
(blue) indicate strong anti-correlated motion of the residues
(residues move in the opposite direction). The color depth of

diagonal could signify the movement degree of atoms. As
shown in Figure 9, among the five CTD-drug complex systems,
silmitasertib bound CTD has relatively stronger correlated
motions followed by CTD-4E1RCat complex. Also, the more cor-
related and anti-correlated motions between residues are
observed in CTD-Silmitasertib complex, followed by CTD-
4E1RCat, CTD-Rapamycin, CTD-Sapanisertib, and CTD-TMCB
complex. These noticeable differences suggested the presence
of more and stronger cross-correlation motions in CTD-
Silmitasertib and CTD-4E1RCat, indicating more strong inter-
action and better stability of these complexes. Also, the lack of
correlation in the motion of the CTD-TMCB and CTD-
Sapanisertib complex hinted toward the loss of contact among
the residues, which lead to the destabilization of the complex.

Tertiary contact map

Figure 10 shows the pairwise contact maps for the CTD and
CTD-drug complexes This enables us to obtain insights into
the details of residual contacts and thus structural changes
due to drug binding. The contact map analysis indicates that
binding of drugs leads to the loss of tertiary contacts espe-
cially in the N-terminal region of the protein. The drug
4E1RCat (Figure 10(B)) induces maximum changes in residual
contacts as the drug-binding decreases the contacts of N-

Figure 9. Dynamic cross-correlation map (DCCM) of the Ca atoms around their mean positions during MD simulation. (A) CTD, (B) CTD-4E1RCat, (C) CTD-
Silmitasertib, (D) CTD-TMCB, (E) CTD-Sapanisertib, and (F) CTD-Rapamycin. The degrees of the correlation motions and anti-correlation motions are represented in
blue and red, respectively.
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terminal residues (residues 1-10) to H1 (24-30), H3 (45-50) and
H4 (54-62). The N-terminal helix H1 also lost its contacts with
H3 and H4. The contacts between C-terminal b2 (72-80) and H6
(104-109) also gets disrupted. However, these drug binding
leads to the gain of some long-range contacts between N-ter-
minal 310 helix residues to C-terminal b-sheets. Silmitasertib
binding also weakens the short-range interactions of H1(24-30)
to N-terminal residues (1-10), H3 (45-50), and H4 (54-62) along
with minor loss of long-range contacts between N-and C-ter-
mini (Figure 10(C)). The drug TMCB binding also disrupts the
contacts similar to silmitasertib, however it gains some non-
native contacts between N-terminal 310-helix and C-terminal b2
(Figure 10(D)). The change in contact map in the case of sapa-
nisertib binding is similar to that of 4E1RCat binding with the
maximum disruption of H3 and H4 helices (Figure 10(E)).
Moreover, rapamycin binding doesn’t show significant changes
in the contact map and behave very much similar to
unbounded CTD (Figure 10(F)). Overall, the drug binding results
in the loss of tertiary contacts of the protein and thus implies
the structural loss of the protein which is more significant in
4E1RCat and sapanisertib.

Conclusions

The involvement of N protein in many crucial functions of
the viral life cycle makes it a candidate drug-target in

COVID-19. However, the molecular mechanism for drug
binding and inhibition of antivirals against newly emerged
novel SARS-CoV-2 N protein remain largely elusive.
Understanding these aspects should facilitate the discov-
ery of compounds that specifically inhibits CoV genome
replication and assembly. Here, we analyzed the binding
mechanism of anti-N drugs against SARS-CoV-2 CTD at the
molecular level with the help of structure-based computa-
tional methods.

Our study indicated that these five drugs bind CTD with
strong affinity values in the nanomolar to low micromolar
range. It can be observed that the drug-binding residues
also form the dimeric interface and become one of the most
stable regions in the CTD-drug complex system. The changes
in structural and conformational dynamics of CTD upon drug
binding are different among the drugs. Overall, the MD simu-
lation parameters like RMSD, RMSF, Rg, hydrogen bonds ana-
lysis, PCA, FEL, and DCCM analysis indicated that 4E1RCat
and TMCB complexes were more stable as compared to sil-
mitasertib and sapanisertib. In conclusion, the study eluci-
dated the detailed interaction mechanism of drugs binding
to CTD and the associated structural and dynamical changes
upon drug-binding. These results will significantly enhance
our understanding of the working mode of these drugs at
the molecular and structural level, and will contribute to the
future rational drug design for COVID-19.

Figure 10. Tertiary contact map of CTD changes on drug binding. Contact map of (A) CTD, (B) CTD-4E1RCat, (C) CTD-Silmitasertib, (D) CTD-TMCB, (E) CTD-Sapanisertib, and
(F) CTD-Rapamycin. The loss of residual contacts due to drug binding is represented in the red circle, while the gain of contacts is shown in the black circle.
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