RESEARCH ARTICLE

Open Access

Association of Glutathione S-transferase gene polymorphism with bladder Cancer susceptibility

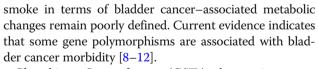
Tianbiao Zhou^{1*†}, Hong-Yan Li^{2†}, Wei-Ji Xie¹, Zhiqing Zhong¹, Hongzhen Zhong¹ and Zhi-Jun Lin¹

Abstract

Background: We conducted a meta-analysis to evaluate the relationship between the glutathione S-transferase μ 1 (GSTM1)– and glutathione S-transferase θ 1 (GSTT1)– null genotypes and susceptibility to bladder cancer.

Methods: We identified association reports from the databases of PubMed, Embase, the Cochrane Library and the China Biological Medicine Database (CBM disc) on July 1, 2017 and synthesized eligible investigations. Results were expressed using odds ratios (ORs) for dichotomous data, and we also calculated 95% confidence intervals (CIs).

Results: In this meta-analysis, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, and individually in whites, Africans and Asians (overall population: OR = 1.40, 95% CI: 1.31– 1.48, *P*<0.00001; whites: OR = 1.39, 95% CI: 1.26–1.54, *P*<0.00001; Africans: OR = 1.54, 95% CI: 1.16–2.05, *P* = 0.003; Asians: OR = 1.45, 95% CI: 1.33–1.59, *P*<0.00001). The GSTT1-null genotype was associated with bladder cancer risk in the overall population, but not in whites, in Africans or Asians (overall population: OR = 1.11, 95% CI: 1.01–1.22, *P* = 0.03; whites: OR = 1.16, 95% CI: 0.99–1.36, *P* = 0.07; Africans: OR = 1.07, 95% CI: 0.65–1.76, *P* = 0.79; Asians: OR = 1.05, 95% CI: 0.91–1.22, *P* = 0.51). Interestingly, a dual-null GSTM1–GSTT1 genotype was associated with bladder cancer risk in the overall population and in Asians (overall population: OR = 1.48, 95% CI: 1.15–1.92, *P* = 0.002; Asians: OR = 1.62, 95% CI: 1.15–2.28, *P* = 0.006). In conclusion, the GSTM1-null, GSTT1-null and dual-null GSTM1–GSTT1 genotypes might be associated with the onset of bladder cancer, but additional genetic-epidemiological studies should be conducted to explore this association further.


Keywords: Bladder cancer, Gene polymorphism, GSTM1, GSTT1, GSTP1, Meta-analysis

Background

Bladder cancer, also known as urothelial cancer of the bladder, is the most common malignancy affecting the urinary system [1-3]. Treatment of bladder cancer has not advanced in the past 30 years [1]. The disease has a multifactorial etiology that includes environmental factors such as cigarette smoking, arsenic exposure and occupational exposure as well as genetic factors [4–6]. Genetic factors are the one of the most important factors associated with the onset of bladder cancer [7]. Smoking is a major risk factor for the development of this cancer, but the functional consequences of the carcinogens in tobacco

¹Tianbiao Zhou and Hongyan Li contributed equally to this work. ¹Department of Nephrology, The Second Affiliated Hospital of Shantou

University Medical College, Shantou 515041, China

Glutathione S-transferases (GSTs) play an important role in detoxification of various toxic compounds, such as carcinogens, and are a family of enzymes that include the glutathione S-transferase μ 1 (GSTM1), θ 1 (GSTT1) and π 1 (GSTP1) classes, etc. [13]. They are important phase II detoxifying enzymes that catalyze the conjugation of reduced glutathione (GSH) to hydrophobic, electrophilic xenobiotic substances [14]. Genetic risk to malignant tumors has led to the accumulating attention to the investigations of genes polymorphism involved in process of carcinogenesis [15]. The gene polymorphisms of GSTs might influence the detoxification activities of the enzymes, predisposing individuals to cancers, such

© The Author(s). 2018 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: zhoutb@aliyun.com

Full list of author information is available at the end of the article

as oral squamous-cell carcinoma, gynecological cancer, breast cancer, prostate cancer, hepatocellular carcinoma, and colorectal cancer [16–21].

In the past few decades, most of the epidemiological investigations have focused on the relationship between the null genotypes for GSTM1-GSTT1 and bladder cancer susceptibility. However, available evidence is inadequate due to the sparseness of data or disagreements among reported studies. We performed this meta-analysis to investigate whether the dual-null GSTM1-GSTT1 genotype was associated with bladder cancer susceptibility.

Methods

Search strategy

We retrieved relevant published articles from the electronic databases of PubMed, Embase, the Cochrane Library and the China Biological Medicine Database (CBM-disc) on July 1, 2017, and we recruited eligible original articles for our meta-analysis. Key search terms consisted of ["glutathione S-transferases" OR "GSTs" OR "GSTM1" OR "GSTT1"] and ["bladder cancers" OR "bladder cancer"]. We identified additional articles through references cited in retrieved articles, and we also examined citations of retrieved articles and the previous meta-analyses.

Inclusion and exclusion criteria Inclusion criteria

(1) The endpoint of each study had to be bladder cancers. (2) The study had to include 2 comparison groups (bladder cancers vs. controls). (3) The study had to provide detailed data on genotype distribution.

Exclusion criteria

(1) Case reports, review articles and editorials. (1) Preliminary results not focused on GSTM1, GSTT1 or outcome. (3) Investigating the relationship of GST gene expression to disease. (4) Multiple publications.

Quality appraisal

To evaluate the quality of the recruited articles that met the above-listed inclusion criteria, we used a quality score based on 7 aspects of genetic-association studies (Additional file 1: Table S1). Thakkinstian et al. [22] created the quality score form in 2005; its range spans from 0 (worst quality) to 12 (best quality). Two researchers who were responsible for literature retrieval appraised quality independent of one another, and a discussion was made until every respect was entirely consistent by comparison.

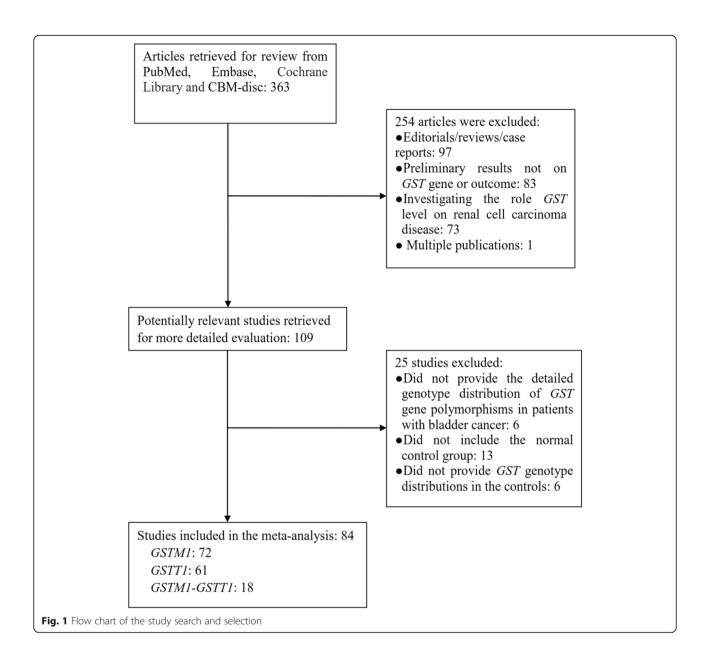
Data extraction and synthesis

Two investigators independently excerpted the following information from each eligible study: first author's surname, year of publication, and number of cases and controls for both the GSTM1 and GSTT1 genotypes. We calculated frequencies for both the disease group and the control group from the corresponding genotype distribution. Finally, we compared the results and resolved any disagreements by discussion. We tested the consistency of the data extracted by the 2 researchers, and any disagreement was again resolved by discussion.

Statistical analysis

We performed all statistical analyses using Cochrane Review Manager Software, version 5 (RevMan 5; Cochrane Library, UK). We used I^2 to test heterogeneity among the included studies, and we counted the pooled statistic using a fixed-effects model (Cochran-Mantel-Haenszel method), but switched to a random-effects model (Der-Simonian-Laird method) when the P-value of the heterogeneity test was < 0.1. Results were expressed with odds ratios (ORs) for dichotomous data, and we also calculated 95% confidence intervals (CIs). P < 0.05 was required for the pooled OR to be statistically significant. We graphically judged publication bias from the Begg adjusted-rank correlation test [23] and the Egger regression asymmetry test [24] using the Stata version 12.0 (Stata Corporation, College Station, TX), and *P*-values < 0.1 were considered significant.

Results


Study characteristics for the GSTM1-null genotype and bladder cancer risk

We included 72 studies [25–96], which contained 20,239 case series and 24,393 controls, in our assessment of the relationship between the GSTM1-null genotype and bladder cancer susceptibility (Fig. 1 and Table 1). We extracted data of interest: first author's surname, year of publication and number of cases and controls for the GSTM1-null genotype (Table 1). Average distribution frequency of the GSTM1-null genotype was 56.15% in the bladder cancer group and 46.97% in the control group, indicating that the GSTM1-null genotype was higher in the bladder cancer cases than in the controls (case/control = 1.20).

In the subgroup of patients and controls who smoked cigarettes, we included 24 studies [25, 30, 34, 35, 42, 43, 47, 48, 50, 51, 54–56, 64, 65, 68, 69, 73, 76, 83, 85, 91, 92, 95] (data not shown) containing 3724 case series and 3160 controls. Average distribution frequency of the GSTM1-null genotype was 55.67% in the bladder cancer group and 47.57% in the control group, indicating that the GSTM1-null genotype was significantly higher in the bladder cancer cases compared with the controls (case/control = 1.17).

Study characteristics for GSTT1-null genotype and bladder cancer risk

We included 61 studies [29, 32–34, 36–40, 42–45, 47– 53, 55–61, 63–69, 72–74, 76, 77, 79, 83–86, 89, 91, 92, 95–108] containing 13,041 case series and 16,739

controls in our assessment of the relationship between the GSTT1-null genotype and bladder cancer risk (Fig. 1 and Table 2). Average distribution frequency of the GSTT1-null genotype was 29.58% in the bladder cancer group and 26.67% in the control group, indicating that the GSTT1 -null genotype was higher in the bladder cancer cases compared with the controls (case/control = 1.11).

In the subgroup of patients and controls who smoked cigarettes, we included 21 studies [34, 42, 43, 47, 48, 50, 51, 55, 56, 64, 65, 68, 69, 73, 76, 83, 85, 91, 92, 95, 97] (data not shown) containing 3170 case series and 2793 controls. Average distribution frequency of the GSTT1-null genotype was 29.29% in the bladder cancer

group and 28.65% in the control group-that is, similar in both groups (case/control = 1.02).

Study characteristics for the dual-null GSTM1-GSTT1 genotype and bladder cancer risk

We included 18 studies [32, 37, 39, 43, 47, 48, 52, 55, 58, 60, 63, 65, 67, 79, 84, 85, 89, 96] containing 2426 case series and 3874 controls in our assessment of the relationship between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk (Fig. 1 and Table 3). Average distribution frequency of the dual-null GSTM1-GSTT1 genotype was 16.78% in the bladder cancer group and 11.45% in the control group. Therefore, the dual-null GSTM1-GSTT1 genotype was

Table 1 Characteristics of the studie	s evaluating effects of the GSTM1-n	ull genotypes on bladder	r carcinogen risk
---------------------------------------	-------------------------------------	--------------------------	-------------------

Author, year	Country	Ethnicity	Source of	Quality	Case			Contr	ol	
			controls	Score	-	+	total	-	+	total
Bell 1993	USA	Overall	Population-based	9	111	89	200	85	115	200
		Caucasian	Population-based		61	39	100	50	50	100
		African	Population-based		50	50	100	35	65	100
Daly 1993	UK	Caucasian	Population-based	4	45	8	53	31	27	58
Zhong 1993	UK	Caucasian	Hospital-based	4	39	58	97	94	131	225
Lin 1994	USA, etc	Overall	Population-based	6	61	46	107	442	473	915
		Caucasian	Population-based		52	37	89	236	243	479
		Asian	Population-based		5	1	6	179	170	349
		African	Population-based		4	8	12	27	60	87
Okkels 1996	Denmark	Caucasian	Hospital-based	7	133	100	233	100	100	200
Anwar 1996	Egypt	African	Population-based	9	19	3	22	10	11	21
Brockmoller 1996	Germany	Caucasian	Hospital-based	8	217	157	374	192	181	373
Lafuente 1996	Egypt	African	Population-based	5	39	27	66	28	27	55
Katoh 1998	Japan	Asian	Hospital-based	9	66	46	112	50	62	112
Abdel-Rahman 1998	Egypt	African	Hospital-based	8	26	11	37	15	19	34
Salagovic 1999	Slovakia	Caucasian	Hospital-based	6	40	36	76	123	125	248
Mungan 2000	Netherlands	Caucasian	Hospital-based	4	38	23	61	30	39	69
Peluso 2000	Italy	Caucasian	Hospital-based	5	61	69	130	29	25	54
Schnakenberg 2000	Germany	Caucasian	Population-based	6	93	64	157	129	94	223
Steinhoff 2000	Germany	Caucasian	Hospital-based	7	80	55	135	57	70	127
Georgiou 2000	Greece	Caucasian	Hospital-based	6	56	33	89	56	91	147
Kim 2000	Korea	Asian	Hospital-based	6	78	34	112	128	97	225
Toruner 2001	Turkey	Asian	Hospital-based	8	75	46	121	55	66	121
Aktas 2001	Turkey	Asian	Population-based	4	56	47	103	70	132	202
Giannakopoulos 2002	Greece	Caucasian	Hospital-based	6	56	33	89	56	91	147
Kim 2002	Korea	Asian	Population-based	8	138	78	216	265	184	449
Lee 2002	Korea	Asian	Hospital-based	8	149	83	232	86	79	165
Ma 2002	China	Asian	Population-based	8	180	137	317	99	83	182
Schroeder 2003	USA	Mix	Hospital-based	8	137	93	230	101	112	213
Jong 2003	Korea	Asian	Population-based	9	75	51	126	99	105	204
Moore 2004	USA	Mix	Population-based	8	54	52	106	49	60	109
Srivastava 2004	India	Asian	Hospital-based	7	42	64	106	54	128	182
Hung 2004	France	Caucasian	Hospital-based	7	132	69	201	112	102	214
Saad 2005	UK	Caucasian	Population-based	8	45	27	72	40	41	81
Srivastava 2005	India	Asian	Population-based	10	140	230	370	43	63	106
Sobti 2005	India	Asian	Population-based	9	37	63	100	24	52	76
Garcia-Closas 2005	Spain	Caucasian	Hospital-based	9	716	422	1138	571	561	1132
Karagas 2005	USA	Mix	Population-based	9	210	134	344	309	233	542
Kim 2005	Korea	Asian	Hospital-based	7	92	61	153	73	80	153
McGrath 2006	USA	Mix	Population-based	11	109	82	191	483	439	922
Ouerhani 2006	Tunisia	African	Population-based	6	39	23	62	36	43	79
Murta-Nascimento 2007	Spain	Caucasian	Hospital-based	8	428	251	679	367	368	735
Moore 2007	Spain	Caucasian	Hospital-based	7	683	394	1077	524	498	1022

Author, year	Country	Ethnicity	Source of	Quality	Case			Contr	ol	
			controls	Score	-	+	total	-	+	total
Cengiz 2007	Turkey	Caucasian	Hospital-based	6	34	17	51	22	31	53
Kellen 2007	Belgium	Caucasian	Population-based	8	312	267	579	597	466	1063
Zhao 2007	USA	Caucasian	Hospital-based	8	324	298	622	317	316	633
Shao 2008	China	Asian	Hospital-based	10	85	117	202	81	191	272
Yuan 2008	USA	Mix	Population-based	11	387	275	662	335	351	686
Covolo 2008	Italy	Caucasian	Hospital-based	7	128	69	197	111	100	211
Golka 2008	Germany	Caucasian	Hospital-based	7	184	109	293	88	88	176
Song 2009	China	Asian	Hospital-based	11	131	77	208	108	104	212
Altayli 2009	Turkey	Caucasian	Hospital-based	7	58	77	135	65	63	128
Grando 2009	Brazil	Mix	Population-based	7	40	60	100	33	67	100
Lin 2009	USA	Mix	Population-based	9	312	292	604	286	324	610
Zupa 2009	Italy	Caucasian	Population-based	8	13	10	23	68	53	121
Abd 2010	Egypt	African	Hospital-based	6	11	9	20	9	11	20
Moore 2011	USA	Mix	Hospital-based	10	653	400	1053	690	545	1235
Öztürk 2011	Turkey	Caucasian	Population-based	8	98	78	176	51	46	97
Rouissi 2011	Tunisia	African	Population-based	7	63	62	125	56	69	125
Salinas-Sonchez 2011	Spain	Caucasian	Hospital-based	5	109	92	201	78	115	193
Goerlitz 2011	Egypt	African	Hospital-based	9	344	274	618	332	289	621
Marenne 2012	Spain	Caucasian	Hospital-based	7	488	285	773	402	357	759
Ovsiannikov 2012	Germany	Caucasian	Hospital-based	6	102	94	196	123	112	235
Schwender 2012	Germany	Caucasian	Hospital-based	7	909	663	1572	863	876	1739
Henriquez-Hernondez 2012	Spain	Caucasian	Hospital-based	8	23	67	90	17	64	81
Lesseur 2012	New Hampshire	Caucasian	Hospital-based	9	378	275	653	508	420	928
Zhang 2012	USA	Mix	Hospital-based	10	381	329	710	402	380	782
Matic 2013	Serbia	Caucasian	Hospital-based	8	111	90	201	61	61	122
Savic-Radojevic 2013	Serbia	Caucasian	Hospital-based	6	45	35	80	32	28	60
Safarinejad 2013	Iran	Asian	Hospital-based	10	50	116	166	93	239	332
Wang 2013	China	Asian	Hospital-based	7	699	351	1050	834	570	1404
Berber 2013	Turkey	Caucasian	Hospital-based	7	54	60	114	51	63	114
Kang 2013	Korea	Asian	Hospital-based	9	65	45	110	103	117	220
Reszka 2014	Poland	Caucasian	Population-based	9	149	95	244	165	200	365
Ceylan 2015	Turkey	Caucasian	Hospital-based	8	22	43	65	31	39	70
Elhawary 2017	Saudi Arabia	Asian	Hospital-based	7	24	28	52	40	64	104
Ali 2017	Pakistan	Asian	Population-based	11	83	117	200	57	143	200

Table 1 Characteristics of the studies evaluating effects of the GSTM1-null genotypes on bladder carcinogen risk (Continued)

significantly higher in the bladder cancer cases compared with the controls (case/control = 1.47).

Association of the GSTM1-null genotype with bladder cancer risk

In this meta-analysis, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, and individually in whites, Africans and Asians (overall population: OR = 1.40, 95% CI: 1.31–

1.48, P<0.00001; whites: OR = 1.39, 95% CI: 1.26–1.54, P<0.00001; Africans: OR = 1.54, 95% CI: 1.16–2.05, P = 0.003; Asians: OR = 1.45, 95% CI: 1.33–1.59, P<0.00001); as well as in controls from both hospital-based and population-based studies that included both high- and low-quality studies (Fig. 2 for the overall population; Table 4). In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTM1-null genotype was associated with bladder

Table 2 Characteristics of the studies	evaluating effects of the GST	T1-null genotype of on bladder	carcinogen risk

Author, Year	Country	Ethnicity	Source of	Quality	Case			Contro	ol	
			controls	score	-	+	total	-	+	total
Brockmoller 1996	Germany	Caucasian	Hospital-based	8	66	308	374	78	295	373
Kempkes 1996	Germany	Caucasian	Population-based	7	20	93	113	31	139	170
Abdel-Rahman 1998	Egypt	African	Hospital-based	8	17	20	37	5	29	34
Katoh 1998	Japan	Caucasian	Hospital-based	9	46	66	112	59	53	112
Kim 1998	Korea	Asian	Hospital-based	7	18	49	67	29	38	67
_ee 1999	Korea	Asian	Hospital-based	7	93	65	158	66	65	131
Salagovic 1999	Slovakia	Caucasian	Hospital-based	6	21	55	76	42	206	248
Georgiou 2000	Greece	Caucasian	Hospital-based	6	5	84	89	16	131	147
Peluso 2000	Italy	Caucasian	Hospital-based	5	14	108	122	6	48	54
Kim 2000	Korea	Asian	Hospital-based	6	47	65	112	101	119	220
Steinhoff 2000	Germany	Caucasian	Hospital-based	7	20	115	135	17	110	127
Schnakenberg 2000	Germany	Asian	Hospital-based	6	28	129	157	48	175	223
Foruner 2001	Turkey	Asian	Hospital-based	8	24	97	121	21	100	121
Giannakopoulos 2002	Greece	Caucasian	Hospital-based	6	5	84	89	16	131	147
_ee 2002	Korea	Asian	Hospital-based	8	135	97	232	85	80	165
Ma 2002	China	Asian	Population-based	8	29	32	61	88	94	182
Kim 2002	Korea	Asian	Population-based	8	91	125	216	228	221	449
Gago-Dominguez 2003	USA	Mix	Population-based	8	50	146	196	34	142	176
long 2003	Korea	Asian	Hospital-based	9	68	58	126	113	91	204
Chen 2004	China	Asian	Population-based	8	32	30	62	51	30	81
Noore 2004	USA	Mix	Population-based	8	17	89	106	12	97	109
Hung 2004	France	Caucasian	Hospital-based	7	43	158	201	33	181	214
irivastava 2004	India	Asian	Hospital-based	7	28	78	106	29	153	182
Sanyal 2004	Sweden	Caucasian	Population-based	8	66	204	270	12	110	122
Broberg 2005	Sweden	Caucasian	Population-based	9	7	54	61	22	132	154
Garcia-Closas 2005	Spain	Caucasian	Hospital-based	9	230	899	1129	248	873	1121
Saad 2005	UK	Caucasian	Population-based	8	26	46	72	14	67	81
Karagas 2005	USA	Mix	Population-based	9	53	83	136	301	458	759
Golka 2005	Dortmund	Caucasian	Hospital-based	8	30	106	136	38	125	163
Kim 2005	Korea	Asian	Hospital-based	7	71	82	153	89	64	153
brivastava 2005	India	Asian	Population-based	10	28	78	106	79	291	370
Shao 2005	China	Asian	Population-based	7	204	201	405	195	194	389
Sobti 2005	India	Asian	Population-based	9	30	70	100	11	65	76
McGrath 2006	USA	Mix	Population-based	11	35	156	191	148	776	924
Duerhani 2006	Tunisia	African	Population-based	6	26	36	62	35	44	79
Kogevinas 2006	Spain	Caucasian	Hospital-based	8	24	75	99	17	74	91
Cengiz 2007	Turkey	Caucasian	Hospital-based	6	18	33	51	11	42	53
Kellen 2007	Belgium	Caucasian	Population-based	8	30	164	194	61	319	380
Zhao 2007	USA	Caucasian	Hospital-based	8	103	520	623	115	519	634
Covolo 2008	Italy	Caucasian	Hospital-based	7	42	155	197	33	178	211
ruan 2008	USA	Mix	Population-based	11	140	518	658	124	556	680
Song 2008	China	Asian	Hospital-based	7	71	37	108	58	54	112
Altayli 2009	Turkey	Caucasian	Hospital-based	7	31	104	135	9	119	128

Author, Year	Country	Ethnicity	Source of	Quality	Case			Contro	ol	
			controls	score	-	+	total	-	+	total
Grando 2009	Brazil	Mix	Population-based	7	51	49	100	37	63	100
Song 2009	China	Asian	Hospital-based	11	110	98	208	105	107	212
Cantor 2010	Spain	Caucasian	Hospital-based	9	136	542	678	160	550	710
Moore 2011	USA	Mix	Hospital-based	10	210	794	1004	237	942	1179
Rouissi 2011	Tunisia	African	Population-based	7	30	95	125	38	87	125
Goerlitz 2011	Egypt	African Hospital-based Caucasian Hospital-based		9	147	470	617	156	464	620
Salinas-Sánchez 2011	Spain	I I		5	42	148	190	25	138	163
Lesseur 2012	New Hampshire	· ·		9	106	556	662	143	780	923
Ovsiannikov 2012	Germany	Caucasian Hospital-based		6	33	163	196	47	188	235
Henriquez- Hernondez 2012	Spain	Caucasian Hospital-based Caucasian Hospital-based		8	60	30	90	40	41	81
Berber 2013	Turkey	Caucasian	Hospital-based	7	31	83	114	16	98	114
Matic 2013	Serbia	Caucasian	Hospital-based	8	56	145	201	34	88	122
Safarinejad 2013	Iran	Asian	Hospital-based	10	35	131	166	69	263	332
Kang 2013	Korea	Asian	Hospital-based	9	64	46	110	128	92	220
Reszka 2014	Poland	Caucasian	Population-based	9	30	212	242	77	288	365
Ceylan 2015	Turkey	Caucasian	Hospital-based	8	19	46	65	9	61	70
Ali 2017	Pakistan	Asian	Population-based	11	34	166	200	26	174	200
Elhawary 2017	Saudi Arabia	Asian	Hospital-based	7	6	46	52	8	96	104

Table 2 Characteristics of the studies evaluating effects of the GSTT1-null genotype of on bladder carcinogen risk (Continued)

|--|

Author, Year	Country	Ethnicity	Source of	Quality	Case			Control		
			controls	score	null-null	non-null-null	total	null-null	non-null-null	total
Abdel-Rahman 1998	Egypt	African	Hospital-based	8	14	23	37	3	31	34
Steinhoff 2000	Germany	Caucasian	Hospital-based	7	12	123	135	4	123	127
Schnakenberg 2000	Germany	Caucasian	Population-based	6	12	145	157	31	192	223
Ma 2002	China	Asian	Population-based	8	16	45	61	54	128	182
Lee 2002	Korea	Asian	Hospital-based	8	83	149	232	37	128	165
Srivastava 2004	India	Asian	Hospital-based	7	16	90	106	9	173	182
Moore 2004	USA	Mix	Population-based	8	9	97	106	6	103	109
Hung 2004	France	Caucasian	Hospital-based	7	28	173	201	19	195	214
Srivastava 2005	India	Asian	Population-based	10	17	89	106	32	338	370
McGrath 2006	USA	Mix	Population-based	11	18	173	191	78	844	922
Song 2009	China	Asian	Hospital-based	11	77	131	208	50	162	212
Salinas-Sonchez 2011	Spain	Caucasian	Hospital-based	5	20	131	151	6	88	94
Ovsiannikov 2012	Germany	Caucasian	Hospital-based	6	17	179	196	29	206	235
Henriquez-Hernondez 2012	Spain	Caucasian	Hospital-based	8	17	73	90	8	73	81
Berber 2013	Turkey	Caucasian	Hospital-based	7	11	103	114	7	107	114
Safarinejad 2013	Iran	Asian	Hospital-based	10	38	128	166	73	259	332
Ceylan 2015	Turkey	Caucasian	Hospital-based	8	8	57	65	8	62	70
Elhawary 2017	Saudi Arabia	Asian	Hospital-based	7	0	104	104	0	208	208

	Case		Contro			Odds Ratio		Odds Ratio
Study or Subgroup	Events		Events			M-H, Random, 95% CI		M-H, Random, 95% Cl
Zhong 1993 Bell 1993	39 111	97 200	94 85	225 200	1.1% 1.4%	0.94 [0.58, 1.52] 1.69 [1.14, 2.51]		
Daly 1993	45	53	31	58	0.4%	4.90 [1.97, 12.20]		
Lin 1994	61	107	442	915	1.4%	1.42 [0.95, 2.13]		
Okkels 1996	133	233	100	200	1.5%	1.33 [0.91, 1.94]		
Anwar 1996	19	22	10	21	0.2%	6.97 [1.57, 30.87]		
Lafuente 1996	39	66	28	55	0.6%	1.39 [0.68, 2.87]		<u> </u>
Brockmoller 1996 Abdel-Rahman 1998	217 26	374 37	192 15	373 34	2.0% 0.4%	1.30 [0.98, 1.74] 2.99 [1.13, 7.96]		
Katoh 1998	66	112	50	112	1.0%	1.78 [1.05, 3.02]		
Salagovic 1999	40	76	123	248	1.0%		1999	+-
Schnakenberg 2000	93	157	129	223	1.4%		2000	+
Peluso 2000	61	130	29	54	0.7%	0.76 [0.40, 1.44]		-+
Mungan 2000	38	61	30	69	0.6%		2000	
Kim 2000 Georgiou 2000	78 56	112 89	128 56	225 147	1.1% 0.9%	1.74 [1.07, 2.81] 2.76 [1.60, 4.75]	2000	
Steinhoff 2000	80	135	57	127	1.1%	1.79 [1.09, 2.92]		
Aktas 2001	56	103	70	202	1.1%		2001	
Toruner 2001	75	121	55	121	1.0%	1.96 [1.17, 3.27]	2001	
Lee 2002	149	232	86	165	1.4%	1.65 [1.10, 2.48]		
Kim 2002	138	216	265	449	1.7%		2002	T
Giannakopoulos 2002 Ma 2002	56 190	89 217	56 99	147	0.9%		2002	
Ma 2002 Schroeder 2003	180 137	317 230	99 101	182 213	1.6% 1.5%	1.10 [0.76, 1.59] 1.63 [1.12, 2.38]		<u> </u>
Jong 2003	75	126	99	204	1.2%	1.56 [1.00, 2.44]		<u>├</u>
Moore 2004	54	106	49	109	1.0%	1.27 [0.74, 2.17]		+
Srivastava 2004	42	106	54	182	1.0%	1.56 [0.94, 2.57]	2004	<u> </u>
Hung 2004	132	201	112	214	1.4%		2004	
Saad 2005	45	72	40	81	0.7%		2005	
Srivastava 2005 Sobti 2005	140 37	370 100	43 24	106 76	1.3% 0.7%	0.89 [0.57, 1.39] 1.27 [0.68, 2.39]		
Garcia-Closas 2005	716	1138	571	1132	2.8%	1.67 [1.41, 1.97]		-
Karagas 2005	210	344	309	542	2.1%	1.18 [0.90, 1.56]		
Kim 2005	92	153	73	153	1.2%	1.65 [1.05, 2.60]		
McGrath 2006	109	191	483	922	1.8%		2006	+
Ouerhani 2006	39	62	36	79	0.7%	2.03 [1.03, 4.00]		
Murta-Nascimento 2007	428	679 1077	367	735 1022	2.5%	1.71 [1.38, 2.11]		<u> </u>
Moore 2007 Kellen 2007	683 312	579	524 597	1022	2.7% 2.5%	1.65 [1.38, 1.96] 0.91 [0.74, 1.12]	2007	-
Cengiz 2007	34	51	22	53	0.5%	2.82 [1.27, 6.26]		
Zhao 2007	324	622	317	633	2.4%	1.08 [0.87, 1.35]		+
Shao 2008	85	202	81	272	1.5%	1.71 [1.17, 2.51]	2008	
Covolo 2008	128	197	111	211	1.4%	1.67 [1.12, 2.49]		
Yuan 2008	387	662	335	686	2.5%	1.47 [1.19, 1.83]		
Golka 2008 Song 2009	184 131	293 208	88 108	176 212	1.5% 1.5%	1.69 [1.16, 2.47] 1.64 [1.11, 2.42]		
Grando 2009	40	100	33	100	0.9%	1.35 [0.76, 2.41]		
Altayli 2009	58	135	65	128	1.1%		2009	-+
Zupa 2009	13	23	68	121	0.4%	1.01 [0.41, 2.49]	2009	- -
Lin 2009	312	604	286	610	2.4%	1.21 [0.97, 1.52]		-
Abd 2010	11	20	9	20	0.2%	1.49 [0.43, 5.19]		
Salinas-Sonchez 2011	109	201	78	193	1.4%		2011	L
Goerlitz 2011 Moore 2011	344 653	618 1053	332 690	621 1235	2.4% 2.8%	1.09 [0.87, 1.37] 1.29 [1.09, 1.52]		~
Rouissi 2011	63	125	56	1255	1.1%		2011	+
Öztürk 2011	98	176	51	97	1.1%	1.13 [0.69, 1.86]		
Marenne 2012	488	773	402	759	2.5%	1.52 [1.24, 1.86]	2012	-
Ovsiannikov 2012	102	196	123	235	1.5%	0.99 [0.68, 1.44]		Ť
Lesseur 2012 Zhang 2012	378	653	508	928	2.5%		2012	I
Zhang 2012 Schwender 2012	381 909	710 1572	402 863	782 1739	2.5% 3.0%	1.09 [0.89, 1.34] 1.39 [1.21, 1.60]		-
Henríquez-Hernández 2012	23	90	17	81	3.0% 0.6%	1.29 [0.63, 2.64]		<u>+-</u>
Safarinejad 2013	50	166	93	332	1.4%	1.11 [0.74, 1.67]		+
Wang 2013	699	1050	834	1404	2.8%	1.36 [1.15, 1.61]		-
Matic 2013	111	201	61	122	1.2%	1.23 [0.79, 1.94]	2013	+
Savic-Radojevic 2013	45	80	32	60	0.7%	1.13 [0.57, 2.20]		+
Berber 2013	54	114	51	114	1.0%	1.11 [0.66, 1.87]		+
Kang 2013 Restka 2014	65 149	110	103	220	1.2%	1.64 [1.03, 2.61]		<u> </u>
Reszka 2014 Ceylan 2015	149 22	244 65	165 31	365 70	1.7% 0.6%	1.90 [1.37, 2.64] 0.64 [0.32, 1.29]		
Ali 2017	83	200	57	200	1.3%	1.78 [1.17, 2.70]		
Elhawary 2017	24	52	40	104	0.7%	1.37 [0.70, 2.69]		+
Total (95% CI)		20239			100.0%	1.40 [1.31, 1.48]		
Total events	11664		12224			,,		
Heterogeneity: Tau ² = 0.03; Ch	i ² = 140.10	3, df = 7 001)	1 (P < 0.0	0001);	² = 49%		L D	

cancer risk in the overall population, Asians and controls from both hospital-based and population-based studies that included both high- and low-quality studies. However, we did not find this relationship in whites or Africans (Table 4).

Association of the GSTT1-null genotype with bladder cancer risk

In this study, we found that the GSTT1-null genotype was associated with bladder cancer risk in the overall population, and controls from hospital-based studies

Genetic contrasts	Group and subgroups	Studies Number	Q test P value	Model selected	OR (95% CI)	Р
GSTM1						
- vs +	Overall	72	< 0.00001	Random	1.40 (1.31,1.48)	<0.00001
	Caucasian	37	< 0.00001	Random	1.39 (1.26,1.54)	<0.00001
	Asian	20	0.39	Fixed	1.45 (1.33,1.59)	<0.00001
	African	9	0.10	Random	1.54 (1.16,2.05)	0.003
	Hospital-based	46	0.0001	Random	1.42 (1.32,1.52)	<0.00001
	Population-based	26	0.003	Random	1.36 (1.21,1.53)	<0.00001
	High quality	54	0.0002	Random	1.37 (1.28,1.45)	<0.00001
	Low quality	18	0.0009	Random	1.58 (1.29,1.94)	< 0.0001
GSTM1 (smoking)						
- VS +	Overall	24	0.02	Random	1.37 (1.19,1.59)	< 0.0001
	Caucasian	10	0.007	Random	1.17 (0.85,1.59)	0.33
	Asian	7	0.63	Fixed	1.67 (1.32,2.11)	< 0.0001
	African	3	0.22	Fixed	1.44 (0.95,2.17)	0.08
	High quality	17	0.02	Random	1.35 (1.14,1.60)	0.0005
	Low quality	7	0.27	Fixed	1.48 (1.12,1.96)	0.006
GSTT1						
- vs +	Overall	61	< 0.00001	Random	1.11 (1.01,1.22)	0.03
	Caucasian	29	<0.00001	Random	1.16 (0.99,1.36)	0.07
	Asian	21	0.01	Random	1.05 (0.91,1.22)	0.51
	African	4	0.03	Random	1.07 (0.65,1.76)	0.79
	Hospital-based	40	<0.0001	Random	1.11 (0.99,1.24)	0.07
	Population-based	21	0.0002	Random	1.12 (0.94,1.35)	0.20
	High quality	52	<0.00001	Random	1.14 (1.03,1.26)	0.01
	Low quality	9	0.23	Fixed	0.93 (0.75,1.14)	0.49
GSTT1 (smoking)						
	Overall	21	0.67	Fixed	1.06 (0.93,1.20)	0.38
	Caucasian	9	0.84	Fixed	1.14 (0.91,1.43)	0.24
	Asian	7	0.62	Fixed	1.00 (0.77,1.30)	0.99
	African	2	0.41	Fixed	0.60 (0.36,1.02)	0.06
	High quality	16	0.52	Fixed	1.06 (0.93,1.22)	0.37
	Low quality	5	0.64	Fixed	1.01 (0.70,1.48)	0.94
Dual-null genotype o	of GSTM1/GSTT1					
	Overall	18	0.003	Random	1.48 (1.15,1.92)	0.002
	Caucasian	8	0.03	Random	1.30 (0.83,2.03)	0.25
	Asian	7	0.04	Random	1.62 (1.15,2.28)	0.006
	Hospital-based	13	0.03	Random	1.71 (1.28,2.28)	0.0003
	Population-based	5	0.06	Random	1.07 (0.67,1.71)	0.77
	High quality	15	0.11	Fixed	1.61 (1.36,1.91)	<0.00001
	Low quality	3	0.04	Random	0.86 (0.40,1.85)	0.70

Table 4 Meta-analysis of the association of null genotypes of GSTM1, GSTT1 and dual-null genotype of GSTM1/GSTT1 with bladdercarcinogens risk

that included high-quality studies; but not with bladder cancer risk in whites, Africans, Asians or controls from population-based studies that included low-quality studies (overall population: OR = 1.11, 95% CI: 1.01–1.22, P = 0.03; whites: OR = 1.16, 95% CI: 0.99–1.36, P = 0.07; Africans: OR = 1.07, 95% CI: 0.65–

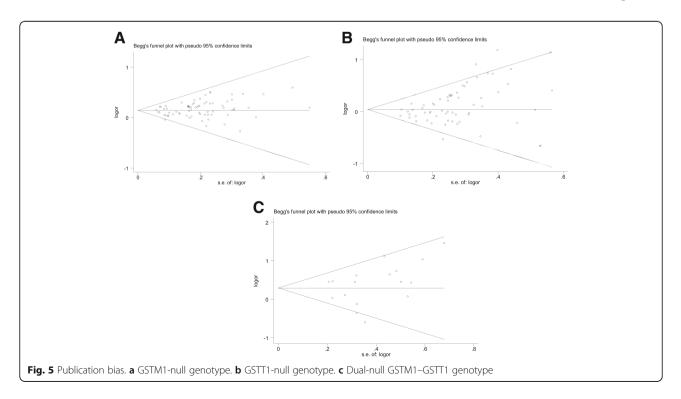
1.76, P = 0.79; Asians: OR = 1.05, 95% CI: 0.91–1.22, P = 0.51; Fig. 3 for overall population; Table 4). However, in controls from either hospital-based or population-based studies that included both high- and low-quality studies, or in the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTT1-null genotype was not associated with bladder cancer risk in the overall population, or in individual white, African or Asian populations (Table 4).

Association of dual-null GSTM1-GSTT1 genotype with bladder cancer risk

We found an association between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk in the overall population, Asians and controls from hospital-based studies that included high-quality studies (overall population: OR = 1.48, 95% CI: 1.15–1.92, P = 0.002; Asians: OR = 1.62, 95% CI: 1.15–2.28, P = 0.006; Fig. 4 for overall population; Table 4). However, the dual-null GSTM1-GSTT1 genotype was not associated

Study or Subgrou	Case D Events		Contr Events		Weight	Odds Ratio M-H, Random, 95% Cl	Year	Odds Ratio M-H, Random, 95% Cl
Kempkes 1996	20	113	31	170	1.4%	0.96 [0.52, 1.79]		
Brockmoller 1996	66	374	78	373	2.2%	0.81 [0.56, 1.17]		-+
Salagovic 1997	20	67	42	248	1.4%	2.09 [1.12, 3.88]	1997	
Abdel-Rahman 19	98 17	37	5	34	0.6%	4.93 [1.56, 15.54]	1998	—
Katoh 1998	46	112	59	112	1.6%	0.63 [0.37, 1.06]		
Kim 1998	18	67	29	67	1.1%	0.48 [0.23, 0.99]		
Lee 1999	93	158	66	131	1.8%	1.41 [0.88, 2.25]		<u> </u>
Salagovic 1999	21	76	42	248	1.4%	1.87 [1.03, 3.42]		
Kim 2000 Steinhoff 2000	47 20	112 135	101 17	220 127	1.9% 1.2%	0.85 [0.54, 1.35] 1.13 [0.56, 2.26]		
Georgiou 2000	20	89	16	147	0.6%	0.49 [0.17, 1.38]		
Peluso 2000	14	122	6	54	0.7%	1.04 [0.38, 2.86]		
Schnakenberg 20		157	48	223	1.7%		2000	-
Toruner 2001	24	121	21	121	1.3%		2001	<u>+-</u>
Giannakopoulos 2		89	16	147	0.6%		2002	
Kim 2002	91	216	228	449	2.4%		2002	
Lee 2002	135	232	85	165	2.1%	1.31 [0.88, 1.96]	2002	+
Ma 2002	29	61	88	182	1.5%	0.97 [0.54, 1.73]	2002	
Jong 2003	68	126	113	204	1.9%		2003	+
Gago-Dominguez		196	34	176	1.7%		2003	
Moore 2004	17	106	12	109	1.0%		2004	
Chen 2004 Sanyal 2004	32 66	62 270	51 12	81 122	1.2% 1.3%		2004	
Sanyai 2004 Srivastava 2004	28	106	29	182	1.3%		2004 2004	
Hung 2004	43	201	33	214	1.4%	1.49 [0.90, 2.46]		<u>↓</u>
Garcia-Closas 20		1129	248	1121	2.9%	0.90 [0.74, 1.10]		-
Broberg 2005	7	61	22	154	0.8%	0.78 [0.31, 1.93]		
Golka 2005	30	136	38	163	1.6%		2005	-+-
Sobti 2005	30	100	11	76	1.0%	2.53 [1.17, 5.46]	2005	
Karagas 2005	53	136	301	759	2.2%	0.97 [0.67, 1.41]		+
Saad 2005	26	72	14	81	1.1%	2.70 [1.28, 5.73]		
Shao 2006	204	405	195	389	2.6%		2005	+
Srivastava 2005	28	106	79	370	1.7%		2005	
Kim 2005	71	153 99	89 17	153 91	1.9% 1.2%		2005 2006	
Kogevinas 2006 Ouerhani 2006	24 26	99 62	35	79	1.2%		2006	
McGrath 2006	35	191	148	924	2.1%		2006	<u>+</u>
Kellen 2007	30	194	61	380	1.8%		2007	
Cengiz 2007	18	51	11	53	0.8%		2007	<u> </u>
Zhao 2007	103	623	115	634	2.5%	0.89 [0.67, 1.20]	2007	-+
Song 2008	71	108	58	112	1.6%	1.79 [1.04, 3.08]	2008	<u> </u>
Yuan 2008	140	658	124	680	2.6%		2008	+
Covolo 2008	42	197	33	211	1.7%		2008	<u>+-</u>
Grando 2009	51	100	37	100	1.5%	1.77 [1.01, 3.12]		
Song 2009	110	208	105	212	2.2%	1.14 [0.78, 1.68]		T
Altayli 2009	31	135	9	128	1.0%	3.94 [1.79, 8.66]		
Cantor 2010	136	678	160	710	2.7%	0.86 [0.67, 1.12]		
Rouissi 2011 Goerlitz 2011	30 147	125 617	38 156	125 620	1.5% 2.7%	0.72 [0.41, 1.27] 0.93 [0.72, 1.21]		- -
Moore 2011	210	1004	237	1179	2.7%	1.05 [0.85, 1.29]		Ļ
Salinas-Sánchez:		190	25	163	2.9%	1.57 [0.91, 2.71]		<u> </u>
Ovsiannikov 2012	33	196	47	235	1.7%	0.81 [0.50, 1.32]		-+
Henríquez-Hernár		90	40	81	1.4%	2.05 [1.11, 3.80]		
Lesseur 2012	106	662	143	923	2.6%	1.04 [0.79, 1.37]		+
Safarinejad 2013	35	166	69	332	1.9%	1.02 [0.64, 1.61]		+-
Matic 2013	56	201	34	122	1.7%	1.00 [0.61, 1.65]	2013	+
Berber 2013	31	114	16	114	1.2%	2.29 [1.17, 4.47]	2013	<u> </u>
Kang 2013	64	110	128	220	1.8%		2013	+
Reszka 2014	30	242	77	365	1.9%		2014	
Ceylan 2015	19	65	9	70	0.8%		2015	
Ali 2017	34	200	26	200	1.5%		2017	
Elhawary 2017	6	52	8	104	0.6%	1.57 [0.51, 4.77]	2017	
Total (95% CI)		13041		16739	100.0%	1.12 [1.02, 1.23]		•
Total events	3402		4225	.5155		112 [102, 123]		[
	3402 ي 138.4 ية 0.07; Chi ² = 1	3, df = 6		0001):	r = 56%		F	
	ect: Z = 2.40 (P = 0.02)			/1			0	1.01 0.1 i 10 100 [°] .

	Cas		Contr			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Abdel-Rahman 1998	14	37	3	34	2.7%	6.29 [1.62, 24.47]	1998	
Steinhoff 2000	12	135	4	127	3.4%	3.00 [0.94, 9.56]	2000	
Schnakenberg 2000	12	157	31	223	6.2%	0.51 [0.25, 1.03]	2000	
Ma 2002	16	61	54	182	6.7%	0.84 [0.44, 1.62]	2002	
Lee 2002	83	232	37	165	8.6%	1.93 [1.22, 3.03]	2002	
Hung 2004	28	201	19	214	7.0%	1.66 [0.90, 3.08]	2004	+-
Srivastava 2004	16	106	9	182	5.1%	3.42 [1.45, 8.04]	2004	_ _ _
Moore 2004	9	106	6	109	3.8%	1.59 [0.55, 4.64]	2004	
Srivastava 2005	17	106	32	370	6.8%	2.02 [1.07, 3.80]	2005	
McGrath 2006	18	191	78	922	7.7%	1.13 [0.66, 1.93]	2006	+-
Song 2009	77	208	50	212	8.9%	1.90 [1.25, 2.91]	2009	
Salinas-Sonchez 2011	20	151	6	94	4.5%	2.24 [0.86, 5.80]	2011	—
Ovsiannikov 2012	17	196	29	235	6.8%	0.67 [0.36, 1.27]	2012	+
Henríquez-Hernández 2012	17	90	8	81	4.8%	2.13 [0.86, 5.23]	2012	
Berber 2013	11	114	7	114	4.3%	1.63 [0.61, 4.37]	2013	_
Safarinejad 2013	38	166	73	332	8.7%	1.05 [0.67, 1.64]	2013	+
Ceylan 2015	8	65	8	70	4.0%	1.09 [0.38, 3.09]	2015	_ _
Elhawary 2017	0	104	0	208		Not estimable	2017	
Total (95% CI)		2426		3874	100.0%	1.48 [1.15, 1.92]		◆
Total events	413		454					
Heterogeneity: Tau ² = 0.14; Ch	i ² = 35.63	3, df = 1	6 (P = 0.	003); l ^e	= 55%			
Test for overall effect: Z = 3.03	(P = 0.00	2)						0.01 0.1 1 10 100
		-,						Favours case Favours control


with onset of bladder cancer in whites or in controls from population-based studies that included low-quality studies (whites: OR = 1.30, 95% CI: 0.83-2.03, P = 0.25; Table 4).

Evaluation of publication bias

We performed a publication bias test for the association of the GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes with bladder cancer risk in the overall population. There was no bias for the association of the dual-null GSTM1-GSTT1 genotype with bladder cancer risk, but there was for the GSTM1- and GSTT1-null genotypes (GSTM1-null: Begg P = 0.100, Egger P = 0.052; GSTT1-null: Begg P = 0.001, Egger P = 0.002; dual-null GSTM1–GSTT1: Begg P = 0.343, Egger P = 0.236; Fig. 5).

Discussion

Research on single-nucleotide polymorphisms have focused mainly on their impact on tumor suppressor genes, metabolic-enzyme genes, and DNA repair genes, etc. Understanding disease susceptibility and pathogenesis and using them to guide diagnosis and individual treatment choice constitute an important

new therapeutic approach [109]. In this study, we found that the average distribution frequency of the GSTM1-null genotype was significantly higher in bladder cancer cases than in controls (case/control = 1.20). In the subgroup of patients and controls who smoked cigarettes, it was also higher in the bladder cancer case group compared with the control group (case/control = 1.17). This might indicate that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, including whites, Africans, Asians, and controls from both hospital-based and population-based studies that included both high- and low-quality studies. In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTM1-null genotype was associated with bladder cancer risk in the overall population, Asians, and controls from both hospital-based and population-based studies that included both high- and low-quality studies. The sample size of our meta-analysis was larger than those of other meta-analyses [61, 110–112], and therefore our results might be more robust. However, our tests for publication bias, the GSTM1 studies were found to be positive. Therefore, the positive association between the GSTM1-null genotype and bladder cancer should be reassessed in the future.

The average distribution frequency of the GSTT1-null genotype was higher in the bladder cancer case group than in the control group (case/control = 1.11). In the subgroup of patients and controls who smoked cigarettes, it was similar in both groups (case/control = 1.02). This might tell us that the GSTT1-null genotype was associated with bladder cancer risk. For confirmation, we performed a meta-analysis, which further showed the GSTT1-null genotype to be associated with bladder cancer risk in the overall population, whites and controls from hospital-based studies that included high-quality studies. In the meta-analysis for all patients and controls who smoked cigarettes, we found that the GSTT1-null genotype was not associated with bladder cancer risk in the overall population, whites, Africans, Asians or controls from both hospital-based and population-based studies that included both high- and low-quality studies. Our results indicate that the GSTT1-null genotype does not predict the risk of bladder cancer. The sample size of our meta-analysis was larger than those of other meta-analyses [111, 112], suggesting that our conclusion might be more robust. However, publication bias was also found for GSTT1. Therefore, further studies are required.

Average distribution frequency of the dual-null GSTM1-GSTT1 genotype in the bladder cancer group was slightly higher than in the control group (case/con-trol = 1.47), indicating a possible association between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk. Meta-analysis further revealed an association

between the dual-null GSTM1-GSTT1 genotype and bladder cancer risk in the overall population, Asians and controls from hospital-based studies that included high-quality studies. No publication bias was found for this meta-analysis, and the conclusion was robust.

In a previous study, García-Closas et al. [61] conducted a meta-analysis of 28 studies of GSTM1 and reported that the GSTM1-null genotype both increased the overall risk of bladder cancer and posed similar relative risks for both smokers and non-smokers. This finding suggested that GSTM1 lowers the risk of bladder cancer through mechanisms that are not specific to the detoxification of polycyclic aromatic hydrocarbons in tobacco smoke. Engel et al. [110] performed a meta-analysis of GSTM1 and bladder cancer that included 17 studies and reported that the GSTM1-null status is associated with a modest increase in the risk of bladder cancer, and that there was no evidence of multiplicative interaction between the GSTM1-null genotype and once and current smoking in relation to bladder cancer. A meta-analysis by Yu et al. [112] included 48 case-control studies for GSTM1-null and 57 studies for GSTT1, and suggested that the GSTM1- and GSTT1-null genotypes might both be related to higher bladder cancer risk. Yu et al. [111] also performed a meta-analysis to investigate the association between GSTM1-GSTT1 deletion polymorphisms and bladder cancer susceptibility, including 46 studies of GSTM1-null, 54 of GSTT1 and 10 of dual-null GSTM1-GSTT1. All 3 genotypes were associated with increased bladder cancer risk. In our meta-analysis, we included 72 studies for GSTM1-null, 62 for GSTT1-null and 18 for dual-null GSTM1-GSTT1 genotypes. These results from the meta-analyses mentioned above were similar to our results. However, the sample size of our meta-analysis was larger than the previous meta-analyses, and the results from our studies might be more robust. Furthermore, we initially conducted a meta-analysis that showed no evidence of multiplicative interaction between the GSTT1-null genotype and smoking in relation to bladder cancer.

Smoking is a known risk factor for bladder cancer [113], and the products of GSTs help detoxify the polycyclic aromatic hydrocarbons found in tobacco smoke [114]. Our study suggests that the GSTM1-null genotype might play a role in such detoxification, but the GSTT1-null genotype does not. However, more studies should be conducted to confirm this.

GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes play an important role in detoxification of various toxic compounds, such as carcinogens. In this meta-analysis, it indicated that GSTM1-null, GSTT1-null and dual-null GSTM1-GSTT1 genotypes were risk factors to susceptibility of bladder cancer, and took part in the pathogenesis of bladder cancer. There were limitations in our meta-analysis. First, age might be a source of heterogeneity, but it was difficult to stratify the different ages in the reports prior to pooling the results, for the reason that the ages from most of the included studies were different. So, no conclusions can be drawn regarding the impact of GSTs on age of onset. Furthermore, heterogeneity and publication bias were both significant for GSTM1-null and GSTT1-null. Subgroup analyses were performed to find out any effect modifier, but the reason was not clear.

Conclusion

Our results supported that the GSTM1-null, GSTT1-null and dual-null GSTM1–GSTT1 genotypes might be associated with the onset of bladder cancers. However, more association investigations are required to further clarify these relationships.

Additional file

Additional file 1: Table S1. Scale for Quality Assessment. (DOC 42 kb)

Acknowledgements

Not applicable.

Funding

This study was supported by Guangzhou Medical Key Discipline Construction Project. The funding paid the publication fee for this paper.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

TBZ was in charge of conceived and designed the study. TBZ, HYL, WJX, ZQZ, HZZ were responsible for collection of data and performing the statistical analysis and manuscript preparation. TBZ and ZJL were responsible for checking the data. All authors were responsible for drafting the manuscript, read and approved the final version.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

¹Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China. ²Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China.

Received: 16 November 2017 Accepted: 30 October 2018 Published online: 12 November 2018

References

- John BA, Said N. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities. Oncotarget. 2017;8:57766–81.
- Chen CH, Shun CT, Huang KH, Huang CY, Yu HJ, Pu YS. Characteristics of female non-muscle-invasive bladder cancer in Taiwan: association with upper tract urothelial carcinoma and end-stage renal disease. Urology. 2008; 71:1155–60.
- Zhang Z, Zhang G, Gao Z, Li S, Li Z, Bi J, Liu X, Kong C. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer. BMC Cancer. 2017;17:861.
- Oliveira PA, Vasconcelos-Nobrega C, Gil da Costa RM, Arantes-Rodrigues R. The N-butyl-N-4-hydroxybutyl nitrosamine mouse urinary bladder Cancer model. Methods Mol Biol. 2018;1655:155–67.
- Reszka E. Selenoproteins in bladder cancer. Clin Chim Acta. 2012;413:847– 54.
- Chen CH, Chiou HY, Hsueh YM, Chen CJ, Yu HJ, Pu YS. Clinicopathological characteristics and survival outcome of arsenic related bladder cancer in Taiwan. J Urol. 2009;181:547–52 discussion 553.
- Benhamou S, Bonastre J, Groussard K, Radvanyi F, Allory Y, Lebret T. A prospective multicenter study on bladder cancer: the COBLANCE cohort. BMC Cancer. 2016;16:837.
- Verma A, Kapoor R, Mittal RD. Cluster of differentiation 44 (CD44) gene variants: a putative Cancer stem cell marker in risk prediction of bladder Cancer in north Indian population. Indian J Clin Biochem. 2017;32:74–83.
- Singh V, Jaiswal PK, Mittal RD. Replicative study of GWAS TP63C/T, TERTC/T, and SLC14A1C/T with susceptibility to bladder cancer in north Indians. Urol Oncol. 2014;32:1209–14.
- Wieczorek E, Wasowicz W, Gromadzinska J, Reszka E. Functional polymorphisms in the matrix metalloproteinase genes and their association with bladder cancer risk and recurrence: a mini-review. Int J Urol. 2014;21:744–52.
- 11. Selinski S. Discovering urinary bladder cancer risk variants: status quo after almost ten years of genome-wide association studies. EXCLI J. 2017;16:1288–96.
- Selinski S, Blaszkewicz M, Ickstadt K, Gerullis H, Otto T, Roth E, Volkert F, Ovsiannikov D, Moormann O, Banfi G, Nyirady P, Vermeulen SH, Garcia-Closas M, Figueroa JD, Johnson A, Karagas MR, Kogevinas M, Malats N, Schwenn M, Silverman DT, Koutros S, Rothman N, Kiemeney LA, Hengstler JG, Golka K. Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer. Carcinogenesis. 2017;38:1167–79.
- Mittal RD, Kesarwani P, Singh R, Ahirwar D, Mandhani A. GSTM1, GSTM3 and GSTT1 gene variants and risk of benign prostate hyperplasia in North India. Dis Markers. 2009;26:85–91.
- Tharuka M, Bathige S, Lee J. Molecular cloning, biochemical characterization, and expression analysis of two glutathione S-transferase paralogs from the bigbelly seahorse (Hippocampus abdominalis). Comp Biochem Physiol B Biochem Mol Biol. 2017;4(214):1–11. https://doi.org/10.1016/j.cbpb.2017.08.005.
- Mi Y, Ren K, Zou J, Bai Y, Zhang L, Zuo L, Okada A, Yasui T. The association between three genetic variants in MicroRNAs (Rs11614913, Rs2910164, Rs3746444) and prostate Cancer risk. Cell Physiol Biochem. 2018;48:149–57.
- Baltruskeviciene E, Kazbariene B, Aleknavicius E, Krikstaponiene A, Venceviciene L, Suziedelis K, Stratilatovas E, Didziapetriene J. Changes of reduced glutathione and glutathione S-transferase levels in colorectal cancer patients undergoing treatment. Tumori 2017:0.
- Muguruma N, Okamoto K, Nakagawa T, Sannomiya K, Fujimoto S, Mitsui Y, Kimura T, Miyamoto H, Higashijima J, Shimada M, Horino Y, Matsumoto S, Hanaoka K, Nagano T, Shibutani M, Takayama T. Molecular imaging of aberrant crypt foci in the human colon targeting glutathione S-transferase P1–1. Sci Rep 2017;7:6536.
- Wang W, Liu F, Wang C, Tang Y, Jiang Z. Glutathione S-transferase A1 mediates nicotine-induced lung cancer cell metastasis by promoting epithelial-mesenchymal transition. Exp Ther Med. 2017;14:1783–8.
- Rao A, Parameswar P, Majumdar S, Uppala D, Kotina S, Vennamaneni N. Evaluation of genetic polymorphisms in glutathione S-transferase Theta1, glutathione S-transferase Mu1, and glutathione S-transferase Mu3 in Oral leukoplakia and Oral squamous cell carcinoma with deleterious habits using polymerase chain reaction. Int J Appl Basic Med Res. 2017;7:181–5.
- Zhao E, Hu K, Zhao Y. Associations of the glutathione S-transferase P1 lle105Val genetic polymorphism with gynecological cancer susceptibility: a meta-analysis. Oncotarget. 2017;8:41734–9.

- 21. Xue C, He X, Zou D. Glutathione S-transferase M1 polymorphism and breast Cancer risk: a meta-analysis in the Chinese population. Clin Lab. 2016;62: 2277–84.
- Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, Thompson J, Hall I, Kaufman J, Leung TF, Helms PJ, Hakonarson H, Halpi E, Navon R, Attia J. Systematic review and meta-analysis of the association between {beta}2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162:201–11.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.
- 24. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.
- Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst. 1993;85:1159– 64.
- Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis. 1993;14:1821–4.
- Daly AK, Thomas DJ, Cooper J, Pearson WR, Neal DE, Idle JR. Homozygous deletion of gene for glutathione S-transferase M1 in bladder cancer. BMJ. 1993;307:481–2.
- Lin HJ, Han CY, Bernstein DA, Hsiao W, Lin BK, Hardy S. Ethnic distribution of the glutathione transferase mu 1-1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis. 1994;15:1077–81.
- 29. Brockmoller J, Cascorbi I, Kerb R, Roots I. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–25.
- Lafuente A, Zakahary MM, El-Aziz MA, Ascaso C, Lafuente MJ, Trias M, Carretero P. Influence of smoking in the glutathione-S-transferase M1 deficiency-associated risk for squamous cell carcinoma of the bladder in schistosomiasis patients in Egypt. Br J Cancer. 1996;74:836–8.
- Okkels H, Sigsgaard T, Wolf H, Autrup H. Glutathione S-transferase mu as a risk factor in bladder tumours. Pharmacogenetics. 1996;6:251–6.
- Abdel-Rahman SZ, Anwar WA, Abdel-Aal WE, Mostafa HM, Au WW. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev. 1998;22:129–38.
- Katoh T, Inatomi H, Kim H, Yang M, Matsumoto T, Kawamoto T. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett. 1998;132:147–52.
- Salagovic J, Kalina I, Habalova V, Hrivnak M, Valansky L, Biros E. The role of human glutathione S-transferases M1 and T1 in individual susceptibility to bladder cancer. Physiol Res. 1999;48:465–71.
- Mungan NA, Aben KK, Beeks E, Kampman E, Bunschoten A, Bussemakers M, Witjes JA, Kiemeney LA. A germline homozygote deletion of the glutathione-S-transferase Mu1 gene predisposes to bladder cancer. Urol Int. 2000;64:134–8.
- Georgiou I, Filiadis IF, Alamanos Y, Bouba I, Giannakopoulos X, Lolis D. Glutathione S-transferase null genotypes in transitional cell bladder cancer: a case-control study. Eur Urol. 2000;37:660–4.
- Steinhoff C, Franke KH, Golka K, Thier R, Romer HC, Rotzel C, Ackermann R, Schulz WA. Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol. 2000;74:521–6.
- Kim WJ, Lee HL, Lee SC, Kim YT, Kim H. Polymorphisms of Nacetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol. 2000;164:209–13.
- Schnakenberg E, Lustig M, Breuer R, Werdin R, Hubotter R, Dreikorn K, Schloot W. Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet. 2000;57:270–7.
- Peluso M, Airoldi L, Magagnotti C, Fiorini L, Munnia A, Hautefeuille A, Malaveille C, Vineis P. White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis. 2000;21:183–7.
- Aktas D, Ozen H, Atsu N, Tekin A, Sozen S, Tuncbilek E. Glutathione Stransferase M1 gene polymorphism in bladder cancer patients. A marker for invasive bladder cancer? Cancer Genet Cytogenet. 2001;125:1–4.
- 42. Toruner GA, Akyerli C, Ucar A, Aki T, Atsu N, Ozen H, Tez M, Cetinkaya M, Ozcelik T. Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1

and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol. 2001;75:459–64.

- Lee SJ, Cho SH, Park SK, Kim SW, Park MS, Choi HY, Choi JY, Lee SY, Im HJ, Kim JY, Yoon KJ, Choi H, Shin SG, Park TW, Rothman N, Hirvonen A, Kang D. Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett. 2002;177:173–9.
- Kim WJ, Kim H, Kim CH, Lee MS, Oh BR, Lee HM, Katoh T. GSTT1-null genotype is a protective factor against bladder cancer. Urology. 2002;60: 913–8.
- 45. Giannakopoulos X, Charalabopoulos K, Baltogiannis D, Chatzikiriakidou A, Alamanos Y, Georgiou I, Evangelou A, Agnantis N, Sofikitis N. The role of Nacetyltransferase-2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Res. 2002;22:3801–4.
- Schroeder JC, Conway K, Li Y, Mistry K, Bell DA, Taylor JA. p53 mutations in bladder cancer: evidence for exogenous versus endogenous risk factors. Cancer Res. 2003;63:7530–8.
- Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, Scotto di Carlo A, Porru S. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer. 2004;110:598–604.
- Srivastava DS, Kumar A, Mittal B, Mittal RD. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol. 2004;78:430–4.
- Kim EJ, Jeong P, Quan C, Kim J, Bae SC, Yoon SJ, Kang JW, Lee SC, Jun Wee J, Kim WJ. Genotypes of TNF-alpha, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology. 2005;65:70–5.
- Karagas MR, Park S, Warren A, Hamilton J, Nelson HH, Mott LA, Kelsey KT. Gender, smoking, glutathione-S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett. 2005;219:63–9.
- Ouerhani S, Tebourski F, Slama MR, Marrakchi R, Rabeh M, Hassine LB, Ayed M, Elgaaied AB. The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol. 2006;33:529–35.
- Srivastava DS, Mishra DK, Mandhani A, Mittal B, Kumar A, Mittal RD. Association of genetic polymorphism of glutathione S-transferase M1, T1, P1 and susceptibility to bladder cancer. Eur Urol. 2005;48:339–44.
- Yuan JM, Chan KK, Coetzee GA, Castelao JE, Watson MA, Bell DA, Wang R, Yu MC. Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis. 2008;29:1386–93.
- Shao J, Gu M, Zhang Z, Xu Z, Hu Q, Qian L. Genetic variants of the cytochrome P450 and glutathione S-transferase associated with risk of bladder cancer in a south-eastern Chinese population. Int J Urol. 2008;15: 216–21.
- Salinas-Sanchez AS, Sanchez-Sanchez F, Donate-Moreno MJ, Rubio-del-Campo A, Gimenez-Bachs JM, Lorenzo-Romero JG, Serrano-Oviedo L, Escribano J. Polymorphic deletions of the GSTT1 and GSTM1 genes and susceptibility to bladder cancer. BJU Int. 2011;107:1825–32.
- 56. Moore LE, Baris DR, Figueroa JD, Garcia-Closas M, Karagas MR, Schwenn MR, Johnson AT, Lubin JH, Hein DW, Dagnall CL, Colt JS, Kida M, Jones MA, Schned AR, Cherala SS, Chanock SJ, Cantor KP, Silverman DT, Rothman N. GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis. 2011;32:182–9.
- 57. Goerlitz D, El Daly M, Abdel-Hamid M, Saleh DA, Goldman L, El Kafrawy S, Hifnawy T, Ezzat S, Abdel-Aziz MA, Zaghloul MS, Ali SR, Khaled H, Amr S, Zheng YL, Mikhail N, Loffredo C. GSTM1, GSTT1 null variants, and GPX1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomark Prev. 2011;20:1552–4.
- Safarinejad MR, Safarinejad S, Shafiei N. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol. 2013;31:1193–203.
- Ali SH, Bangash KS, Rauf A, Younis M, Anwar K, Khurram R, Khawaja MA, Azam M, Qureshi AA, Akhter S, Kiemeney LA, Qamar R. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population. Fam Cancer. 2017;16:577–94.
- Elhawary NA, Nassir A, Saada H, Dannoun A, Qoqandi O, Alsharif A, Tayeb MT. Combined genetic biomarkers confer susceptibility to risk of urothelial bladder carcinoma in a Saudi population. Dis Markers. 2017;2017:1474560.
- 61. Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals

G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M, Fernandez F, Real FX, Rothman N. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish bladder Cancer study and meta-analyses. Lancet. 2005;366:649–59.

- 62. Anwar WA, Abdel-Rahman SZ, El-Zein RA, Mostafa HM, Au WW. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis. 1996;17:1923–9.
- Ma QW, Lin GF, Chen JG, Shen JH. Polymorphism of glutathione Stransferase T1, M1 and P1 genes in a Shanghai population: patients with occupational or non-occupational bladder cancer. Biomed Environ Sci. 2002; 15:253–60.
- 64. Jong Jeong H, Jin Kim H, Young Seo I, Ju Kim H, Oh GJ, Cheon Chae S, Sik Lim J, Taeg Chung H, Joong KJ. Association between glutathione Stransferase M1 and T1 polymorphisms and increased risk for bladder cancer in Korean smokers. Cancer Lett. 2003;202:193–9.
- Moore LE, Wiencke JK, Bates MN, Zheng S, Rey OA, Smith AH. Investigation of genetic polymorphisms and smoking in a bladder cancer case-control study in Argentina. Cancer Lett. 2004;211:199–207.
- Saad AA, O'Connor PJ, Mostafa MH, Metwalli NE, Cooper DP, Povey AC, Margison GP. Glutathione S-transferase M1, T1 and P1 polymorphisms and bladder cancer risk in Egyptians. Int J Biol Markers. 2005;20:69–72.
- McGrath M, Michaud D, De Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer. 2006;6:239.
- Sobti RC, Al-Badran Al, Sharma S, Sharma SK, Krishan A, Mohan H. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet. 2005;156:68–73.
- Cengiz M, Ozaydin A, Ozkilic AC, Dedekarginoglu G. The investigation of GSTT1, GSTM1 and SOD polymorphism in bladder cancer patients. Int Urol Nephrol. 2007;39:1043–8.
- Murta-Nascimento C, Silverman DT, Kogevinas M, Garcia-Closas M, Rothman N, Tardon A, Garcia-Closas R, Serra C, Carrato A, Villanueva C, Dosemeci M, Real FX, Malats N. Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk? Cancer Epidemiol Biomark Prev. 2007;16:1595–600.
- Moore LE, Malats N, Rothman N, Real FX, Kogevinas M, Karami S, Garcia-Closas R, Silverman D, Chanock S, Welch R, Tardon A, Serra C, Carrato A, Dosemeci M, Garcia-Closas M. Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer. 2007;120:2452–8.
- Kellen E, Zeegers M, Paulussen A, Vlietinck R, Vlem EV, Veulemans H, Buntinx F. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer?; the Belgian case control study on bladder cancer risk. Cancer Lett. 2007;245:51–60.
- Zhao H, Lin J, Grossman HB, Hernandez LM, Dinney CP, Wu X. Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer. 2007;120:2208–13.
- Covolo L, Placidi D, Gelatti U, Carta A, Scotto Di Carlo A, Lodetti P, Picciche A, Orizio G, Campagna M, Arici C, Porru S. Bladder cancer, GSTs, NAT1, NAT2, SULT1A1, XRCC1, XRCC3, XPD genetic polymorphisms and coffee consumption: a case-control study. Eur J Epidemiol. 2008;23:355–62.
- Golka K, Schmidt T, Seidel T, Dietrich H, Roemer HC, Lohlein D, Reckwitz T, Sokeland J, Weistenhofer W, Blaszkewicz M, Selinski S. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J Toxicol Environ Health A. 2008; 71:881–6.
- Altayli E, Gunes S, Yilmaz AF, Goktas S, Bek Y. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41:259–66.
- 77. Grando JP, Kuasne H, Losi-Guembarovski R, Sant'ana Rodrigues I, Matsuda HM, Fuganti PE, Gregorio EP, Junior FL, de Menezes RP, de Freitas Rodrigues MA, de Syllos Colus IM. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med. 2009;9:21–8.
- Lin J, Kamat A, Gu J, Chen M, Dinney CP, Forman MR, Wu X. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol Biomark Prev. 2009;18: 2090–7.
- 79. Song DK, Xing DL, Zhang LR, Li ZX, Liu J, Qiao BP. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with

susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detect Prev. 2009;32:416–23.

- Zupa A, Sgambato A, Bianchino G, Improta G, Grieco V, LAT G, Campisi B, Traficante A, Aieta M, Cittadini A. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res. 2009;29:1709–14.
- Abd El Hameed AH, Negm OE, El-Gamal OM, Hamouda HE, El Nouby KA, Ismail GM. Genetic polymorphism of glutathione S-transferases M1 and T1 in Egyptian patients with bilharzial bladder cancer. Urol Oncol. 2010;28:296–301.
- Ozturk T, Kahraman OT, Toptas B, Kisakesen HI, Cakalir C, Verim L, Ozturk O, Isbir T. The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. In Vivo. 2011;25:663–8.
- Rouissi K, Ouerhani S, Hamrita B, Bougatef K, Marrakchi R, Cherif M, Ben Slama MR, Bouzouita M, Chebil M, Ben Ammar Elgaaied A. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res. 2011;17:879–86.
- Henriquez-Hernandez LA, Navarro P, Luzardo OP, Alvarez-Leon EE, Boada LD, Zumbado M, Pestano J, Suarez JR, Chesa N, Almeida M, Valeron PF. Polymorphisms of glutathione S-transferase mu and theta, MDR1 and VEGF genes as risk factors of bladder cancer: a case-control study. Urol Oncol. 2012;30660–5.
- Ovsiannikov D, Selinski S, Lehmann ML, Blaszkewicz M, Moormann O, Haenel MW, Hengstler JG, Golka K. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health A. 2012;75:557–65.
- Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas MR. A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett. 2012;210:100–6.
- Schwender H, Selinski S, Blaszkewicz M, Marchan R, Ickstadt K, Golka K, Hengstler JG. Distinct SNP combinations confer susceptibility to urinary bladder cancer in smokers and non-smokers. PLoS One. 2012;7:e51880.
- Zhang X, Lin J, Wu X, Lin Z, Ning B, Kadlubar S, Kadlubar FF. Association between GSTM1 copy number, promoter variants and susceptibility to urinary bladder cancer. Int J Mol Epidemiol Genet. 2012;3:228–36.
- Berber U, Yilmaz I, Yilmaz O, Haholu A, Kucukodaci Z, Ates F, Demirel D. CYP1A1 (Ile462Val), CYP1B1 (Ala119Ser and Val432Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev. 2013;14:3925–9.
- Marenne G, Real FX, Rothman N, Rodriguez-Santiago B, Perez-Jurado L, Kogevinas M, Garcia-Closas M, Silverman DT, Chanock SJ, Genin E, Malats N. Genome-wide CNV analysis replicates the association between GSTM1 deletion and bladder cancer: a support for using continuous measurement from SNP-array data. BMC Genomics. 2012;13:326.
- Kang HW, Song PH, Ha YS, Kim WT, Kim YJ, Yun SJ, Lee SC, Choi YH, Moon SK, Kim WJ. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility and outcomes in muscle invasive bladder cancer patients. Eur J Cancer. 2013;49:3010–9.
- Matic M, Pekmezovic T, Djukic T, Mimic-Oka J, Dragicevic D, Krivic B, Suvakov S, Savic-Radojevic A, Pljesa-Ercegovac M, Tulic C, Coric V, Simic T. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol. 2013;31:1184–92.
- Savic-Radojevic A, Djukic T, Simic T, Pljesa-Ercegovac M, Dragicevic D, Pekmezovic T, Cekerevac M, Santric V, Matic M. GSTM1-null and GSTA1-low activity genotypes are associated with enhanced oxidative damage in bladder cancer. Redox Rep. 2013;18:1–7.
- Wang Z, Xue L, Chong T, Li H, Chen H. Quantitative assessment of the association between glutathione S-transferase P1 lle105Val polymorphism and bladder cancer risk. Tumour Biol. 2013;34:1651–7.
- Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol. 2014;140:1723–31.
- Ceylan GG, Ceylan C, Tasdemir S, Gozalan A. The effect of glutathione-Stransferases in the susceptibility to bladder cancer. Ir J Med Sci. 2015;184:851–4.
- Chen YC, Xu L, Guo YL, Su HJ, Smith TJ, Ryan LM, Lee MS, Christiani DC. Polymorphisms in GSTT1 and p53 and urinary transitional cell carcinoma in South-Western Taiwan: a preliminary study. Biomarkers. 2004;9:386–94.
- Kempkes M, Golka K, Reich S, Reckwitz T, Bolt HM. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol. 1996;71:123–6.

- Kim H, Kim W, Lee H. A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione Stransferase mu and theta on the risk of bladder cancer. Korean J Prevent Med. 1998;31:275–84.
- Lee S, Kang D, Cho S. Association of genetic polymorphism of glutathione s-transferase M1 and T1 and bladder cancer. J Korean Cancer Assoc. 1999; 31:548–55.
- 101. Gago-Dominguez M, Bell DA, Watson MA, Yuan JM, Castelao JE, Hein DW, Chan KK, Coetzee GA, Ross RK, Yu MC. Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis. 2003;24:483–9.
- Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, Wijkstrom H, Larsson P, Kumar R, Hemminki K. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.
- Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis. 2005;26:1263–71.
- 104. Golka K, Seidel T, Dietrich H, Roth G, Rotzel C, Thier R, Geller F, Reckwitz T, Schulze H. Occupational and non-occupational risk factors in bladder cancer patients in an industrialized area located in former East-Germany. Aktuelle Urol. 2005;36:417–22.
- Shao C, Xiang Y, Zhang W. Polymorphisms of GSTM1 and GSTT1 with smoking and bladder cancer risk: a population-based case control study. Tumori. 2006;26:346–51.
- 106. Kogevinas M, Fernandez F, Garcia-Closas M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Yeager M, Chanock SJ, Lloreta J, Rothman N, Real FX, Dosemeci M, Malats N, Silverman D. Hair dye use is not associated with risk for bladder cancer: evidence from a case-control study in Spain. Eur J Cancer. 2006;42:1448–54.
- Song D, Xing D, Zhang L. Relationship between polymorphism of glutathione stransferase and genetic susceptibility to bladder cancer. Chin J Urol. 2008;29:80–3.
- 108. Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castano-Vinyals G, Samanic C, Rothman N, Kogevinas M. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect. 2010;118:1545–50.
- 109. Wu MY, Huang SJ, Yang F, Qin XT, Liu D, Ding Y, Yang S, Wang XC. Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology. Oncotarget. 2017;8:52708–23.
- 110. Engel LS, Taioli E, Pfeiffer R, Garcia-Closas M, Marcus PM, Lan Q, Boffetta P, Vineis P, Autrup H, Bell DA, Branch RA, Brockmoller J, Daly AK, Heckbert SR, Kalina I, Kang D, Katoh T, Lafuente A, Lin HJ, Romkes M, Taylor JA, Rothman N. Pooled analysis and meta-analysis of glutathione S-transferase M1 and bladder cancer: a HuGE review. Am J Epidemiol. 2002;156:95–109.
- 111. Yu C, Hequn C, Longfei L, Long W, Zhi C, Feng Z, Jinbo C, Chao L, Xiongbing Z. GSTM1 and GSTT1 polymorphisms are associated with increased bladder cancer risk: evidence from updated meta-analysis. Oncotarget. 2017;8:3246–58.
- 112. Yu Y, Li X, Liang C, Tang J, Qin Z, Wang C, Xu W, Hua Y, Shao P, Xu T. The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility: A meta-analysis. Medicine (Baltimore). 2016;95:e4900.
- 113. Fu D, Li P, Cheng W, Tian F, Xu X, Yi X, Tang C, Wang Y, Hu Q, Zhang Z. Impact of vascular endothelial growth factor gene-gene and gene-smoking interaction and haplotype combination on bladder cancer risk in Chinese population. Oncotarget. 2017;8:22927–35.
- 114. Lacombe L, Fradet V, Levesque E, Pouliot F, Larue H, Bergeron A, Hovington H, Caron A, Nguile-Makao M, Harvey M, Fradet Y, Guillemette C. Phase II drug-metabolizing polymorphisms and smoking predict recurrence of non-muscle-invasive bladder Cancer: a gene-smoking interaction. Cancer Prev Res (Phila). 2016;9:189–95.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

