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Abstract: Biopolymer xanthan (Xn) and its functionalized polymer xanthan acrylate (XnAc) were
used to improve the antifouling properties of synthesized waterborne polyurethane (WBPU) coatings,
namely, WBPU-Xn and WBPU-XnAc. XnAc was synthesized by functionalization of xanthan (Xn)
using polyacrylic acid. Coating hydrophilicity, adhesive strength, and erosion all varied with the Xn
and XnAc contents. A moderate erosion rate was recorded only for the WBPU-XnAc coating. A good
antifouling property for longer time was found in the WBPU-XnAc coating using zinc pyrithione as a
biocide in the field test.
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1. Introduction

The pollution of marine environments using toxic biocides is a serious problem worldwide.
Although pollution has been reduced by restricting the use of tin-based biocides, copper and other
toxic organic biocides are still being used and are threatening marine environments. Almost all of the
current commercial antifouling coatings contain either copper or a toxic biocide. The burst release
(at the very early stage of immersed coating) and uncontrolled release of biocides also increase the
toxicity of biocides. Thus, it is important to use a coating, which can control biocide leaching [1–5].

Different polymer-based, fouling-resistant (mainly siloxane- and fluoro-based compounds),
and self-polishing coatings (SPCs) show promising results for combating fouling. In both cases,
non-environmentally friendly polymers are mainly used. Recently, the use of environmentally friendly
polymers to further reduce the toxicity of the final coating has been encouraged. Such polymers are
attractive in different applications in the textile, footwear, coating, and adhesive industries, except
for antifouling coatings. Only a few researchers have used environmentally friendly polymers of
biodegradable monomers in antifouling coatings [6–10].

Over the last decade, biodegradable antifouling coatings have become more attractive due
to their environmentally friendly properties [6]. Polycaprolactone (PCL) is mainly used for this
purpose. PCL mixed with other monomers or polymers can easily degrade or erode (in the presence
of water) under natural conditions. The degradation rate depends on the chemical structure and
molecular weight of the polymer. Overall, the polymer degradation property improves the antifouling
performance [6]. Xanthan (Xn) is another biodegradable polymer that has various applications
in the food and pharmaceutical industries. Xn is an extracellular polysaccharide of the bacteria
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Xanthomonas campestris. However, it is difficult to apply in the coating sector, especially for antifouling
coatings, due to high solubility in water [11,12].

Waterborne polyurethane (WBPU) is an environmentally friendly polymer. WBPU has found
diverse applications in finishing, impregnating, stiffener, and protective coating materials and in
adhesives in the leather, textile, and furniture industries. Recently, the use of different biodegradable
and plant-resource monomers has made PU more environmentally friendly. PU created using lignin,
polysaccharides, and plant oil shows promising properties in certain applications [13–15].

Hydrolysable polymers are typically used in SPC antifouling coatings to maintain their proper
erodible rate. Eventually, this process will create a self-polishing surface with time, which supports the
timely and proper release of biocides. Different silyl acrylates are attractive in this regard. Unfortunately,
the performance of silyl acrylate highly depends on the wave motion as well as the silyl acrylate
content, which usually attaches as a pendant group [16]. Such a type of SPC coating may face a large
challenge in fixed offshore structures due to insufficient wave motion.

Few researchers have reported the good antifouling performance of PU coatings in both SPC
coatings and fouling-resistant coatings [1,17–19]. Similar to other SPC coatings, the PU-based SPC
coating performance depends on hydrolytic degradation, which depends on the PU molecular weight
and its structure, as well as the hydrolysable pendant group. Instead of a hydrolysable pendant group,
a water-soluble biodegradable polymer (Xn and xanthan acrylate, XnAc) was mixed in WBPU (namely,
WBPU-Xn and WBPU-XnAc, respectively) to make an erodible coating to improve the antifouling
property in this study. The coating eroding property in water, which ultimately affects the antifouling
property, was evaluated. A zinc pyrithione biocide was used as a biocide to improve the antifouling
performance of the coatings.

2. Materials and Methods

N-Methyl-2-pyrrolidone (NMP, Sigma Aldrich, St Louis, Mo, USA), acrylic acid (AA),
4,4-dicyclohexylmethane diisocyanate (H12MDI, Sigma Aldrich, St Louis, Mo, USA), triethylamine
(TEA, Sigma Aldrich, St Louis, Mo, USA), and ethylene diamine (EDA, Sigma Aldrich, St Louis, Mo,
USA) were used after dehydration with 4 Å molecular sieves for seven days. Dimethylolpropionic
acid (DMPA, Sigma Aldrich, St Louis, Mo, USA), N0-[3-(dimethylaminopropyl)]-N-ethylcarbodiimide
hydrochloride (DEC), acetone, ethanol (EA), Xn, and dibutyltindilaurate (DBTDL, Sigma Aldrich,
St Louis, Mo, USA) were used as received. Poly(tetramethyleneoxide glycol) (PTMG Mn = 2000,
Sigma Aldrich, St Louis, Mo, USA) was vacuum dried at 90 ◦C for three hours prior to use.

2.1. Synthesis of XnAc by Functionalization of Xn by AA

A proper amount of Xn (1 g) was dissolved in water (100 mL) under gentle stirring (200 rpm)
for 16 h at 20–25 ◦C. The solution was cooled down at 2–4 ◦C (using an ice bath), and AA was added
drop-wise to the mixture. DEC (1.1 mol/mole AA) was added and stirred for 24 h. The solution was
moderately viscous after 24 h. The solution was precipitated with acetone (150 mL), filtered, and rinsed
alternatively four times with EA/water mixtures (1:1) and finally with EA (100 mL). The product was
dried under ambient conditions and in a vacuum oven for 24 h.

2.2. Waterborne Polyurethane (WBPU) Dispersion Preparation

The prepolymer process was applied during the synthesis of the WBPU dispersion [13,20] (solid
content of approximately 30 wt.%). By charging H12MDI, DMPA, and PTMG, a NCO-terminated
prepolymer was obtained in the presence of a DBTDL catalyst. Methyl ethyl ketone (MEK) (10 wt.%)
was added to control the viscosity of the prepolymer. The carboxyl group of the prepolymer (from
DMPA) was neutralized by adding TEA. Chain extension by adding EDA (mixed with MEK) was
performed before dispersal. Finally, distilled water was added to complete the dispersion.
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2.3. Synthesis of WBPU-Xn Dispersion

At first, H12MDI (50%) was mixed mechanically with Xn in the presence of DBTDL. The mixture
was further mixed with the prepolymer, which was prepared by mixing H12MDI (50%), DMPA,
and PTMG. The other steps were similar to those of the WBPU dispersion preparation.

2.4. Synthesis of WBPU- XnAc Dispersion

Exactly the same method was followed used in the WBPU-Xn preparation except XnAc was used
instead of Xn.

2.5. Synthesis of WBPU-B, WBPU- Xn-B, and WBPU- XnAc-B Dispersion

A proper amount (0.50 wt.%) of zinc pyrithione was directly mixed to the dispersion under gentle
stirring (200 rpm) for 1 h at room temperature.

2.6. Coating onto a PVC Sheet

An autocoater was used to coat PVC with a 100 µm thick layer. The coated PVC sheet was kept
at room temperature to evaporate the water from the coating. To remove any trace solvent from the
coating, the dried coatings were further dried at 70 ◦C for 24 h.

2.7. Characterization

To identify the polymer and coating functionality, FTIR spectroscopy (Impact 400D, Nicolet,
Madison, WI, USA) was used.

1H-NMR spectra of the coatings were recorded with a Fourier transform Bruker 300 MHz
spectrometer (model AC-300, Bruker, Billerica, USA). Ten milligrams of coating was dissolved in 6 mL
of deuterated chloroform. The internal reference was tetrahydrofuran (THF).

The dispersion mean particle size was measured using laser-scattering equipment (Autosizer,
Melvern IIC, Malvern, Worcester, UK). The experiment was performed at room temperature.

The pH of synthesized dispersions was measured at room temperature by using pH meter
PHS-25 meter (Leici Co., Shanghai, China). The pH was checked after 24 h of dispersion preparation.

A Malvern Zetasizer 3000 zeta-potential analyzer (Malvern Instruments, Malvern, UK) was used
to record the zeta potential value of the dispersion.

All the swelling test coatings were immersed in water at 30 ◦C for 48 h. The swelling (%) was
determined from the following equation:

Swelling (%) = (W −W0)/W0 × 100 (1)

where W0 is the weight of the dried film and W is the weight of the film at swelling equilibrium.
To measure the coating water contact angle, a Theata Optical tensiometer (Attension, Helsinki,

Finland) was used. Fully dried coatings were used for analysis.
ASTM D 1876-01 specification was followed to measure the adhesive strength using a universal

testing machine.
The coating eroding experiments were performed by incubating the films separately in sea water

at 37 ◦C for over 90 days. Specimens were removed from the solutions after 30, 60, and 90 days.
After washing with water, the films were dried in a freeze dryer for two days. The weight loss (WL)
was calculated by the following equation:

Weight Loss (%) = (Wi −Wf)/Wi × 100 (2)

where Wi is the weight of the initial dried film and Wf is the weight of the final degraded film.
Self-polishing was performed under dynamic conditions in artificial saltwater (3%) based on a

previous report. This was determined from the reduction in the film thickness. The specimens were
attached to the outer vertical surface of a rotor to confirm the film conditions. Each experiment was
repeated three times, and the average value was counted.
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The molecular weight of polymer was analyzed by gel permeation chromatograph (GPC, Analytical
Scientific Instruments, Model 500, Richmond, CA, USA). Tetrahydrofuran (THF) was the carrier solvent
at a flow rate of 1 mL/min.

ASTM D3623 specification was followed for the antifouling test. This test was performed for
eight months in Jubail, Saudi Arabia. The coatings were immersed in seawater for a defined interval.
Periodically, the samples were removed and photographed.

3. Results and Discussions

Xn and XnAc were used to synthesize the WBPU-Xn and WBPU-XnAc coatings, respectively.
The structures of Xn, XnAc, and WBPU are shown in Scheme 1. XnAc was synthesized by
functionalization of Xn using AA. The synthesized XnAc was identified by FT-IR and 1H-NMR
spectroscopy techniques (see Figures 1 and 2). The FT-IR spectrum of Xn (Figure 1) shows absorption
peaks at 3277 cm−1 due to (O–H) axial deformation and 2850–2950 cm−1 due to the symmetric and
asymmetric stretching vibrations of the (C–H) group in the methyl and methylene groups. The bands
at 1710 cm−1 are due to the C=O stretching vibration, while the bands near 1601 cm−1 are due to the
axial deformation of (C–O) enols. The FT-IR spectrum of XnAc (Figure 1) shows all identical peaks for
Xn. Additionally, a new peak appeared at 1645 cm−1 (see Figure 1) and was assigned to C=C from AA.
This result confirmed the successful modification of Xn by AA to synthesize XnAc.
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The 1H-NMR spectrum of Xn displays chemical shifts at δ (ppm) = 1.33 (s, 3H, terminal (–CH3)
group of pyruvate) and 1.53 (s, 3H, terminal –CH3 group of acetyl group in α-D-mannose); the chemical
shift at δ (ppm) = 2.10 corresponds to the (–OH & –CH2) groups of the anhydro-glucose units of Xn
(see Figure 2). The 1H-NMR spectrum of XnAc displays similar values as Xn. Additionally, a few new
peaks appeared at 5.80, 6.20, and 6.41 ppm (see Figure 2). These new peaks appeared due to the new
bonds with AA. Both FT-IR and NMR analyses confirmed the new modified xanthan polymer, XnAc.

The WBPU, WBPU-Xn, and WBPU-XnAc dispersion compositions are summarized in Table 1.
FT-IR spectra (see Figure 3) were used to confirm the completion of the reaction. In all cases,
the isocyanate group completely reacted with EDA before the dispersion step. It was observed that
there was no noticeable difference between the FTIR spectra of WBPU, WBPU-Xn, and WBPU-XnAc. In
all cases, the bands at 3150–3600 cm−1, 2800–3000 cm−1, 2795 cm−1, and 1109 cm−1, which correspond to
NH, CH, O–CH2, and C–O–C stretching and the ether group, respectively, were observed. Additionally,
the bands at 1600–1760 cm−1 and 1540 cm−1 can be attributed to amide I and amide II of the C=O
group, respectively. A very weak single band was observed at 833 cm−1 and can be attributed to
either the coupled vibrations of the C–O stretching or CH2 rocking modes. A strong band assigned
to the asymmetric stretching vibration of the C–N group was expected at 1040 cm−1; however, this
band overlapped with the very strong band at 1109 cm−1, which corresponds to the C–O–C stretching
vibration of the ether groups in the PU films. In the WBPU-XnAc dispersion, an additional band
appeared at 1645 cm−1 and can be assigned to C=C, which came from AA.

Table 1. Sample designation and composition of coatings.

Sample Designation
Composition (Mole) Xn

(wt.%)
XnAc
(wt.%)

Zinc Pyrithione
(wt.%)Polyol DMPA H12MDI TEA EDA

WBPU 0.04 0.054 0.113 0.054 0.019 .. .. ..
WBPU-B 0.04 0.054 0.113 0.054 0.019 .. .. 0. 50

WBPU-Xn-25 0.04 0.054 0.113 0.054 0.019 0.25 .. ..
WBPU-XnAc-25 0.04 0.054 0.113 0.054 0.019 .. 0.25 ..

WBPU-Xn-50 0.04 0.054 0.113 0.054 0.019 0.50 .. ..
WBPU-XnAc-50 0.04 0.054 0.113 0.054 0.019 .. 0.50 ..

WBPU-Xn-75 0.04 0.054 0.113 0.054 0.019 0.75 .. ..
WBPU-XnAc-75 0.04 0.054 0.113 0.054 0.019 .. 0.75 ..

WBPU-Xn-1 0.04 0.054 0.113 0.054 0.019 1.00 .. ..
WBPU-Xn-1-B 0.04 0.054 0.113 0.054 0.019 1.00 .. 0. 50
WBPU-XnAc-1 0.04 0.054 0.113 0.054 0.019 .. 1.00 ..

WBPU-XnAc-1-B 0.04 0.054 0.113 0.054 0.019 .. 1.00 0. 50
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1H-NMR spectroscopy was also applied to confirm the presence of Xn and XnAc in WBPU coatings
(see Figure 4). All the identical peaks for WBPU as well as Xn and XnAc were recorded. In both
WBPU-Xn and WBPU-XnAc coatings, the peak at 2.10 ppm corresponds to the (–OH and –CH2) groups
of the anhydro-glucose units of Xn. Other identical peaks merged with PU peaks. In WBPU-XnAc
coatings, additional peaks appeared at 5.81, 6.21, and 6.43 ppm. Thus, FT-IR and 1H-NMR results
confirmed the successful synthesis of WBPU-Xn and WBPU-XnAc coatings.
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All dispersions were free from any precipitation or coagulation. The dispersion properties are
summarized in Table 2. A larger mean particle size was recorded for WBPU-Xn and WBPU-XnAc
dispersions than for the WBPU dispersion. As Xn or XnAc was added directly to the polymer chain,
the particle size increased slightly in both WBPU-Xn and WBPU-XnAc dispersions. With increasing Xn
or XnAc content, the mean particle size also continued to increase. However, for all of the dispersions,
the mean particle size was not larger than 61 nm, which is a favorable size for use as a coating material.
The pH of the dispersions was slightly reduced using Xn or XnAc in the dispersion. This might be
due to the presence of the pyruvic acid cycles of Xn or XnAc. Based on the zeta potential values, the
stability of the dispersions was analyzed. The zeta potential value slightly decreased in the WBPU-Xn
dispersion, whereas the value slightly increased in the WBPU-XnAc dispersion compared to the WBPU
dispersion. In the WBPU-Xn dispersions, the presence of polar groups such as OH and COOH may
decrease the zeta potential value. As the number of OH polar groups was reduced in WBPU-XnAc
dispersions, the zeta potential value increased slightly. However, all of the dispersion zeta potential
values were approximately −50 mV, confirming stable dispersions of WBPU-Xn and WBPU-XnAc.
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Table 2. WBPU dispersion properties.

Sample Particle Size (nm) pH Zeta Potential (−mV)

WBPU 42 ± 1 7.1 ± 0.1 53 ± 1
WBPU-Xn-25 44 ± 1 7.0 ± 0.1 53 ± 1

WBPU-XnAc-25 44 ± 1 7.1 ± 0.1 54 ± 1
WBPU-Xn-50 47 ± 1 6.9 ± 0.2 54 ± 1

WBPU-XnAc-50 48 ± 1 6.9 ± 0.1 52 ± 1
WBPU-Xn-75 51 ± 2 6.8 ± 0.1 55 ± 1

WBPU-XnAc-75 52 ± 1 6.8 ± 0.1 51 ± 1
WBPU-Xn-1 60 ± 2 6.7 ± 0.1 56 ± 1

WBPU-XnAc-1 61 ± 1 6.7 ± 0.1 49 ± 1

Hydrophilicity is an important parameter of coatings. Water swelling (%) and water contact angle
methods were used to determine the hydrophilicity or wet resistance of the coatings. The degree of
swelling/value of the contact angle indicates the material affinity for water, which ultimately represents
the degradation rate of polymeric materials under the influence of environmental factors, especially
under wet conditions. The water swelling (%) and water contact angle values are summarized in Table 3.
The typical values are also shown in Figure 5. It is clear that all coatings tended to swell after being
dipped in water. All the coatings were quite hydrophilic. Both WBPU-Xn and WBPU-XnAc coatings
were more hydrophilic than the WBPU coating. However, the water swelling rate and water contact
angle values of the coatings differed for the WBPU-Xn and WBPU-XnAc coatings. The hydrophilicity
was higher for the WBPU-Xn coatings, and the hydrophilicity continued to increase with increasing Xn
content. The WBPU-Xn coating had high water swelling and low water contact angle values when the
Xn content was approximately 1.0 wt.%. This result indicates the very poor water resistivity of the
coating when WBPU-Xn has a higher Xn content. Such behavior might be due to the presence of free
polar groups (carboxyl and OH groups), which ultimately determine the hydrophilic properties of the
polymer. Most importantly, the hydrophilicity comparatively decreased in the WBPU-XnAc coatings.
In WBPU-XnAc, XnAc has fewer hydroxyl groups, resulting in a decrease in the polar groups and
contributing to the increase in the hydrophilicity degree.Polymers 2019, 11, x FOR PEER REVIEW 8 of 12 
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more hydrogen bonds to increase the adhesive strength. Different adhesive strengths were recorded 
after immersion of the coatings for 24 h (see also Table 3). Although no mechanical damage was 
observed, the adhesive strength changed dramatically. A large decrease in the adhesive strength was 
recorded for the WBPU-Xn coatings. A comparatively slight decrease in adhesive strength was 
recorded for the WBPU and WBPU-XnAc coatings. The presence of a polar group in the PU structure 
resulted in the difference in adhesive strength. More polar groups made the coating hydrophilic, 
which ultimately decreased or damaged the mechanical interlocking between the coatings and PVC; 
as a result, the maximum adhesive strength decreased in the immersed WBPU-Xn coatings.  
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Figure 6. Adhesive strength of typical coatings at different conditions. 

Figure 5. Water contact angle of coatings with different contents of Xn and XnAc.

Table 3. WBPU coating properties.

Coating Water Swelling (%) Water Contact Angle (◦)
Adhesive Strength (Kgf/cm)

Before Immersion After Immersion

WBPU 8.0 ± 0.2 67 ± 1 3.0 ± 0.06 2.7 ± 0.08
WBPU-Xn-25 9.0 ± 0.3 63 ± 1 3.8 ± 0.10 2.4 ± 0.10

WBPU-XnAc-25 8.5 ± 0.2 66 ± 1 3.7 ± 0.12 3.4 ± 0.15
WBPU-Xn-50 10.0 ± 0.2 61 ± 1 4.0 ± 0.11 2.2 ± 0.10

WBPU-XnAc-50 9.0 ± 0.2 65 ± 2 3.9 ± 0.11 3.5 ± 0.12
WBPU-Xn-75 13.0 ± 0.3 57 ± 1 4.2 ± 0.13 2.0 ± 0.10

WBPU-XnAc-75 10.0 ± 0.2 64 ± 1 4.0 ± 0.11 3.2 ± 0.11
WBPU-Xn-1 19.0 ± 0.5 50 ± 1 4.3 ± 0.14 1.3 ± 0.30

WBPU-XnAc-1 11.0 ± 0.3 62 ± 1 4.1 ± 0.10 2.9 ± 0.20
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Figure 6 shows the typical coating adhesive strength on PVC, which was considered as a base
specimen in this study. Higher adhesive strength was recorded for both WBPU-Xn and WBPU-XnAc
coatings compared to the WBPU coatings. The maximum adhesive strength was recorded for the
WBPU-Xn coatings due to the presence of a larger quantity of polar groups, which may introduce
more hydrogen bonds to increase the adhesive strength. Different adhesive strengths were recorded
after immersion of the coatings for 24 h (see also Table 3). Although no mechanical damage was
observed, the adhesive strength changed dramatically. A large decrease in the adhesive strength
was recorded for the WBPU-Xn coatings. A comparatively slight decrease in adhesive strength was
recorded for the WBPU and WBPU-XnAc coatings. The presence of a polar group in the PU structure
resulted in the difference in adhesive strength. More polar groups made the coating hydrophilic, which
ultimately decreased or damaged the mechanical interlocking between the coatings and PVC; as a
result, the maximum adhesive strength decreased in the immersed WBPU-Xn coatings.
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Although coating erosion is important for SPC coatings, the overall performance of an SPC coating
depends on the erosion rate of the coating. Very rapid erosion may also have a negative impact on
long-term performance. The erosion was evaluated by a weight loss test and the molecular weight.
The higher weight loss implies a higher erosion rate. The weight loss was calculated after immersing
the coating for 1, 30, 60, and 90 days. As summarized in Table 4, all WBPU-XnAc films had a slower
initial erosion rate than the WBPU-Xn films. There might be two factors for less hydrolyzed erosion
with the WBPU-XnAc films. First, a WBPU-XnAc content resulted in fewer hydroxyl groups due to
the substitution of the OH group in XnAc. Upon scission of the polyol units, it is expected that the
polyol chains will be lost. The mass loss of WBPU-Xn (0% XnAc) was considerably larger than that
of the WBPU-XnAc films. It was found that the WBPU-Xn-1 coating eroded by almost 14.5% over
90 days, while the WBPU-XnAc-1 films with the maximum XnAc content eroded by only 2.5%. Another
reason is the hydrophobic nature of XnAc. Usually, in water-swollen polymer networks, there is a
great number of Xn since XnAc is quite hydrophobic. It is believable that the presence of the XnAc
moieties enhances the hydrophobicity around the bound polyol and hinders water penetrating the
film. This inference is in good agreement with the swelling behavior and contact angle of WBPU-XnAc,
as the swelling ratio is lower for films with higher XnAc content and the contact angle is higher with
higher XnAc content. Therefore, the erosion rate can be affected by the XnAc content; eventually,
a higher XnAc content corresponds to a slower coating erosion rate. The slowest erosion rate was
recorded for the WBPU coating. The rate slowed down after two months. Comparing the erosion
results, the WBPU-XnAc coating showed a steady rate, which is a prediction of long-term protection
against fouling.
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Table 4. Weight loss of immersed coatings at defined interval (day).

Coating
Weight Loss (%)

1 day 30 days 60 days 90 days

WBPU 0 0.1 ± 0.005 0.3 ± 0.01 0.8 ± 0.03
WBPU-Xn-25 0 0.5 ± 0.02 0.9 ± 0.04 1.5 ± 0.06

WBPU-XnAc-25 0 0.3 ± 0.01 0.5 ± 0.02 1.1 ± 0.05
WBPU-Xn-50 0 0.8 ± 0.03 1.5 ± 0.06 2.1 ± 0.10

WBPU-XnAc-50 0 0.5 ± 0.02 0.8 ± 0.03 1.4 ± 0.06
WBPU-Xn-75 0 1.7 ± 0.08 3.5 ± 0.10 8.0 ± 0.30

WBPU-XnAc-75 0 0.7 ± 0.03 1.2 ± 0.05 1.9 ± 0.07
WBPU-Xn-1 0 3.0 ± 0.15 6.8 ± 0.30 14.5 ± 0.50

WBPU-XnAc-1 0 1.0 ± 0.05 1.7 ± 0.07 2.5 ± 0.10

The effect of erosion on the self-polishing nature of the coating was also evaluated by measuring the
thickness of the exposed coatings. The change in the thickness of the coatings under dynamic immersion
testing is summarized in Table 5. The coatings exhibited a gradual decrease in thickness with time in both
WBPU-Xn and WBPU-XnAc coatings. However, the thickness decreased faster for WBPU-Xn than for
WBPU-XnAc. This difference implies that the WBPU-Xn coating might not last for a long time under
immersion conditions. The WBPU coating exhibited the smallest change in thickness, possibly due to the
slowest rate of erosion. Three selected immersed coatings (WBPU, WBPU-X-1, WBPU-XnAc-1) for three
months were also analyzed by GPC to check their molecular weight (see Figure 7). All three coatings
showed lower molecular weights after immersion in water. This change implies that the coatings were
eroded. However, a substantially lower molecular weight was found for the WBPU-Xn coating, and a
moderately lower molecular weight was found for the WBPU-XnAc coating. The highest molecular
weight was found for the WBPU coating. This analysis confirmed that the WBPU-Xn coating surface
eroded very quickly, which also matched the weight loss test results. At the same time, the WBPU-XnAc
coating moderately eroded. The WBPU coating eroded very slowly.Polymers 2019, 11, x FOR PEER REVIEW 10 of 12 
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Table 5. Thickness of immersed coatings at defined interval (day).

Coating
Thickness (µm)

1 day 30 days 60 days 90 days

WBPU 60 ± 0.2 59.8 ± 0.3 59.5 ± 0.2 58.5 ± 0.3
WBPU-Xn-25 60 ± 0.3 59.2 ± 0.2 58.4 ± 0.2 56.9 ± 0.3

WBPU-XnAc-25 60 ± 0.2 59.6 ± 0.2 58.8 ± 0.2 58.2 ± 0.2
WBPU-Xn-50 60 ± 0.1 58.4 ± 0.2 56.6 ± 0.3 53.3 ± 0.3

WBPU-XnAc-50 60 ± 0.3 59.4 ± 0.2 57.9 ± 0.3 56.5 ± 0.2
WBPU-Xn-75 60 ± 0.2 56.7 ± 0.3 51.1 ± 0.3 47.6 ± 0.3

WBPU-XnAc-75 60 ± 0.2 59.1 ± 0.3 57.2 ± 0.2 55.0 ± 0.1
WBPU-Xn-1 60 ± 0.3 55.5 ± 0.2 50.0 ± 0.3 40.2 ± 0.4

WBPU-XnAc-1 60 ± 0.1 58.7 ± 0.3 57.0 ± 0.2 54.5 ± 0.3
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The antifouling test was performed under real conditions. All selected coatings were immersed
in a marine environment. The coatings’ antifouling properties were examined by visual inspection.
The fouling compounds started to attach to the WBPU, WBPU-Xn, or WBPU-XnAc coating within a
few days (not shown). Comparatively, the fouling attachment on the WBPU-Xn coating was slower
than that on the WBPU and WBPU-XnAc coatings. However, all coatings were fully covered by fouling
in the next 30 days. No significant protection was observed for either the WBPU-Xn or WBPU-XnAc
coatings. This confirmed that Xn or XnAc has no direct effect on antifouling properties. A different
scenario was observed using biocide in three selected coatings (namely, WBPU-B, WBPU-Xn-1-B,
and WBPU-XnAc-1-B). Pictures corresponding to 30, 180, and 240 days of immersion of those coatings
are presented in Figure 8. In the early stage, all coatings showed almost similar protection properties;
all the coatings were free from fouling attachment. With time, the protection efficiency of the WBPU-B,
WBPU-Xn-1-B, and WBPU-XnAc-1-B coatings changed. After 180 days, the WBPU-B coating slightly
fouled and WBPU-XnAc-1-B coating was still free from foulants, whereas the coating WBPU-Xn-1-B
was moderately covered with foulants. After 240 days, the WBPU-XnAc-1-B coating was still free from
fouling. The specimen with the WBPU-Xn-1-B coating was fully covered with fouling, whereas the
WBPU-B coating was moderately covered with fouling. Although the same biocide and similar content
were used in all three coatings, the protection ability was different. This can be ascribed to the erosion
rate of the coating. The WBPU-Xn-1-B coating had the maximum rate of erosion (confirmed before).
As a result, the specimen may have had a very thick coating layer (by 180 days), which may have not
had biocide storage at that time. Ultimately, the foulants can easily attach to the WBPU-Xn-1-B coating.
In the WBPU-B coating, the very slow erosion rate was insufficient to release the biocide and foulants
attached after a short period. Only the WBPU-XnAc-1-B coating contained the proper combination of
monomers and XnAc content, which resulted in the proper coating erosion rate and made the coating
leachable for a longer time. Ultimately, the antifouling property improved for a longer duration.
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Figure 8. Photographs of exposed coatings with defined interval.

4. Conclusions

Antifouling coatings were prepared with different Xn and XnAc contents in defined monomer
compositions of WBPU. The hydrophilicity and adhesive strength (before immersion) of the coatings
increased with increasing Xn or XnAc content, with the maximum increase occurring with the maximum
amount of Xn or XnAc content. All coatings without biocide were covered with foulants shortly.
A better antifouling property was observed only with the WBPU-XnAc-1-B coating. The XnAc in the
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WBPU coating allowed timely and proper biocide leaching due to the proper erosion rate of the coating.
Such an XnAc-based SPC coating may be a good choice in offshore fixed structures.
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