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A B S T R A C T   

Background and Purpose: The presence of a paramagnetic rim around a white matter lesion has recently been 
shown to be a hallmark of a particular pathological type of multiple sclerosis lesion. Increased prevalence of 
these paramagnetic rim lesions is associated with a more severe disease course in MS, but manual identification is 
time-consuming. We present APRL, a method to automatically detect paramagnetic rim lesions on 3T T2*-phase 
images. 
Methods: T1-weighted, T2-FLAIR, and T2*-phase MRI of the brain were collected at 3T for 20 subjects with MS. 
The images were then processed with automated lesion segmentation, lesion center detection, lesion labelling, 
and lesion-level radiomic feature extraction. A total of 951 lesions were identified, 113 (12%) of which contained 
a paramagnetic rim. We divided our data into a training set (16 patients, 753 lesions) and a testing set (4 pa-
tients, 198 lesions), fit a random forest classification model on the training set, and assessed our ability to classify 
paramagnetic rim lesions on the test set. 
Results: The number of paramagnetic rim lesions per subject identified via our automated lesion labelling method 
was highly correlated with the gold standard count per subject, r = 0.86 (95% CI [0.68, 0.94]). The classification 
algorithm using radiomic features classified lesions with an area under the curve of 0.82 (95% CI [0.74, 0.92]). 
Conclusion: This study develops a fully automated technique, APRL, for the detection of paramagnetic rim lesions 
using standard T1 and FLAIR sequences and a T2*phase sequence obtained on 3T MR images.   

1. Introduction 

Multiple sclerosis is a demyelinating and inflammatory disorder 
whose hallmark is lesions in the brain and spinal cord (Sahraian and 
Radü, 2007). These lesions can be detected in vivo with MRI and are 
often quantified as total lesion volume and lesion count, both of which 

can be used as measures of disease burden and to track disease pro-
gression (Popescu et al., 2013). Imaging biomarkers such as these are 
commonly used in the clinic and as surrogate endpoints in clinical trials 
(Filippi and Agosta, 2010; Sormani and Bruzzi, 2013). However, other 
known biological processes of MS are left uncaptured. 

Chronic active lesions, a subset of MS lesions that are more prevalent 

Abbreviations: PRL, paramagnetic rim lesion. 
* Corresponding author at: 217 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104-6021, USA. 

E-mail address: rshi@pennmedicine.upenn.edu (R.T. Shinohara).   
1 Both authors contributed equally to this work. 

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2021.102796 
Received 2 March 2021; Received in revised form 16 July 2021; Accepted 17 August 2021   

mailto:rshi@pennmedicine.upenn.edu
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2021.102796
https://doi.org/10.1016/j.nicl.2021.102796
https://doi.org/10.1016/j.nicl.2021.102796
http://creativecommons.org/licenses/by/4.0/


NeuroImage: Clinical 32 (2021) 102796

2

in patients with more severe disease (Absinta et al., 2019; Frischer et al., 
2015; Luchetti et al., 2018), have imaging and histopathology findings 
suggestive of ongoing tissue damage (Dal-Bianco et al., 2017; Absinta 
et al., 2016; Kaunzner et al., 2019; Gillen et al., 2021) and have until 
recently only been detectable by histopathology. These lesions have also 
been termed as slowly expanding, or smoldering lesions. At an estimated 
prevalence of as low as 4% but up to 10-15% of all MS lesions, this type 
of lesion is sufficiently common and deleterious to warrant considerable 
efforts for biomarker development (Frischer et al., 2015; Dal-Bianco 
et al., 2017; Absinta et al., 2016; Chawla et al., 2018). On T2*-phase 
MRI contrast, they are identifiable by curvilinear hypointensity along 
the edge of the lesion that corresponds with iron laden phagocytic cells 
observed on histopathological specimens (Dal-Bianco et al., 2017; 
Absinta et al., 2016; Bagnato et al., 2011). Here, we refer to them as 
paramagnetic rim lesions (PRLs). 

When first observed on MRI, the rim of a PRL was only visible on 
scans from ultra-high-field strength (7T) magnets (Absinta et al., 2013; 
Bian et al., 2013; Mehta et al., 2013; Hammond et al., 2008). Recently, 
PRLs have been shown to be identifiable on the more common high-field 
strength (3T) MRI scans as well, albeit with lower inter- and intra-rater 
reliability (Absinta et al., 2018). This development strengthens their 
viability as a target on clinical MRI protocols, particularly because the 
sequences studied can be acquired with high spatial resolution in less 
than 4 minutes (Sati et al., 2014). Previous studies of PRLs have noted 
the geometric nature of the rim and worked to identify the rim on the 
quantitative susceptibility mapping contrast as well (Eskreis-Winkler 
et al., 2015; Stüber et al., 2016; Wisnieff et al., 2015). 

Manual inspection of MS lesion for the presence of a paramagnetic 
rim is difficult, time consuming, and prone to inter- and intra-rater 
variability. We propose an automated method for identifying PRLs 
that would improve efficiency of study and facilitate translation of this 
biomarker into larger research studies and clinical practice. One way to 
identify PRLs is through the quantification of visual patterns that char-
acterize these data. Radiomics is an emerging field of research that en-
compasses the extraction of quantitative features from biomedical 
images that may reflect underlying pathophysiology (Rizzo et al., 2018). 
Studies have shown that radiomic features are often useful predictors of 
known hallmarks of disease (Coroller et al., 2016; Liu et al., 2016; Bakas 
et al., 2017; Sweeney et al., 2021), although they have not been used 
extensively in the MS literature. We use radiomic features along with a 
random forest classification model, which can flexibly model high 
dimensional data, to identify PRLs. Our method is fully automated and 
uses a T2*-phase volume with isometric voxels and high spatial reso-
lution that is acquired in a clinically feasible acquisition time at 3T (Sati 
et al., 2014). 

2. Materials and methods 

2.1. Study population 

We studied 20 subjects with MS who were scanned under an insti-
tutional review board–approved natural history protocol at the National 
Institutes of Health (NIH), who were included in this study due to the 
presence of visible PRLs in MR scans. Subjects’ age at the time of 
scanning ranged from 20 to 66 years, with a mean age of 45 years (sd =
12) (Table 1). Written informed consent was obtained from all partici-
pants. Data from this study can be shared upon reasonable request and 
completion of a Data Transfer Agreement with the National Institutes of 
Health. 

2.2. MR Imaging acquisition: 

All subjects were imaged on a Siemens Magnetom Skyra (Siemens, 
Erlangen, Germany) 3T scanner, using a body transmit coil and a 32- 
channel receive array coil, at the National Institutes of Health in 
Bethesda, Maryland. Imaging acquisition included the following 

sequences:  

• a whole-brain 3D T2-weighted fluid-attenuated inversion recovery 
(FLAIR) sequence (repetition time, TR = 4800 ms; echo time, TE =
354 ms; inversion time, TI = 1800 ms; flip angle, FA = 120◦; 
acquisition time, TA = 6 minutes 30 seconds; 256 axial slices; 1mm 
isometric voxel resolution),  

• a whole-brain 3D T1-weighted magnetization-prepared rapid 
gradient echo (T1) sequence (TR = 7.8 ms; TE = 3 ms; FA = 18◦; TA 
= 3 minutes 35 seconds; 256 sagittal slices; 1mm isometric voxel 
resolution), and  

• a 3D segmented echo-planar imaging (EPI) sequence with whole- 
brain coverage providing T2* magnitude and phase contrasts (TR 
= 64 ms; TE = 35 ms; flip angle, FA = 10◦; TA = 5 minutes 46 sec-
onds; 251 sagittal slices; 0.65mm isometric voxel resolution). 

Additional standard MRI sequences, including a postcontrast 3D T1- 
weighted MPRAGE sequence for the identification of gadolinium- 
enhancing lesions, were also acquired but not incorporated into the 
automated assessment of PRLs. 

2.3. Manual paramagnetic rim lesion assessment: 

Supratentorial non-gadolinium enhancing MS lesions were visually 
inspected for the presence of a paramagnetic rim on T2* magnitude and 
unwrapped phase images by a neurologist with 14 years of experience in 
neuroimaging science (Absinta et al., 2019; Absinta et al., 2013; Absinta 
et al., 2018). Gadolinium enhancing lesions were excluded from the 
analysis because the main focus of this paper was to study chronic rim 
lesions. In Absinta et al. (2016) (Absinta et al., 2016), PRLs were found 
in 22 out of 40 gadolinium enhancing lesions. Of these 22, 45% of the 
rims disappeared within 3 months after enhancement resolved. As pre-
viously described (Yao et al., 2012), we identify a PRL when a hypo-
intense signal on phase images is observed surrounding the periphery of 
the lesion, while being either hyper- or isointense in its inner portion. 
PRLs were delineated on the phase with a line through the center of the 
lesion along its longest axis on an axial slice. 

2.4. Image preprocessing 

Phase images were unwrapped and filtered as previously described 
(Absinta et al., 2013). T1, FLAIR, and phase images were preprocessed 
using the fslr R package (Muschelli et al., 2015), an R wrapper for the 
FSL software (Jenkinson et al., 2012; Smith et al., 2004), further 
described below. Images were visualized with ITK-SNAP (Yushkevich 
et al., 2006). The T2*-magnitude contrast was not used in this method. 

Table 1 
Demographics of Study Sample.  

Demographics  

N 20 
Age (mean (SD)) 45.5 (12.4) 
Male (%) 8 (40) 
Phenotype (%)  

Primary progressive MS 3 (15) 
Relapsing-remitting MS 12 (60) 
Secondary progressive MS 5 (25) 

Disease Duration (mean (SD)) 15.1 (9.0) 
EDSS (median (range)) 2.5 (1.0–7.0) 
Treatments (%)  

Untreated 6 (30) 
Glatiramer acetate 1 (5) 
Interferon beta-1a 4 (20) 
Dimethyl fumarate 6 (30) 
Fingolimod 1 (5) 
Natalizumab 1 (5) 
Rituximab 1 (5)  
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To preprocess our images, we first applied the N4 inhomogeneity 
correction algorithm to the T1, FLAIR, and phase images (Tustison et al., 
2010). We then rigidly registered both the T1 and the FLAIR images to 
the T2*-phase image space, resampling to 0.65 mm isometric resolution 
and using a mutual information cost function and sinc interpolation. 
When deciding on registration parameters, we also considered using 9- 
parameter and 12-parameter registration but found that registration 
with those degrees of freedom resulted in some failed cases with warped 
images. We used multi-atlas skull stripping (MASS) to identify cerebral 
tissue in the images in T1 space (Doshi et al., 2013). In two cases, MASS 
yielded poorly skull-stripped images based on visual inspection. For 
those two cases, we instead used the FSL brain extraction tool for skull- 
stripping (Jenkinson et al., 2012). As a final step, we performed 
WhiteStripe intensity normalization on the otherwise preprocessed T1, 
FLAIR, and phase images (Shinohara et al., 2014). 

2.5. Lesion labelling 

Our lesion labelling method relies on access to maps that represent 
voxel-wise probabilities of being a lesion. We use the automatic lesion 
segmentation method MIMoSA for its ability to integrate multimodal 
information and to provide voxel-wise probability maps (Valcarcel et al., 
2018). Manual lesion segmentation was conducted by a research assis-
tant with 1 year of experience, who was trained by a board-certified 
neurologist with extensive expertise in neuroimmunology and MRI. 

We trained the MIMoSA algorithm with manual segmentations as a 
gold standard and T1 and FLAIR images as input. We implemented a 
leave-one-out cross-validation approach, where data from all but one 
subject was used to train a MIMoSA model, and that model was subse-
quently applied to the remaining subject. We repeated this for every 
subject in our cohort. 

From each k-fold model, we extracted probability maps that con-
tained voxel-wise probabilities of being a white matter lesion. We then 
binarized these probability maps into lesion segmentation maps via a 
subject-specific estimated optimal threshold that was identified out of a 
user-provided range of possible thresholds and then chosen based on 
amount of overlap with a gold-standard lesion segmentation as 
measured by a Sørensen-Dice coefficient (Valcarcel et al., 2020). 
Because our lesion segmentation masks did not always cover the entire 
area of a lesion, we then dilated the masks by one voxel in each direction 

to increase the likelihood of detecting the paramagnetic rim signal, 
which occurs on the boundary of lesions. In order to then mitigate the 
possibility that our dilation inadvertently resulted in the added inclusion 
of CSF or gray matter, we used FSL FAST to segment CSF and gray matter 
and masked those out of the voxels newly included through dilation 
(Zhang et al., 2000). 

After lesion segmentation masks were obtained, we used the lesion 
probability maps as input to a center detection method (Dworkin et al., 
2018) to identify distinct lesions based on the texture of the lesion tissue. 
We then used a nearest-neighbor approach to classify the remainder of 
the lesion segmentation map into those identified lesions (Fig. 1). At this 
point, we assigned PRL status to the identified lesions based on the 
presence of any overlap with the manual PRL labels described 
previously. 

Due to failures in the lesion labelling process, a subset of abnor-
malities automatically identified by our method might, to a manual 
rater, be considered clusters of confluent lesions. Because we did not 
have access to manual segmentations of distinct lesions, we instead 
relied on a combination of our lesion labelling method and connected 
components analysis to label lesions as confluent. Specifically, if con-
nected components identified one cluster where our lesion labelling 
method identified more than one lesion, we labelled the constituent 
lesions as confluent. 

2.6. Feature extraction 

With the lesions identified by our automatic pipeline, we conducted 
a radiomic image analysis to characterize each lesion with intensity- 
based statistics on the phase contrast (Kolossváry et al., 2017). These 
include 44 features that summarize the intensities in an individual lesion 
in 3 general ways: by describing the average and spread of the in-
tensities, by describing the shape of the distribution of intensities, and 
by describing the diversity of intensities (Kolossváry et al., 2017). For 
example, features like the mean, defined as 1

n
∑n

i=1xi, and interquartile 
range, defined as abs(x75% − x25%), are included in the first group, where 
xi represents intensity value at voxel i. Features like variance, defined as 
1
n
∑n

i=1(xi − mean(x) )2, and skew, defined as 
1
n

∑n
i=1

(xi − mean(x) )3

sd(x)3 , are 
included in the second group, and features like energy, defined as 
∑n

i=1x2
i , uniformity, defined as 

∑n
i=1p(xi)

2, and entropy, defined as 

Fig. 1. A visualization of the steps of the 
method for five different lesions. Each col-
umn corresponds to a different part of the 
method, and each row corresponds to a 
different lesion of interest. In columns 5 and 
6, the different colors represent different le-
sions, where the colors are arbitrarily 
assigned. In the last column, lesions classi-
fied as PRLs are visualized as green, and le-
sions classified as not PRLs are visualized as 
red. Subfigure A shows a lesion that was both 
manually identified as a PRL and classified as 
a PRL, i.e. a true positive. Subfigure B shows 
a lesion that was manually identified as not a 
PRL but classified as a PRL, i.e. a false posi-
tive. Correspondingly, subfigure C shows a 
false negative lesion, and subfigure D shows 
a true negative lesion. Subfigure E shows a 
lesion that was automatically labelled as a 
single lesion but is actually a confluence of 
lesions.   
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∑n
i=1 − p(xi)log2p(xi), are included in the third group. A full list and 

detailed equations for each of the first-order radiomic features can be 
found in the supplemental material of Kolossváry et al. (2017). 

2.7. Prediction model 

The radiomic features were used as candidate predictors in our 
subsequent prediction modelling for classification of PRL lesions. Class 
labels for each lesion were previously assigned during the lesion label-
ling step. We split our dataset into a training set and test set by subject, 
randomly assigning lesions from 16 subjects into the training set and 
lesions from the remaining 4 subjects into the test set. Both sets were 
examined to ensure that at least 100 lesions were present in each group. 

Because PRLs were of a minority class with a prevalence of approx-
imately 12%, we used Synthetic Minority Oversampling TEchnique 
(SMOTE) to balance our data (Chawla et al., 2002). With SMOTE, we 
oversampled the PRLs by the reciprocal of the percentage of PRLs pre-
sent in the dataset and we did not undersample the majority class. We 
then trained a random forest classifier with 10-fold cross-validation 
using the R package caret (Kuhn, 2008; Wright and Ziegler, 2017). We 
summarized performance results using an optimal threshold calculated 
based on Youden’s J statistic, which maximizes the sum of sensitivity 
and specificity (Youden, 1950). We also derived empirical confidence 
intervals for those measurements by randomly reassigning the training 
and test set and repeating the above process 1000 times. We assessed 
variable importance in the random forest as the percent increase in 
mean-squared error for a model with the variable over a model with a 
permuted version of that variable, scaled for comparability across 
variables. 

2.8. Post-hoc analyses 

An additional board-certified neurologist (MS) with extensive 
expertise in neuroimmunology and MRI, who was not involved in the 
generation of the manual PRL labels, examined each misclassified lesion. 
We rated lesions on a 5-point scale, where 1 indicated definitely not a 
PRL, 2 indicated probably not a PRL, 3 indicated uncertain, 4 indicated 
probably a PRL, and 5 indicated definitely a PRL. Some lesions were 
automatically labelled as one lesion but were actually a confluence of 
lesions (Fig. 1). We assigned manual ratings to these confluent clusters 
based on the presence of at least one PRL. We additionally assessed 
APRL’s performance only for lesions that were not part of a confluent 
cluster. 

Because it is known that the sizes of PRLs tend to be larger than non- 

PRLs, we extracted lesion size for use as a potential feature in our pre-
diction model, measured as the number of voxels in a given lesion. 

3. Results 

The final dataset included a total of 951 lesions in 20 subjects 
identified by our automated lesion labelling method, 113 (12%) of 
which we found to be PRLs by overlap with the manual annotation. The 
average number of lesions per subject was 47.6 (sd = 15.9), and the 
average number of automatically identified PRLs per subject was 5.7 (sd 
= 2.9). Supplementary Table 1 summarizes by subject the total number 
of lesions identified from our lesion labelling method, the number of 
PRLs identified from our lesion labelling method, and the number of 
PRLs identified by a manual rater. The number of identified PRLs by our 
method was highly correlated with the gold standard count of PRLs, r =
0.86 (95% CI [0.68, 0.94]) (Fig. 2). 

We trained a random forest classification model using PRL status 
from the lesion labelling method as the label. In the iteration that we 
used to derive performance measures, there were 753 lesions in the 
training set, 81 of which were PRLs, and 198 lesions in the testing set, 47 
of which were PRLs. Using only the undiscretized radiomic features, we 
were able to classify lesions with an AUC of 0.82 (95% CI [0.74, 0.92]). 
Using 0.502 as a probability threshold, the optimal threshold as deter-
mined by Youden’s J, 135 lesions were accurately classified as not PRL, 
31 lesions were false positives, 8 were false negatives, and 24 were 
classified correctly as PRL (Table 2). A breakdown of the classification 
results for the test set lesions by subject is provided in Table 2, in which 
we see that the distribution of classification results are not very different 
between patients. 

We also examined the results of the method for lesions that were not 
part of a confluent cluster. A total of 72 lesions in the test set were not 
confluent, and were able to be classified with an AUC of 0.88. Using 
0.086 as the probability threshold, the optimal threshold for this subset 
of lesions as determined by Youden’s J statistic, 47 lesions were accu-
rately classified as not PRL, 19 were false positive, 0 were false negative, 
and 6 were accurately classified as PRL (Table 2). Additional perfor-
mance measures are provided in Table 2. Because we examined 
confluent lesions as part of a post-hoc analysis, we did not derive con-
fidence intervals for these performance measures. 

A visualization of lesions that were true positive, false positive, false 
negative, and true negative respectively is provided in Fig. 1. From 
subfigure B, where we see the method illustrated for a lesion that was 
falsely identified as a PRL, we can see that hypointensities can manifest 
around a lesion even when they cannot be rated as a rim. Conversely, 

Fig. 2. Subfigure A shows the manually identified count of PRLs against the number of PRLs estimated via our lesion identification method, r = 0.86 (0.68, 0.94). 
Subfigure B shows the ROC curve after classification, AUC = 0.82 (0.74, 0.92). 
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from subfigure C, which shows a lesion that was falsely identified as not 
a PRL, we see that despite the presence of hypointensities that are visible 
to the eye, certain PRLs may not display a signal strong enough to be 
captured by radiomic features. 

The random forest identified uniformity, entropy, and energy as the 
most important radiomic features for classifying lesions, which are all 
features that aim to describe the diversity of the data points (Fig. 3). 
Other radiomic features that were important were mode, kurtosis, and 
skew. Entropy and uniformity were both higher in lesions that were not 
PRLs, and energy was higher in PRLs. In a model including lesion size as 
an additional predictor, the random forest identified lesion size as the 
most important feature, with PRLs expressing larger sizes than lesions 
that were not PRLs, predicting PRL status with an AUC of 0.81. A model 
using textural features classified lesions with an AUC of 0.72. 

A second expert manually rated the 39 lesions that were misclassified 
by the model. The rater deemed that 1 lesion included too much artifact 
to assess PRL status, and 25 lesions were confluent. Of the lesions not 
part of a confluent cluster, 9 were false positive and 5 were false nega-
tive. Of those 9 false positive lesions, 4 were rated as definitely a PRL, 2 
were rated as uncertain, 2 were rated as probably not a PRL, and 1 was 
rated as definitely not a PRL. For the 5 false negative lesions that were 
not confluent, 1 was rated as definitely a PRL, 2 were rated as probably a 
PRL, 1 was rated as uncertain, and 1 was rated as probably not a PRL. 

As for confluent clusters, 22 were false positives and 3 were false 
negatives. These were rated according to the presence of at least one PRL 
in each confluent cluster. Of the 22 false positive lesions, 11 were rated 
as definitely a PRL, 5 were rated as probably a PRL, 1 was rated as un-
certain, 3 were rated as probably not a PRL, and 2 were rated as defi-
nitely not a PRL. All 3 of the false negative lesions were rated as 
definitely a PRL. We note that the confluence defined here was a 
judgement made by the manual rater. This differs from but complements 
the confluence definition employed for the primary test set analysis, 
which was the definition based on the automated analysis used to derive 
the performance measures reported in Table 2. 

4. Discussion 

Preliminary studies have shown that the existence of a paramagnetic 
rim around an MS lesion is an important biomarker with potential 
clinical implications: indicative of chronic inflammation, associated 
with heightened disability, and resistant to current disease-modifying 
treatments (Absinta et al., 2019). However, paramagnetic rims are 
time-consuming to identify manually, even by highly trained experts 
(Absinta et al., 2018). In this paper, we developed APRL, a fully auto-
matic method for detecting paramagnetic rim lesions on a 3T MRI using 
a submillimeter isometric, clinically feasible, segmented-EPI sequence 
(Absinta et al., 2018; Sati et al., 2014). Automation of PRL identification 
that relies on objective assessment would aid larger scaled studies 
assessing this promising imaging biomarker in MS. Contemporaneoulsy 
developed deep learning methods have also recently been published 
(Barquero et al., 2020). 

APRL relies on radiomics for automated PRL identification and 
classification. Radiomic features have not previously been used to 
classify PRLs. The radiomic features that were the most important in this 
context aimed to measure the variability of intensity within a lesion 
(entropy and uniformity) or quantify the magnitudes of the intensities 
themselves (energy). 

Energy measures the magnitude of intensities within a lesion. On the 
phase image used in this study, PRLs manifested with higher energy 
because hypointensities represented more extreme negative values 
instead of values closer to 0, with more extreme hypointensities result-
ing in more extreme energy values. 

Both entropy and uniformity are measures based on the probability 
of observing a particular intensity within a lesion. Because we did not 
bin the voxel intensities, the number of distinct intensities observed was 
large, so the probability of observing a particular intensity was fairly 
low. This was reflected in the observed range of uniformity in this study. 
Uniformity is a direct measure of homogeneity of the intensities within a 
lesion. We expected uniformity to be lower for PRLs due to the presence 
of both intensities representing normal appearing tissue and hypo-
intensities from the paramagnetic rim. Lesions that were not PRLs did 
not appear with any distinct signature on a phase image, leading to a 
higher uniformity. In addition, the impact of the size of a region of in-
terest on radiomic features in MS lesions has not been well studied and 
warrants further investigation. 

Entropy takes the probability of observing a particular intensity 
within a lesion and transforms it to reflect the amount of observed 
variation. Because of the aforementioned lack of binning, here, entropy 
more accurately reflected lesion size in that given our more homogenous 
set of probabilities, a smaller probability of observing a given intensity 
resulted in a smaller measure of entropy. Larger lesions yielded a smaller 
probability of observing a given intensity. In this dataset, PRLs tended to 
have smaller values of entropy, possibly reflecting a larger size, which 
has been noted in previous studies of PRLs as well (Dal-Bianco et al., 
2017). When we included lesion size in our classification model, we 
found that lesion size was an important predictor of PRL status in 
addition to uniformity, entropy, and energy, suggesting that these four 
measures provide potentially similar but nevertheless complementary 
forms of information for classifying PRLs. but nevertheless comple-
mentary forms of information for classifying PRLs. 

Many of the lesions that the model misclassified were confluent le-
sions that were labelled as a single lesion. According to our automated 
assessment of confluence, the percentage of confluent lesions among 
correctly classified lesions was 33%, while the percentage of confluent 
lesions among incorrectly classified lesions was 49%, suggesting that 
confluence negatively influences the model’s ability to classify PRLs. 
According to our expert rater’s visual assessment of confluence, nearly 
65% of misclassified lesions were confluent. Of these, 88% were false 
positives, potentially reflective of heterogeneity in intensity that is more 
present for confluent lesions but also in lesions with a rim signal. 
Confluent lesions also tend to be larger, similar to PRLs, which may have 

Table 2 
Summary of Classification Performance Measures.  

Contingency Table (Excluding Confluent Lesions) 

Prediction Reference 

Rim Negative Rim Positive 

Rim Negative 135 (47) 8 (0) 
Rim Positive 31 (19) 24 (6) 
Testing Set Lesion Classification Count by Subject (Excluding Confluent Lesions) 

Subject True 
Negative 

False 
Negative 

False 
Positive 

True 
Positive 

1 65 (24) 4 (0) 10 (4) 4 (1) 
5 13 (4) 1 (0) 8 (2) 7 (0) 
8 25 (7) 0 (0) 4 (3) 5 (0) 
16 32 (12) 3 (0) 9 (10) 8 (5) 
Performance 

Measures 
With Confluent Lesions 
(95% CI) 

Without Confluent 
Lesions 

AUC 0.82 (0.74, 0.92) 0.88 
Accuracy 0.8 (0.59, 0.91) 0.74 
Positive Predictive 

Value 
0.44 (0.17, 0.55) 0.24 

Negative Predictive 
Value 

0.94 (0.93, 1) 1 

False Positive Rate 0.19 (0.07, 0.46) 0.29 
False Negative Rate 0.25 (0, 0.37) 0 
Sensitivity 0.75 (0.63, 1) 1 
Specificity 0.81 (0.54, 0.93) 0.71 

The table summarizes the performance measures we observed for the classifi-
cation of PRLs, where counts in parentheses are counts excluding confluent le-
sions. 95% confidence intervals are provided for performance measures where 
available. 
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also contributed to the misclassification. 
We provide an example of one of these confluent lesions in Fig. 1, 

Subfigure E. In this lesion, although one of the encompassed lesions 
contains a clear rim signal, the larger of the two does not. Because the 
majority of the voxels included in the confluent lesion belong to the 
encompassed one without a rim signal, the first-order radiomic features 
extracted from this confluent lesion reflected that signal. 

We dilated our lesion segmentation map to increase the likelihood 
that a rim signal would be included in a lesion label. In order to mitigate 
the impact of inclusion of ventricular and cortical phase-hypointensities, 
we masked out cerebrospinal spinal fluid and gray matter from the di-
lations, but this dilation could have nevertheless resulted in the inclu-
sion of non-lesional tissue that may have affected the calculation of 
radiomic features. 

These issues could be addressed by taking a more nuanced approach 

to modelling the probability of having a rim. Here, we treated the 
identification of PRLs as a binary classification problem, invoking a 
random forest to predict if a given lesion was a PRL. However, the 
identification of PRLs can be difficult because of the myriad of factors 
that drive the clarity and strength of a rim signature, some of which are 
technical and some of which reflect biological processes. As noted in 
Fig. 1, while some lesions exhibit a rim unequivocally, other lesions 
exhibit a more equivocal signature. This renders the task of identifying 
PRL lesions difficult, both for manual raters and automated classifiers. In 
fact, previous research has shown that intra- and interrater reliability for 
paramagnetic rim evaluation are substantial but not perfect, with a 
Cohen κ of 0.77 and 0.71 respectively (Absinta et al., 2018). A future 
approach could treat the presence of a rim as a continuous measure 
instead of a binary classification, where middling levels of this theo-
retical measure could represent both uncertainty about a lesion’s 

Fig. 3. The variables identified as the most important by APRL for determining the presence of PRLs were uniformity, entropy, and energy. Here, we measure 
variable importance as the percent increase in mean squared error for the model with the variable over the model with a permuted version of that variable, scaled for 
comparability across variables. Boxplots of uniformity, entropy, energy, and lesion size on the lesions from the test set show that PRLs and non-PRLs seem to differ on 
those measures, supporting the theory that they are important for distinguishing the two kinds of lesions. 
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classification and different stages of PRL progression. This would likely 
more accurately reflect underlying biological processes as well, as the 
amount of iron-containing phagocytes at the edge of a lesion can vary 
across lesions (Dal-Bianco et al., 2017). 

4.1. Limitations 

A major limitation to current assessments of paramagnetic rims is 
that no international consensus exists on criteria for determining this 
imaging signature. This limitation may hinder the application of the 
proposed methodology to new studies in which differing definitions of 
paramagnetic rims may be desired based on local practices. While 
signal-to-noise ratio is higher on a 7T MR image, allowing for higher 
inter- and intra-rater reliability, they remain low across contrast types 
on 3T (Absinta et al., 2018). However, APRL relies on techniques that 
perform well on 3T images, so extensions to 7T would require additional 
validation. 

This study may be improved by the collection of additional data 
containing delineations of rim signal locations. Increasing the sample 
size may allow for a more accurate reflection of the imaging signature 
associated with PRLs within the feature space, and a more specific 
delineation of the rim signal may improve APRL’s ability to differentiate 
between hypointensity due to the presence of a rim and hypointensity 
due to noise or features like the central vein sign. In the current study, 
we did not explicitly assess for the presence of a central vein sign in each 
of the automatically identified lesions. Because the central vein sign also 
presents as hypointensity within a lesion on T2*-phase, a central vein 
sign might impact the calculation of first-order radiomic features. 
Textural features, which quantify the spatial relationship between voxel 
intensities (Haralick et al., 1973), characterized PRLs less accurately 
than first-order features. Future studies may explore more direct 
methods for quantifying the central vein to disentangle the rim signal 
and the central vein sign. In addition, all the patients for this analysis 
had at least one PRL. Given recent histology work (Gillen et al., 2021), 
we do not suspect that patient without PRL lesions would have different 
radiomic signatures in their non-PRL lesions from patients with PRL 
lesions, but further work is warranted to investigate this. 

Additionally, in the current study, we did not explicitly consider 
gadolinium-enhancement in our automated identification of PRLs. 
Gadolinium-enhancing lesions were specifically left out of the manual 
assessment in an effort to specifically study chronic rim lesions, whose 
presence has previously been shown to be associated with poor prog-
nostic factors (Absinta et al., 2019). Paramagnetic rims in gadolinium- 
enhancing lesions fade within 3 months in a high percentage of cases 
(Absinta et al., 2016) and may exhibit features different from chronic 
rim lesions on imaging due to edema and tissue architecture, though this 
was not explicitly studied in this analysis. 

5. Conclusion 

This study introduces a fully automated method, APRL, for the 
identification and classification of paramagnetic rim lesions relying 
solely on 3T MR images, which are commonly available in a clinical 
setting. Automation of this process is important for the continued 
development of the scientific community’s knowledge around these le-
sions and their implications for disease burden. 
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