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Automatic segmentation tool 
for 3D digital rocks by deep 
learning
Johan Phan1,2*, Leonardo C. Ruspini2,3 & Frank Lindseth1

Obtaining an accurate segmentation of images obtained by computed microtomography (micro-CT) 
techniques is a non-trivial process due to the wide range of noise types and artifacts present in these 
images. Current methodologies are often time-consuming, sensitive to noise and artifacts, and require 
skilled people to give accurate results. Motivated by the rapid advancement of deep learning-based 
segmentation techniques in recent years, we have developed a tool that aims to fully automate 
the segmentation process in one step, without the need for any extra image processing steps such 
as noise filtering or artifact removal. To get a general model, we train our network using a dataset 
made of high-quality three-dimensional micro-CT images from different scanners, rock types, and 
resolutions. In addition, we use a domain-specific augmented training pipeline with various types of 
noise, synthetic artifacts, and image transformation/distortion. For validation, we use a synthetic 
dataset to measure accuracy and analyze noise/artifact sensitivity. The results show a robust and 
accurate segmentation performance for the most common types of noises present in real micro-CT 
images. We also compared the segmentation of our method and five expert users, using commercial 
and open software packages on real rock images. We found that most of the current tools fail to reduce 
the impact of local and global noises and artifacts. We quantified the variation on human-assisted 
segmentation results in terms of physical properties and observed a large variation. In comparison, 
the new method is more robust to local noises and artifacts, outperforming the human segmentation 
and giving consistent results. Finally, we compared the porosity of our model segmented images with 
experimental porosity measured in the laboratory for ten different untrained samples, finding very 
encouraging results.

Capturing microscopic properties of porous rocks and their interaction with fluids play an instrumental role in 
many important domains such as carbon storage, oil and gas recovery, and underground water management. 
The use of 2D and 3D imaging techniques to capture these properties, known as Digital Rock Analysis (DRA), 
is becoming a common practice in the above-mentioned industrial applications1–3. However, in order to do any 
computation, the images need to be segmented into their constituent phases. Image segmentation is the process 
of labeling voxels into classes, which can be later used for the characterization of physical properties. Several 
segmentation techniques were developed in the past4. Due to the nature of the problem these tools include pro-
cesses such as thresholding and clustering. However, these methods require a large degree of manual interaction 
and quality control. Some of the conventional methods are global multi-Otsu thresholding5, Marker-controlled 
Watershed6, and converging active contours. In addition, these methods require the use of different types of filters 
to deal with noise and artifacts. The recent advances in deep-learning technologies based on neural networks have 
led to the emergence of high-performance automatic segmentation techniques, with the highest accuracy rates 
on popular benchmarks7. For 3D images, deep learning-based segmentation techniques using Convolutional 
Neural Networks (CNNs)8 have been successfully used in many fields such as autonomous driving9, point cloud 
analysis10, medical image analysis11,12.

Recently, several forms of multivariant classifiers using machine learning have been used to segment 2D 
micro-CT rock images13,14. These last methods require the user to define/paint some areas with the desired labels 
to train with and then perform a segmentation of the whole image. The high degree of abstraction of deep learn-
ing methods has proven to be very effective compared to other segmentation techniques. In DRA, deep learning 
based segmentation has been successfully used on 2D binary segmentation15 and multi-mineral segmentation16,17. 
These last two works have explored the use of different CNNs architectures, such as SegNet18, ResNet, UNet, 
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UResNet-3D, etc. These studies concluded that the more complex architecture U-ResNet-3D performed better 
for the majority of the cases in terms of accuracy and topological similarity properties. As reported in this last 
work, the authors used a single dataset (1100 × 1100 × 2200 voxels) for both training and testing. In this respect, 
due to the small difference in terms of image properties and gray-scale values within a single sample, it is expected 
that the more complex the network the higher probability of overfitting the problem. Additionally, as we have 
experienced, training and testing on the same image certainly lead to poor performance on untrained images 
and different types of rock.

Due to resolution limitations of current imaging technology (field of view vs. spatial resolution), a typical rock 
image contains a non-neglectful amount of sub-resolution porosity, i.e. the pores of these regions are below the 
image resolution. Therefore, a three-phase segmentation is necessary to account for the effect of these areas on 
flow properties19–21. In this work, unresolved porosity regions are also referred to as micro-phase.

The main goal of this work is to study the possibility of using a CNN model to perform automatic three-phase 
segmentation of real 3D Xray micro-CT images. This means: 

1.	 No need for human intervention in the segmentation process.
2.	 Perform well with different rock types.
3.	 No filtering. Handling typical noises and artifacts, such as Gaussian noise, beam-hardening, ring artifacts.
4.	 Perform well with untrained data.
5.	 Preserve connectivity and continuity of the different regions (3D information).

Materials and methods
In this work we have developed a new segmentation tool, using deep-learning, which specializes in three-phase 
segmentation. This tool and other AI tools for Digital Rocks are available under the SmartRocks project (smart-
rocks.com).

Model architecture.  The Neural Network architecture used in this work is inspired by the architecture used 
by many top teams in the TGS Salt Identification Challenge on Kaggle22,23. It is based on an improved version 
of the popular U-net architecture12 with SE-ResNeXt-50 encoder24 initialized with pre-trained parameters. A 
general view of all the components in this architecture is presented in Fig. 1. We used 2D convolutional blocks, 
that takes a stack of consecutive slices where each slice is treated as an input channel. In this way, using a 2D 
convolution allows us to decrease the computational cost and redirect the resources to train a more complex and 
deeper architecture. Moreover, we maximize the field of view on the X–Y plane (i.e. rotation plane), which is 
beneficial to deal with global noises and artifacts (e.g. ring artifacts, beam hardening) due to the nature of image 
acquisition. It also means that we can use pre-trained blocks trained with large datasets, such as the ImageNet 
dataset25. The common challenge of using 2D convolutional based network to segment 3D images is to preserve 
the depth information/connectivity of the orthogonal direction (Z direction in our case). To segment a 3D 
image, our model iterates over every slice of the image and takes a stack of slices containing the center slice and 
7 slices in each direction, where 3 of them are consecutive and 4 are skip slices. Finally, our model produces a 
probability map for each phase, which is build as an average of 2D probability maps for each layer. The final seg-
mentation is generated by selecting the phase with the highest probability for each voxel. To improve the model’s 

Figure 1.   Architecture of the convolutional neural network model developed in this work. The model is based 
on an encoder-decoder architecture which takes a 3D image as input and split it in 2D slices (channels). In each 
iteration, the model takes 15 channels from 7 consecutive center layers and 8 skip layers as input. The model 
produces a 3D block of 7 consecutive channels as output.
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ability to interpret spatial information (cross-channel), we used a scSE block (Concurrent Spatial and Channel 
Squeeze and Excitation)26 as our decoder. In order to improve the output connectivity, a deep supervision block 
i.e., convolution + up-sample layers are added at the end of each decoder block to implement the hyper-column 
technique27. Another important part of our architecture is a global, center block made of a 1 × 1 convolutional 
block, which has a similar function to a dense block with fully connected layers. The goal of this intermediate 
global block is to give the network the capacity of a global classifier, to handle information such as rock type and 
non-local artifacts.

Training dataset.  Our training dataset consists of 10 3D Xray micro-CT images of different rock types. The 
properties of the images are listed in Table 1. These images were acquired using different procedures: scanners 
(e.g. Xradia, Heliscan), filters, exposure times, cleaning/cropping, reconstruction algorithms, etc. The main idea 
of using a diverse training dataset is to give our model the ability to generalize as much as possible. The ground 
truth segmentation for each of these images was obtained using different open and commercial software pack-
ages for filtering and segmenting (Avizo, Pergeos, ImageJ, Mango). In this way, we compensate for any systematic 
error in the acquisition, filtering, and segmentation procedures for our training data. All the selected images 
have low noise level and high-quality, which makes the segmentation step relatively easy. We have experienced 
that using segmentations from noisy images deteriorates the network’s ability to generalize and produces good 
results on untrained datasets. For the Reservoir carbonates and Savonnieres samples, the utilized segmented 
images were obtained from dry/wet based porosity maps28,29, which allow us to have a proper estimation of open 
and micro-phase porosities.

In addition, we have used a high degree of data augmentation to improve the robustness and generalization 
capabilities of the model. Besides the typical data augmentation techniques like rotating, random cropping, add-
ing Gaussian noise and/or Salt and Pepper noise, we have also used more domain-specific noise in our training 
pipelines to match the real problems such as ring artifacts, stripe artifacts, intensity variations, and local blurring.

Validation workflow.  In order to evaluate the performance of our segmentation tool, we have used syn-
thetic generated data from known ground truth images. We followed an existing workflow32 for generating syn-
thetic gray-scale images using the Astra-toolbox33. Figure 2 shows the generation/validation workflow, where the 
ground truth segmented data get projected and reconstructed with filtered back projection in a parallel-beam 
geometry using a Ram-Lak filter. In addition, we can perform a proper noise sensitivity analysis since this work-
flow allows us to add different types of noise during the projection and reconstruction processes, reflecting the 
nature of noises/artifacts in real images. Figure 3 shows four examples of reconstructions from sinograms with 
different types of noise/artifacts.

Results
Comparison to traditional methods.  We have generated several synthetic gray-scale images from real 
segmented ground truth images by adding different types of noise in the generation process, as described in the 
previous section. Figure 4 shows an example of four synthetic reconstruction cases: (a) clean reconstruction 
without noise, (b) reconstruction with Gaussian noise pre-projection, (c) reconstruction with Gaussian noise 
post-projection, (d) reconstruction with ring artifacts. For these four cases, we compare the results from our 
method to conventional segmentation methods: multi-Otsu thresholding and Marker-controlled Watershed. In 
this figure we show the middle slice of the 3D segmented images. The calculated accuracy and geometrical prop-
erties for all these cases are presented in Table 2. For each phase we have measured the total voxel-wise accuracy, 
IOU (Intersection Over Union). We have also calculated the Euler number (or Euler characteristic), a topological 

Table 1.   Our training dataset consists of 10 high-resolution and low noise 3D Xray micro-CT images from 
different rock types. Pore and Micro are the volumetric fractions of resolved and unresolved porosity regions, 
respectively.

Rock type

Voxel size 
( X × Y × Z)

Resolution (µm) Pore (%) Micro (%)X Y Z

Res. sandstone 792 764 1180 8.56 25.29 3.56

Bentheimer sandstone 1024 1024 1024 1.94 22.98 3.93

Res. sandstone 2560 2560 2840 3.46 16.6 6.98

Res. sandstone 2300 2300 2400 3.46 16.65 5.16

Glass bead30 550 550 572 8.41 32.99 0

Res. carbonate 1500 1500 3000 17.09 22.32 67.96

Res. carbonate 1500 1500 3000 17.09 11.28 73.52

Estaillades carbonate31 1200 1200 1700 3.10 6.43 39.24

Massangis carbonate31 501 408 600 4.54 4.53 13.82

Savonniers carbonate20 610 610 610 5.90 10.60 74.29
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invariant that describes an object in a topological way regardless of the way it bent, and the connected components 
count, i.e the number of connected regions, using a 26-neighborhood connection algorithm34.

All methods are able to produce a correct segmentation on the noise-free case, Fig. 4a. However, it is inter-
esting noticing that our method already produced closer Euler and connected counts to the ground truth. The 
micro-phase region is more disconnected in the case of multi-Otsu and Watershed segmentation. In the next case, 
Fig. 4b (i.e. Gaussian noise pre-projection), the results show a significant loss in accuracy for Otsu (58.43%) and 
watershed (55.66%) methods. These methods are very sensitive to Gaussian noise since multi-Otsu is based on 
global thresholding and watershed is based on neighbor gray-scale values. On the other hand, our method has 
shown a minor reduction in terms of voxel-wise accuracy (98.75%) and IOU, mostly due to the blurred border 
between the different phases. In the third case, Fig. 4 (i.e. Gaussian noise post-projection), the results show a 
significant variation in the fraction of each phase for conventional methods, even for open porosity which was 
relatively stable in the previous case. Despite the significant increment in the level of noise, our model showed 
2% accuracy loss in terms of global accuracy, mostly due to the contrast reduction of interfaces, especially for 
micro-phase regions. This leads to a significant loss in IOU for the micro-phase, going down to 56%. However, 
as observed visually, this is a small error due to the small amount of micro-phase in the image (less than 1%). 
Finally in Fig. 4d, we show the last case (i.e. ring artefacts). The results are similar to the previous cases where 
multi-Otsu and watershed are really sensitive to the introduced noise performing very badly. As expected, the 
IOU of micro-phase for our method is lower than for the clean image (49.35%). As observer in this figure, the big 

Figure 2.   Synthetic image generation workflow using the Astra toolbox33. This workflow allows us to control 
the noise/artifacts level on the generated images.

Figure 3.   An illustration of different types of noise at the projection step (sinograms) and after the 
reconstruction step (micro-CT images). The ring artifacts appear as vertical stripes in the sinogram domain (d).
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local contrast of the gray values makes it harder to identify micro-phase regions. In general, these four cases are a 
good visual and qualitative description of how robust this type of methods is compared to conventional methods.

Noise sensitivity analysis.  In this section, we analyse the accuracy of our model to different types of 
synthetic noise and artifacts for four different rock samples: a bentheimer sandstone, a reservoir sandstone, an 
estaillades carbonate, and a middle eastern carbonate. In Fig. 5, we can see a synthetic reconstruction of each of 
these samples without noise. Additionally, we present pore, micro-phase and solid fractions in Table 3. For each 
rock image and each noise type we have generated around 50 synthetic new images with different noise levels. 
We have then processed all of them with our segmentation model and measured the accuracy respect to the 
ground truth. In the Figs. 6, 7 and 8 we show the Reservoir Sandstone gray-scale image and its corresponding 
segmentation at four different noise levels for Gaussian noise pre-projection, Gaussian noise post-projection, 
and ring artifact, correspondingly. As shown, in all the cases the model results do not break, even when the level 
of noise goes far beyond realistic noise levels, as shown in Fig. 7d. To the authors knowledge there is no segmen-
tation model or algorithm in the literature reporting this level of robustness to noise.

To quantify the level of noise introduced in each image we have used PSNR (Peak signal to noise ratio) meas-
ured in 8 bits. The PSNR between a reference image f and a test image g of size (X, Y, Z) is defined as:

Figure 4.   Comparison of segmentation results between Otsu, watershed and our method on four synthetic 
images corresponding to: (a) clean filtered back reconstruction, (b) reconstruction with noise pre-projection, (c) 
reconstruction with noise post-projection, and (d) reconstruction with ring artifacts.
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where

(1)PSNR(f , g) = 10 log10
(

2552/MSE(f , g)
)

,

(2)MSE(f , g) =
1

XYZ

X
∑

i=1

Y
∑

j=1

Z
∑

k=1

(

fijk − gijk
)2
,

Table 2.   Comparison of our model and traditional segmentation methods for several synthetic cases: (a) no 
noise, (b) pre-projection noise, (c) post-projection noise, and (d) ring artifacts. The closer the values to the 
ground truth the better. Bold values indicate the closest value to the ground truth in each category.

Method

Accuracy (%) IoU (%) Fraction (%) Euler number Connected components count

Voxel-wise Pore Micro Solid Pore Micro Solid Solid Solid+Micro Pore Micro Solid

Ground truth 100 100 100 100 21.17 0.98 77.85 − 1688 − 251 1172 1384 362

Segmentation on clean reconstruction (Fig. 4a)

Multi-Otsu 98.51 99.76 39.52 98.15 21.13 2.45 76.42 − 1348 − 803 1066 44,408 440

Watershed 98.46 96.09 39.14 98.96 20.45 2.28 77.27 − 4066 − 3618 192 54,787 44

Our method 99.57 98.19 87.09 99.56 21.26 0.94 77.80 − 1383 − 332 1138 2533 420

Segmentation on reconstruction with pre-projection noise (Fig. 4b)

Multi-Otsu 58.43 81.25 1.50 50.44 20.11 40.52 39.37 − 5,616,936 1,197,309 998090 204,586 25,750

Watershed 55.66 94.75 1.34 44.02 21.47 44.09 34.44 − 662,465 1487 4861 2768 2585

Our method 98.75 95.26 66.95 98.65 21.87 0.90 77.23 − 1189 − 546 714 6835 114

Segmentation on reconstruction with post-projection noise (Fig. 4c)

Multi-Otsu 35.29 26.09 0.99 31.00 30.27 42.07 27.66 − 10,789,612 5,208,879 63,995 36 204,920

Watershed 87.26 54.68 0.0 85.40 19.88 0.00 80.12 34,406 34,406 145,382 0 2030

Our method 97.66 90.56 56.56 97.38 22.22 0.72 77.06 − 914 4421 2176 693 21

Segmentation on reconstruction with ring artifact (Fig. 4d)

Multi-Otsu 57.010 92.10 1.43 46.04 21.67 42.45 35.88 − 28,630 2336 4168 16,944 48,242

Watershed 83.89 89.53 0.010 80.16 22.04 13.16 64.78 − 16,228 − 2113 692 13,616 2213

Our method 98.23 93.31 49.35 98.22 22.54 0.92 76.54 − 1068 2458 1569 5038 231

Figure 5.   The four clean reconstructed synthetic images used for the noise sensitivity analysis.

Table 3.   Fraction distribution for the different rock images used in the noise sensitivty analysis.

Rock type

Fraction (%) Specific surface area

Pore Micro Solid Pore Micro Solid

Bentheimer sandstone 21.69 1.01 77.30 0.284 0.770 0.078

Reservoir sandstone 18.21 9.71 72.08 0.433 0.927 0.165

Estaillades carbonate 5.40 42.22 52.38 0.836 0.552 0.276

Middle Eastern carbonate 12.99 23.07 63.94 0.438 0.599 0.166
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so PSNR is an inverse logarithmic scale measured in decibels. The accuracy (IOU) vs. noise level (PSNR) curves 
for all these cases are shown in Fig. 9. As expected, the accuracy of the segmentation decreases monotonically for 
increasing levels of noise (lower PSNR). For the sandstone cases, with well-defined grains and pores, we observed 
that micro-phase is the most sensitive to noise and artifacts, while the accuracy of solid and pore are relatively 
stable even for extreme noise cases. So as expected, the larger the specific surface of a phase the more sensitive to 
noise this phase is. Accordingly, for the synthetic carbonate cases, without well-defined grains, the results show 

Figure 6.   Segmentation results for the reservoir sandstone on synthetic images generated with Gaussian noise 
pre-projection.

Figure 7.   Segmentation results for the Reservoir sandstone on synthetic images generated with Gaussian noise 
post-projection.
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a slightly lower accuracy for pore than micro-phase regions. We observed that in these cases, the pores regions 
are more sensitive to noise than micro-phase regions. In general, for all types of noise we observe three different 
behaviours: no-influence, correlated-noise and model-breakage. For example, for Gaussian noise pre-projection, 
the inflection point between no-influence occurs at around PSNR = 35 dB and the model-breakage starts at 
around PSNR = 8 dB. In the first region it is hard to visually perceive any difference between segmented image 
and ground truth. In the second region, correlated-noise, we observe differences mainly located at the interfaces, 
starting from single voxels and small clusters. In the third region, model-breakage, one of the phases is affected 
significantly due to the added noise, most of the information defining the interfaces is missing. For this last 
region, small increases on the noise level produce significant accuracy loss. As observed in Fig. 7d,h, even for 
these extreme noise levels the solution maintains its coherence with the ground truth. When it comes to dealing 
with ring artifacts, Fig. 9c, it is important noticing that PSNR is less sensitive to these non-local artifacts. This 
means that for segmentations with similar IOUs, ring artifacts give a bigger visual effect than Gaussian noise. In 
these cases, as observed in Fig. 8, most of the error is concentrated at the center of the image where the informa-
tion of local structure is completely missed.

In general terms, these results show that when trained appropriately this type of methods are extremely robust 
dealing with different types of noise and artifacts. In the next sections, we test these capabilities by evaluating the 
model for several types of real rock images and by comparing its behaviour to state-of-the-art human-assisted 
segmented images.

Results on real images.  Comparison to human‑assisted segmentation.  Due to the difficulty of defining an 
objective ground truth for real images, in this section we have directed our focus on comparing the performance 
of our model with respect to several human-assisted segmentations using traditional processing workflows. In 
addition, we investigate the variation of human-assisted segmentations and evaluate its effect on derived proper-
ties. We have used two images corresponding to Bentheimer and Berea sandstones. These images are challenging 
due to local variations in the gray-scale values. However, these images are representative of the general type and 
level of noises found in micro-CT imaging. We have provided the raw images (as produced by the scanners) 
to 5 different expert users. Each user chose the tools and workflows they considered more relevant to solve the 
assigned task. All the users have performed some filtering steps before segmenting the images. They have used 
conventional filters such as anisotropic diffusion35, beam hardening correction, median filter36, non-local means 
filter37 and ring artifacts removal; and segmentation methods such as multi-thresholding and marker-based wa-
tershed. They used implementations from open source and commercial packages such as: Avizo (TFS), Pergeos 
(TFS), ImageJ (open) and Mango (ANU).

Figure 10 shows the middle slice of the Bentheimer image and the corresponding segmentations from our 
model and the five users. In general terms, the two more severe problems in dealing with this image are the 
typical micro-CT stripes in Z direction (local gray-scale variations) and the high-density mineral artifacts. As 
observed, all the human-assisted segmentations seem to be very sensitive to these types of noise. This is reflected 
in a non-neglectful over-estimation of the micro-phase regions, which evidently due to the stochastic nature of 

Figure 8.   Segmentation results for the reservoir sandstone on synthetic images generated with ring artifacts.
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the noise, it is not uniform for the different users. The segmentations corresponding to users 2 and 4 are clear 
examples of this problem. In addition, user 3 seems to have over-segmented the micro-phase in the interfaces 
between solid and pore. Figure 11 shows a detailed region of this image that has been heavily affected by high-
density mineral artifact (local beam hardening). In this particular case, all the human-assisted segmentations 
reflect the second main problem, mentioned above. For all of the human-assisted segmentation cases we observe 
a significant over-estimation of the micro-phase around the high-density mineral regions due to a sharp shift in 
local brightness. In contrast, the segmentation of the model seems to handle these types of noise very well, even 
if not trained with this type of specific noise.

Figure 12 shows a slide of the gray-scale Berea image and the corresponding segmentation images. In terms 
of quality, this image has less noise and no significant artifact compared to the Bentheimer case. Figure 13 
shows a more detailed crop where we can see a non-neglectful variation in the micro-phase volume for each 

(a) Pre-projection with Gaussian noise

(b) Post-projection with Gaussian noise

(c) Ring Artifact

Figure 9.   Segmentation sensitivity to different levels of Gaussian noise and ring artifact for four different rocks.
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segmentation. In Table 4, we summarized the measured and calculated properties on these segmented images 
for each of the users and our model. The calculated properties (i.e. permeability, formation factor and tortuosity) 
are calculated using a pore network model technique2,38. As we can see, the differences in the segmentations are 
reflected in all the properties. A significant variation of the results between the users is observed, most notably 
for the micro-porosity fraction and permeability, which is a common problem when working with real images 
as reported in the past39.

In the case of the Bentheimer sandstone, our method produced less micro-phase volume compared to the 
users, which is mainly due to its robustness to noise and artifacts as mentioned above. Our segmentation also 
has larger permeability compared to the users. This can be due to the larger open-pores (less micro-porosity) 
but also by the stripes of noise observed for most of the users, spanning the XY plane of the image. In this case, 
the users micro-phase volume covers a range of 3.51%. For Berea, the results from the users do not show a clear 

Figure 10.   Comparison of segmentation results on a vertical full-size crop of the Bentheimer image. A 
significant level of noise in the form of stripes that span the width of the image, together with beam hardening 
can be seen in the bottom of the gray-image crop.

Figure 11.   Comparison of segmentation results on a small crop of the Bentheimer image that was heavily 
affected by beam hardening.
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trend as previously (over-segmenting micro-phase). However, the variations of micro-phase volume are still quite 
significant ranging from 4.61 to 10.71%. Assuming a micro-phase volume as the users average, these variations 
translate to 75% variation for Bentheimer and a 86% variation for Berea (these numbers are worse assuming 
lower volumes). However, it is important to see that the model not only is more robust to noise but, additionally, 
it can help to reduce the human-usage variations since the model will perform equally independent of who is 
using it, since it does not require parameters tuning to do the segmentation work.

Comparison to experimental results.  In this section, we compare the results of our model to porosities 
measured experimentally. We used the dataset presented in Shah et al.40, where the authors provided micro-CT 
images at different resolutions for 10 sandstone and carbonate samples and the corresponding experimental 
porosity, which was measured through the bulk volume by saturating the plugs with water. It is important to 
remark that these measurements were done on the whole cylindrical sample volume and the scanned region 
corresponds to a crop in the middle of the cylinder ( ∼ 50%). However, as these rocks are relatively homogene-

Figure 12.   Comparison of segmentation results on a vertical top-half crop of the Berea image where we can see 
a significant variation in the amount of micro-phase between the different users.

Figure 13.   Comparison of segmentation results on a vertical top-half crop of the Berea image where we can see 
a significant different in the distribution of segmented micro-phase, especially inside the grain regions.
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ous it is expected that porosity values are in the same range. We used the images with the highest resolution of 
around 4 µm. These images are all 575 cubic voxels. Figures 14 and 15 show the middle slice of each image and 
the corresponding segmentation by our model. Table 5 shows the measured experimental porosity and the open 
and micro-phase fractions from our segmentation. For the sandstone cases, assuming a 50% porosity for micro-
phase regions there is less than 1% difference compared to the experimental total porosity. For the carbonates, 
it is harder to assign a given porosity for the micro-phase since carbonates, in general, have a wider porosity 
distribution. For example, the Ketton segmentation, shown in Fig. 15f illustrates that most of the micro-phase 
regions have very close gray-scale value to the solid region and, thus, a lower porosity. Another clear example is 
the case of Middle Eastern 3 carbonate shown in Fig. 15g, where the micro-phase regions are covering the whole 
image (96%). In such cases, it would be necessary to use other types of imaging techniques, such as dry/wet 
based porosity map28,29, instead of a three-phase segmentation. For the rest of the carbonate cases, the segmenta-
tion performed by our model seems visually correct and the porosities are in the same range as the experiments.

Conclusion
We have developed a deep learning based three-phase segmentation model and trained it on multiple 3D micro-
CT rock images with a wide range of domain-specific augmentation steps. We then studied our model’s perfor-
mance on synthetic and real images in terms of accuracy and physical properties. Based on these results, it is 
clear that our segmentation model is capable of producing high-quality segmentations even when given noisy 
and low-quality input images. We have further validated our model’s performance with experimental results from 
other studies on multiple types of rocks. In addition, we compared the performance of our segmentation model 

Table 4.   Comparison of petrophysical properties between our method and human-assisted segmentations.

Type u1 u2 u3 u4 u5 Users mean ± std Our method

Bentheimer sandstone (1370 × 1370 × 1701)

Open porosity    (%) 21.66 19.48 19.77 21.89 20.93 20.74 ± 0.97 21.80

Micro porosity    (%) 4.45 6.89 5.14 4.92 3.38 4.96 ± 1.14 2.54

Permability 2260 1574 1069 2294 1918 1823 ± 459 2319

Formation factor 13.14 17.33 13.06 12.24 15.84 14.32 ± 1.93 12.50

Tortuosity (min) 3.39 3.54 3.43 3.41 3.62 3.48 ± 0.09 3.30

Berea sandstone (1000 × 1000 × 2399)

Open porosity   (%) 17.73 17.29 18.25 18.89 15.00 17.43 ± 1.33 18.49

Micro porosity    (%) 5.48 10.71 4.61 4.67 9.85 7.06 ± 2.66 5.25

Permability 712 643 746 841 394 667 ± 150 795

Formation factor 23.17 23.48 20.66 18.90 34.41 24.12 ± 5.41 18.82

Tortuosity (min) 3.58 3.55 3.47 3.44 3.57 3.52 ± 0.05 3.57

Figure 14.   A full-size middle cut of 5 sandstone images and their corresponding three-phase segmentation by 
our model.
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to five different expert users. The segmentation results strongly indicated that the model is better at dealing with 
typical image noises compared to the expert users.

As a summary, the presented results demonstrate the potential capacity of a fully automated segmentation 
workflow, which would lead to a significant improvement on the image processing step compared to current 
processing workflows. It is worth mentioning that even if this study focuses on three-phase segmentation, it 
is relatively simple to extend the number of phases handled by the tool, given the availability of the necessary 
training data.
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