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Abstract

Background: Receptor activator of nuclear factor kappa-B (RANK)-signaling is involved in tumor growth and spread
in experimental models. Binding of RANK ligand (RANKL) to RANK activates signaling, which is inhibited by
osteoprotegerin (OPG). We have previously shown that circulating soluble RANKL (sRANKL) and OPG are associated
with breast cancer risk. Here we extend these findings to provide the first data on pre-diagnosis concentrations of
sRANKL and OPG and risk of breast cancer-specific and overall mortality after a breast cancer diagnosis.

Methods: Two thousand six pre- and postmenopausal women with incident invasive breast cancer (1620 (81%)
with ER+ disease) participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort
were followed-up for mortality. Pre-diagnosis concentrations of sRANKL and OPG were quantified in baseline serum
samples using an enzyme-linked immunosorbent assay and electrochemiluminescent assay, respectively. Hazard
ratios (HRs) and 95% confidence intervals (Cls) for breast cancer-specific and overall mortality were calculated using
Cox proportional hazards regression models.

Results: Especially in women with ER+ disease, higher circulating OPG concentrations were associated with higher
risk of breast cancer-specific (quintile 5 vs 1 HR 1.77 [Cl 1.03, 3.04]; pyeng 0.10) and overall mortality (g5 vs 1 HR 1.39
[Cl 0.94, 2.05]; pyend 0.02). SRANKL and the sRANKL/OPG ratio were not associated with mortality following a breast
cancer diagnosis.

Conclusions: High pre-diagnosis endogenous concentrations of OPG, the decoy receptor for RANKL, were associated
with increased risk of death after a breast cancer diagnosis, especially in those with ER+ disease. These results need to
be confirmed in well-characterized patient cohorts.

Keywords: Breast cancer, Reproductive, hormonal, and related factors, Epidemiology, Serum biomarkers of
endogenous exposures
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Background

The RANK-axis consists of three tumor necrosis super-
family (TNF) members; receptor activator of nuclear fac-
tor kappa-B (RANK), its ligand (RANKL), and
osteoprotegerin (OPG). Binding of RANKL to RANK
promotes cell proliferation and, in experimental models,
promotes primary mammary tumorigenesis and mam-
mary stem cell expansion [1-4]. RANK-signaling is a
mediator of progesterone-signaling and overexpression
of RANK in mouse-mammary-tumor-virus models of
hormone responsive breast cancer shows increased rates
of hyperplasia and tumor development [1, 5]. OPG is
the decoy receptor for RANKL and can downregulate
RANK-signaling. OPG additionally serves as a decoy re-
ceptor for TNF related apoptosis inducing ligand
(TRAIL) and may downregulate TRAIL-signaling, a
process promoting cell death, especially in estrogen re-
ceptor (ER) negative breast cancer cells [6].

There has been increasing interest in the RANK-axis
with respect to breast cancer risk and prognosis given
the availability of a RANKL inhibitor, denosumab, which
has been shown to reduce skeletal-related events in
breast cancer patients with bone metastases [7] and may
improve disease-free survival in postmenopausal breast
cancer patients with ER and progesterone receptor (PR)
positive disease [8]. We and others have recently shown
that both sRANKL (soluble homotrimeric isoform of
RANKL) and OPG concentrations in circulation may in-
fluence risk of breast cancer in humans [9-13]. Follow-
ing our earlier investigations on pre-diagnosis sSRANKL
and OPG and breast cancer risk, the aim of this study
was to investigate associations between pre-diagnosis
concentrations of SRANKL and OPG and risk of death
after a breast cancer diagnosis. Given the results re-
ported to date, we hypothesized (1) higher sSRANKL and
lower OPG would be associated with higher risk of
breast cancer-associated death among women with ER+
breast cancer; and, (2) a positive association between
OPG and risk of breast cancer-associated death among
women with ER- disease.

This study provides the first data on circulating
RANK-axis members and breast cancer-specific mortal-
ity risk and the first data on differences in mortality risk
by tumor hormone receptor status.

Methods

Study population: European Prospective Investigation
into Cancer and Nutrition

The European Prospective Investigation into Cancer and
Nutrition (EPIC) recruited more than 520,000 partici-
pants (367,993 women), aged predominantly 35-75 years,
between 1992 and 2000 in ten European countries
(Denmark, France, Germany, Greece, Italy, the Netherlands,
Norway, Sweden, Spain, and the United Kingdom). Detailed
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dietary, reproductive, lifestyle, anthropometric, and medical
history data were collected using standardized methods [14].
Incident cancer cases were identified through cancer regis-
tries in most countries; France, Germany, Greece, and the
Naples (Italy) center conducted follow-up through review of
health insurance records, contact with cancer and pathology
registries, and/or direct contact with cohort members. Mor-
tality data were obtained via active follow-up with partici-
pants and their next of kin in Germany and Greece, and via
national and regional mortality registries in the remaining
countries [16].

Blood sample collection
A total of 64% (n =235,607) of women provided a blood
sample at baseline. Blood samples were collected accord-
ing to standardized protocols. As independent studies
on breast cancer were conducted by the Swedish centers,
participants from these centers were not included in the
current study. For all countries included in this study,
except Denmark, half of the aliquots were stored locally
and the other half centrally at the International Agency
for Research on Cancer (IARC). The samples used in
this study were stored at IARC under liquid nitrogen at
- 196 °C, or locally at — 150 °C for Danish participants.
The EPIC study protocol was approved by ethical
committees of all participating centers and all partici-
pants gave written informed consent. The protocol for
the current study was approved by the ethical commit-
tees of the International Agency for Research on Cancer
(IARC; project no. 12—42) and the University of Heidel-
berg (project no. S311/2014).

Study design

The breast cancer cases in this study were part of a
case-control study nested within the EPIC cohort. The
study design and methods have been described previ-
ously [9, 12, 15]. Briefly, women diagnosed with a first
invasive breast cancer between blood collection (ranging
from 1992 to 2000 between centers) and completion of
last follow-up for breast cancer incidence at the time the
case-control study was initiated (ranging from 2003 to
2006 between centers) were included (Fig. 1a). The ma-
jority of EPIC participants were followed-up for breast
cancer incidence and subsequent mortality via national
or regional registries [16], and available information on
tumor characteristics (e.g., hormone receptor subtype
and stage at diagnosis) was collected where available.
End of follow-up for mortality was defined as date of last
complete follow-up for vital status, death, or emigration,
and ranged from 2009 to 2015 between centers.

All cases with available serum sample and information
on ER status of the tumor were eligible for the nested
case-control study (Fig. 1b). From 2004, all postmeno-
pausal ER- breast cancer cases were included, with one
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case for each ER- case selected.

2020 breast cancer cases

EPIC diagnosis End of follow-up
1992-2000 baseline-2006 diagnosis-2015
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T T T T T T T T T .
A A A A
Questionnaires Tumo_r 4 Cause of
Blood collection characteristics death
B Selection criteria
1. =2004: all cases with available information on ER status at diagnosis. and

2004-2006: all postmenopausal ER- cases. plus one postmenopausal ER+

2. Available baseline serum sample.

v

Follow-up for mortality

Missing vital status: 6 cases
Missing end date of follow-up: 1 case

2013 breast cancer cases

Y

Y

sRANKI, measurement
Missing concentrations: 5 cases
Equipment failure: 38 cases (2 batches)

1970 breast cancer cases

OPG measurement
Missing concentrations: 4 cases
Outlying OPG concentrations: 3 cases

2006 breast cancer cases

Fig. 1 Study design and data collection. a Data were collected at three timepoints. Baseline blood samples were collected between 1992 and
2000. Breast cancer cases were diagnosed between baseline and initiation of the case-control study in 2006, and tumor characteristics at the time
of breast cancer diagnosis were collected. Participants were followed-up for mortality from the time of breast cancer diagnosis to 2015. b 2020
breast cancer cases were initially selected for the case-control study. Of these, 1970 cases had complete information on sSRANKL concentrations
and follow-up for mortality, and 2006 had complete information on OPG concentrations and follow-up

ER+ case randomly selected for every ER- case (matched
on center). A total of 2020 breast cancer cases were ini-
tially available for the current analyses however, seven
had no follow-up information after their breast cancer
diagnosis and were excluded.

Laboratory analyses

Pre-diagnosis SRANKL and OPG concentrations were ana-
lyzed at the Laboratory of the Division of Cancer Epidemi-
ology at the German Cancer Research Center (DKFZ). Free
serum sSRANKL was quantified using an enzyme-linked im-
munosorbent assay (Biomedica, Austria), total serum OPG
using an electrochemiluminescence assay (MesoScale Diag-
nostics, USA). All batches included the same serum quality
control samples in duplicate to monitor inter-batch vari-
ation. Measurements and standard curves were done on a
Victor system using Workout 2.5 software (Perkin Elmer)
for SRANKL. The Quickplex SQ 120 Reader and Work-
bench 4.0.12 software (MesoScale Diagnostics) were used
to measure OPG and create standard curves.

Of the 2013 breast cancer cases with complete follow-up
data, four were missing OPG and 44 were missing SRANKL
concentrations (38 cases, equipment failure and insufficient
volume to re-assay; Fig. 1b). 152 cases (7.5%) with sSRANKL
values below the lower limit of detection (LLOD,
0.01 pmol/L) were set to half of the LLOD.

Inter-batch coefficients of variation were 1.2% for
sRANKL and 16.6% for OPG. Intra-batch coefficients of
variation were 14.4% for sRANKL, and 15.3% for OPG.
Within-person reproducibility of sSRANKL and OPG over
one and 14 years observed in our study have been pub-
lished previously [9, 12], Spearman correlation coefficients
were r=0.85 and r=0.75 for OPG and r=0.60 and r=
0.38 for sSRANKL over one and 14 years, respectively.

Statistical analyses

Pre-diagnosis sRANKL and OPG concentrations were
log, transformed to normalize the distributions, and to
allow estimation of the effect of a doubling in concentra-
tions. The ratio was calculated by dividing sRANKL
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concentrations by OPG concentrations; the ratio was
then log, transformed.

Outliers were evaluated using the extreme studentized
deviate test [17]; three participants with outlying OPG
concentrations (two with low, one with high OPG con-
centrations) were excluded from analyses (Fig. 1b). The
final study population included 2006 breast cancer cases
with OPG, 1970 with sSRANKL, and 1965 cases with both.

We used Cox proportional hazards regression to esti-
mate hazard ratios (HR) and 95% confidence intervals
(CI) for risk of breast cancer-specific and all-cause mor-
tality, using time since diagnosis as the time scale.
sRANKL, OPG, and the sSRANKL/OPG ratio were mod-
eled as quintiles; tests for trend were calculated using
continuous (log,) variables. The proportional hazards as-
sumption was assessed using Schoenfeld residuals [18].
Based on our previous work on breast cancer risk show-
ing significant heterogeneity by hormone receptor status
[9, 12], and the oversampling of ER- cases after 2004, we
decided a priori to evaluate associations for mortality
both overall and by ER status. Similarly, confounders
were selected a priori. Multivariable models were ad-
justed for body mass index (BMIL continuous), age at
blood collection (continuous), age group at menarche
(<12, 13 and missing (as very few cases were missing in-
formation), 14, >15 years), age group at menopause (pre-
menopausal, <48, 49-51, =52 years, missing), age group
at first full term pregnancy (nulliparous, < 25, >25 years
and missing), and breast cancer stage (localized,
non-localized (including regional, distant, and unspeci-
fied metastatic sites), missing). Models were stratified by
age at diagnosis (5-year age groups) and tumor ER status
(negative or positive, in models among the whole popu-
lation), as these variables violated the proportional haz-
ards assumption. Additional adjustment for use of oral
contraceptives or postmenopausal hormones at blood
collection did not impact results (log2 HR <10%
change). Pre-diagnosis concentrations of sRANKL and
OPG were weakly inversely correlated, with Spearman
correlations of r = —0.25 in premenopausal and r = -0.32
in postmenopausal women.

Non-parametric restricted cubic splines were used to
examine possible non-linearity, comparing models with
linear and cubic terms to models with only the linear
term [19]. There was no evidence of significant deviation
from linearity (p> 0.11). We evaluated interaction be-
tween pre-diagnosis SRANKL and OPG concentrations
and reproductive and lifestyle factors by comparing
models with an interaction term to models without,
using likelihood ratio tests. We observed significant
interaction between OPG and BMI (p<0.04 in the
whole population and in ER+ cases), and thus investi-
gated associations between pre-diagnosis OPG and mor-
tality after a breast cancer diagnosis in stratified models
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(BMI </> 25 kg/m? i.e. non-overweight/overweight). We
observed no significant interaction for the remaining fac-
tors (p 2 0.05), including menopausal status at blood col-
lection, ages at blood collection, menarche, menopause,
and first full term pregnancy, and postmenopausal hor-
mone (PMH) use at blood collection. Similarly, there was
no heterogeneity in associations by breast cancer stage at
diagnosis (localized vs. non-localized). Information on
breast cancer treatment was not available, thus we were
not able to evaluate treatment-related factors as covariates
or effect modifiers.

In addition to the ratio of pre-diagnosis sSRANKL and
OPG concentrations we evaluated mutually adjusted
models (i.e. SRANKL models additionally adjusted for log,
OPG concentrations and vice versa) and a cross-
classification of pre-diagnosis SRANKL and OPG at the
median concentration (as OPG may inhibit SRANKL sig-
naling, those with sSRANKL concentrations < median and
OPG concentrations > median were chosen as the refer-
ence group). We further conducted a sensitivity analysis ex-
cluding those diagnosed within two years of blood
collection to address potential reverse causation.

All statistical tests were two-tailed and considered sig-
nificant at p <0.05. Statistical analyses were conducted
using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

Results

Population characteristics

Among 2006 breast cancer cases in whom OPG concen-
trations were available, the median age at blood collec-
tion was 56.6 (range: 26.7, 75.5) years; 1543 (76.9%) of
breast cancer cases were postmenopausal and of these,
48.8% were using PMH at blood collection (Table 1).
The majority (86%) of cases had at least one full term
pregnancy, with a median age at first full term preg-
nancy of 25 (16.0, 44.0) years. sSRANKL and OPG con-
centrations were measured in blood samples collected a
median of 4.7 (0.02, 11.7) years before breast cancer
diagnosis. The median age at diagnosis was 60.9 (35.2,
83.6) years and the majority of cases (n=1620, 80.8%)
were diagnosed with ER+ breast cancer. The median
time between diagnosis and end of follow-up was 10.9
(0.05, 19.1) years; the median survival time between
diagnosis and death was 6.5 (0.1, 18.5) years among
those who died of any cause and 5.0 (0.8, 15.2) years
among those who died of breast cancer. A total of 421
deaths, including 250 breast cancer deaths, occurred
over 21,253 person years of follow-up (Table 1). Com-
pared to those diagnosed with ER- breast cancer, those
diagnosed with ER+ disease where slightly older at blood
collection and diagnosis, more likely to also have PR+ dis-
ease, and had a longer survival time. Though sSRANKL
concentrations were available for a smaller population
than OPG concentrations (n =1970 cases for sSRANKL
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Table 1 Characteristics of the full study population and ER+ and ER- subgroups
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Full population

ER+ cases

ER- cases

na

Baseline characteristics, median (range), or n (%))
Age at blood collection, years
Age at menarche, years*
Menopausal status at blood collection
Premenopausal
Postmenopausal
PMH use at blood collection®
Age at menopause, years®”
Full term pregnancy, ever*
Age at first term pregnancy, years®
BMI, kg/m?
SRANKL concentrations (pmol/L)?
OPG concentrations (pmol/L)
SRANKL/OPG ratio ©
Breast cancer characteristics
Age at diagnosis, years
Time between blood collection and diagnosis, years
Progesterone receptor subtype at diagnosis*
PR+
PR-
Breast cancer stage at diagnosis*
Localized
Non-localized®
Deaths & follow-up
Number of deaths of any cause
Number of breast cancer deaths
Duration of follow-up, years®
Overall survival time, yearsf

Breast cancer-specific survival time, years?

2006

56.6 (26.7, 75.5)
13.0 (8.0, 20.0)

463 (23%)

1543 (77%)

753 (49%)

50.0 (27.0, 63.0)

1693 (86%)

25.0 (16.0, 44.0)

244 (13.8,49.1)
.11 (0.005, 1.67)

9.86 (2.96, 31.97)

0.01 (0.0002, 0.17)

60.9 (35.2, 83.6)

4.7 (0.02,11.7)

984 (67%)
494 (33%)

1089 (68%)
524 (32%)

421 (21.0%)
250 (12.5%)
10.9 (0.05, 19.1)
6.5 (0.08, 18.5)
50 (08, 15.2)

1620

56.8 (334, 75.5)
13.0 (80, 20.0)

352 (22%)

1268 (78%)

623 (49%)

50.0 (27.0, 63.0)

1356 (85%)

25.0 (16.0, 44.0)

245 (13.8,49.1)
.11 (0.005, 1.67)

9.95 (2.96, 31.97)

0.01 (0.0002, 0.17)

613 (37.1, 83.6)

48 (0.02,12.0)

926 (80%)
236 (20%)

877 (68%)
415 (32%)

310 (19%)

165 (10%)

11.0 (0.05, 19.1)
7.2 (0.14,185)
64 (0.7, 14.8)

386

549 (26.7, 72.1)
13.0 (9.0, 20.0)

111 (29%)

275 (71%)

130 (47%)

49.0 (30.0, 59.0)

337 (89%)

24.0 (16.0, 38.0)

240 (16.6, 45.4)
.11 (0.005, 0.58)

9.59 (3.14, 21.38)

0.01 (0.0002, 0.09)

59.1 (352, 80.6)
45 (0.04,11.5)

58 (18%)
258 (82%)

212 (66%)
109 (34%)

111 (29%)

85 (22%)

10.3 (0.08, 18.3)
4.1 (0.08, 15.2)
34 (008, 15.2)

2n = 1970 for SRANKL analyses and n = 1965 for sSRANKL/OPG ratio analyses, comparable distribution of baseline characteristics; ® Among postmenopausal women;

€ among women with at least one completed term pregnancy; ¢

non-localized breast cancer includes regional (n =401), distant (n = 15), and unspecified (n = 108)

metastatic sites; © time between diagnosis and end of follow-up; f Time between diagnosis and death, among those who died of any cause; ¢ Time between
diagnosis and death, among those who died of breast cancer. * Missing data: Age at menarche: 36 cases (1.8%); age at menopause: 477 cases (31%); ever FTP: 30
cases (1.5%); age at first FTP: 7 cases (0.4%); PR status: 528 cases (26%); breast cancer stage: 393 cases (19.6%)

and n=1965 for the sSRANKL/OPG ratio), population
characteristics were very similar (data not shown).

OPG concentrations

Higher pre-diagnosis OPG concentrations were associated
with an increased risk of breast cancer-specific mortality
among women with ER+ disease (quintile (q)5 vs. q1 HR
1.77 [CI 1.03, 3.04]; puena 0.10) (Table 2). Additional adjust-
ment for pre-diagnosis SRANKL concentrations strength-
ened this association (q5 vs q1 HR 2.02 [1.15, 3.54]; Pgend
0.07). For all-cause mortality, higher pre-diagnosis concen-
trations of OPG were associated with a suggestive increased

risk of mortality in all cases (q5 vs. q1 HR 1.25 [CI 0.90,
1.73]; pwend 0.02) and in ER+ cases (g5 vs. q1 HR 1.39 [CI
0.94, 2.05); prena 0.02). Though the p-value for linear trend
was attenuated, additional adjustment for pre-diagnosis
sRANKL concentrations did not substantially impact risk esti-
mates (Table 2). We did not observe heterogeneity by ER sta-
tus at diagnosis (ppe; 0.58); however, OPG was not associated
with mortality risk in those diagnosed with ER- breast cancer.

Stratifying by BMI at blood collection (pj, <0.04 in
models for OPG among all cases and ER+ cases) showed
that pre-diagnosis OPG concentrations were not associ-
ated with risk of death after a breast cancer diagnosis in
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Table 2 Circulating concentrations of OPG and risk of death following a breast cancer diagnosis, by ER subtype
Cut points (pmol/L) Quintiles Prrend” HRiog2 phetb
1 2 3 5
<780 7.80-9.18 9.18-10.54 10.54-12.38 > 12.38
Breast cancer-specific death
All breast cancer cases
Died/total 51/402 48/401 44/401 55/401 52/401 250/2006
HR (95% Cl) Ref. 1.04 (0.70, 1.57) 0.96 (0.63, 1.48) 1.33 (0.88, 2.00) 1.37 (0.90, 2.09) 0.13 1.30 (0.93, 1.80) 0.58

SRANKL adjusted Ref.
HR (95% CI)°

1.08 (0.72, 1.63) 1.02 (066, 1.57)

ER+ breast cancer cases
Died/total 31/318
HR (95% Cl) Ref.

SRANKL adjusted Ref.
HR (95% CI)°

35/321
1.34 (0.81, 2.20)
144 (0.87, 2.39)

27/322
1.08 (0.62, 1.85)
1.17 (067, 2.03)

ER- breast cancer cases
Died/total 20/84
HR (95% Cl) Ref.

SRANKL adjusted Ref.
HR (95% CI)

13/80
0.71 (0.34, 1.51)
0.70 (0.32, 1.52)

17/79
0.77 (0.38, 1.57)
0.80 (0.38, 1.68)

Death of any cause

All breast cancer cases

1.32 (0.86, 2.01)

35/328
147 (0.88, 2.46)
1.52 (0.89, 2.59)

20/73
1.27 (0.63, 2.54)
1.20 (0.58, 2.52)

145 (0.93, 2.27) 0.12 1.32 (093, 1.88) 0.55

37/331
1.77 (1.03, 3.04) 0.10
2.02 (1.15, 3.54) 0.07

165/1620
143 (0.94, 2.17)
1.52 (0.97, 2.36)

15/70
0.91 (044, 1.89) 0.60
0.86 (0.38, 1.93) 0.72

85/386
1.16 (0.68, 1.99)
1.12 (062, 2.02)

Alive/ total 77/402
HR (95% Cl) Ref.
SRANKL adjusted Ref.

71/401
0.88 (0.64, 1.23)
0.90 (0.65, 1.26)

71/401
0.83 (0.59, 1.17)
0.83 (0.59, 1.17)

93/401 109/401 421/2006
1.10 (0.80, 1.52) 1.25 (090, 1.73) 0.02 1.37 (1.05, 1.78) 0.66
1.04 (0.75, 1.45) 1.20 (0.85, 1.69) 0.07 1.29 (0.98, 1.70) 0.66

HR (95% CI)

ER+ breast cancer cases
Died/total 53/318
HR (95% Cl) Ref.

SRANKL adjusted Ref.
HR (95% CI)

54/321
1.00 (0.68, 1.48)
1.04 (0.70, 1.54)

47/322
0.83 (0.55, 1.26)
0.85 (0.56, 1.29)

ER- breast cancer cases
Died/total 24/84
HR (95% ClI) Ref.

SRANKL adjusted Ref.
HR (95% CI)

17/80
0.70 (0.36, 1.35)
0.68 (0.34, 1.35)

24/79
0.80 (043, 1.49)
0.74 (0.38, 1.42)

71/328
1.20 (0.82, 1.75)
1.17 (0.79, 1.72)

22/73
1.02 (0.54, 1.93)
0.90 (046, 1.75)

84/330
1.39 (0.94, 2.05) 0.02
1.38 (0.92, 2.08) 0.05

310/1620
1.44 (1.06, 1.96)
1.39 (1.00, 1.92)

24/70
1.04 (0.55, 1.94) 0.34
0.86 (043, 1.32) 0.75

111/386
1.27 (0.78, 2.08)
1.09 (0.63, 1.89)

All models adjusted for breast cancer stage (localized, non-localized, missing), BMI (kg/m?), age at blood collection (years), and age groups at menarche (<11, 12,
13 and missing, 14, >15 years), menopause (premenopausal <48, 49-51, >52 years, missing), and first full term pregnancy (nulliparous, < 25 years, >25 years and
missing); stratifying by age groups at diagnosis (5 year groups) and models in all cases by ER status of the tumor

®Prrend based on log2-transformed OPG concentrations; b Pheterogeneity COMparing model without to model with interaction term for OPG and ER status using log
likelihood ratio tests; © additionally adjusting for sSRANKL concentrations (42 observations missing sSRANKL concentrations; analyses include 245 breast cancer

deaths, 412 deaths of any cause)

those with a high BMI (> 25 kg/m?) at blood collection
(Additional file 1: Table S1). Among those with a lower
BMI (<25 kg/m?), high pre-diagnosis concentrations of
OPG were strongly associated with an increased risk of
both breast cancer-specific and all-cause mortality, espe-
cially among those with ER+ disease (e.g. breast cancer
mortality in ER+ cases g5 vs q1 HR 2.80 [1.30, 6.02];
Pwena 0.01, additionally adjusted for pre-diagnosis

sRANKL concentrations HR 3.19 [1.46, 6.97]; Piend
0.005).

SRANKL concentrations

Pre-diagnosis sSRANKL concentrations were not associ-
ated with breast cancer-specific or all-cause mortality
(e.g. breast cancer-specific mortality, in the full popula-
tion: q5 vs q1 HR 0.99 [0.66, 1.47]; piena 0.84; Table 3).
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Table 3 Circulating concentrations of sRANKL and risk of death following a breast cancer diagnosis, by ER subtype

Cut points Quintiles Prend” HRiog2 Pret’
(pmol/t) 1 2 3 5
<004 0.04-0.09 0.09-0.14 0.14-0.21 > 021
Breast cancer-specific death
All breast cancer cases
Died/total 54/421 46/443 49/374 41/363 56/369 246/1970
HR (95% Cl) Ref. 0.71 (047, 1.06) 0.98 (0.66, 1.45) 0.86 (0.57, 1.30) 0.99 (0.66, 1.47) 0.84 0.99 (092, 1.07) 0.31
OPG adjusted Ref. 0.76 (0.50, 1.14) 1.05 (0.70, 1.57) 0.94 (061, 1.44) 1.12 (0.74,1.71) 0.70 1.02 (094, 1.11) 043
HR (95% CI)°
ER+ breast cancer cases
Died/total 34/337 32/360 29/300 28/297 39/298 162/1592
HR (95% Cl) Ref. 0.84 (0.51,1.37) 0.98 (0.59, 1.63) 091 (0.54, 1.51) 1.08 (0.66, 1.77) 0.81 1.01 (092, 1.12)
OPG adjusted Ref. 0.87 (0.53, 1.43) 1.05 (0.63, 1.74) 1.01 (060, 1.71) 1.24 (0.74, 2.08) 046 1.04 (0.94, 1.15)
HR (95% CI)
ER- breast cancer cases
Died/total 20/84 14/83 20/74 13/66 17/71 84/378

HR (95% Cli) Ref.

OPG adjusted Ref.
HR (95% CI)°

049 (0.23, 1.02)
0.53 (0.25, 1.14)

1.05 (0.54, 2.05)
1.14 (0.56, 2.29)

Death of any cause

All breast cancer cases

Died/total 103/421 91/443 73/374
HR (95% Cl) Ref. 0.80 (0.60, 1.07) 0.79 (0.58, 1.08)
OPG adjusted Ref. 0.84 (063, 1.13) 0.85 (062, 1.16)
HR (95% CI)

ER+ breast cancer cases
Died/total 75/337 69/360 50/300
HR (95% Cl) Ref. 0.85 (061, 1.18) 0.76 (0.53, 1.10)

OPG adjusted Ref.
HR (95% CI)°

0.87 (062, 1.22) 0.80 (0.55, 1.16)

ER- breast cancer cases

Died/total 28/84 22/83 23/74
HR (95% Cl) Ref. 062 (0.34, 1.15) 091 (0.50, 1.64)
OPG adjusted Ref. 0.69 (0.36, 1.30) 0.99 (0.53, 1.86)

HR (95% CI)

0.77 (0.37, 1.63)
0.84 (0.39, 1.83)

68/363
0.80 (0.58, 1.09)
0.87 (0.63, 1.20)

50/297
0.76 (0.53, 1.10)
0.84 (0.58, 1.22)

18/66
0.86 (045, 1.61)
0.94 (048, 1.82)

0.76 (0.37, 1.55) 0.55
0.85 (0.39, 1.86) 0.82

0.96 (0.84, 1.10)
0.98 (0.84, 1.15)

79/369
0.93 (0.68, 1.27) 0.10
1.04 (0.75, 1.45) 0.34

414/1970
0.95 (0.90, 1.01) 0.20
0.97 (091, 1.03) 0.31

61/298
1.00 (0.70, 1.44) 0.31
1.13 (0.78, 1.66) 0.66

305/1592
0.97 (0.90, 1.03)
0.98 (0.92, 1.06)

18/71
0.67 (0.35,1.27) 0.1
0.76 (0.37, 1.53) 0.24

109/378
091 (0.81, 1.02)
0.92 (0.81, 1.06)

All models adjusted for breast cancer stage (localized, non-localized, missing), BMI (kg/m?), age at blood collection (years), and age groups at menarche (<11, 12,
13 and missing, 14, >15 years), menopause (premenopausal <48, 49-51, >52 years, missing), and first full term pregnancy (nulliparous, < 25 years, >25 years and
missing); stratifying by age groups at diagnosis (5 year groups) and models in all cases by ER status of the tumor

®Prrend based on log2-transformed sRANKL concentrations; b Pheterogeneity COMparing model without to model with interaction term for sSRANKL and ER status using
log likelihood ratio tests; © additionally adjusting for OPG concentrations (five observations missing OPG concentrations; analyses include 245 breast cancer

deaths, 412 deaths of any cause)

Results were unchanged by additional adjustment for
pre-diagnosis OPG concentrations.

sRANKL/OPG ratio and cross-classification

A higher ratio between pre-diagnosis sRANKL and
OPG concentrations was not associated with breast
cancer-specific or overall mortality risk (Additional
file 1: Table S2). We observed no associations
between cross-classified pre-diagnosis sSRANKL/OPG

and breast cancer-specific mortality (Additional file 1:
Table S3). In line with results for OPG, all-cause
mortality risk was lower in ER+ cases with both
pre-diagnosis sRANKL and OPG values below the
median (HR 0.63 [CI 0.44, 0.92]), relative to those
with low sRANKL and high OPG concentrations.
Results for breast cancer-specific mortality were of
similar magnitude, though not significant (HR 0.69
[0.42-1.15]).
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Sensitivity analyses

Information on PR status was available for 1478 (74%) of
cases; stratification by both ER and PR status (i.e. ER +
PR+ and ER-PR-) did not materially affect results (data
not shown). Excluding those diagnosed with breast can-
cer within two years of blood collection did not impact
results for pre-diagnosis SRANKL or the pre-diagnosis
sRANKL/OPG ratio, but did attenuate associations be-
tween pre-diagnosis OPG concentrations and risk death
(e.g. ER+ cases: all-cause mortality q5 vs q1 HR 1.24
[0.79-1.93]; pPuena 0.13 and breast cancer-specific g5 vs
ql HR 1.64 [0.89-3.05]; pirena 0.23). There was no het-
erogeneity in associations by breast cancer stage at diag-
nosis (breast cancer-specific mortality ppe = 0.18;
all-cause mortality ppe; = 0.43), and we observed no het-
erogeneity in associations by menopausal status at blood
collection for SRANKL and sSRANKL/OPG (ppe; = 0.44).
For OPG, we observed no heterogeneity in associations
by menopausal status at blood collection for
breast-cancer specific mortality (Ppe >0.14), and sug-
gestive heterogeneity in models for all-cause mortality
(Pret = 0.05 in the full population). In analyses stratified
by menopausal status at blood collection associations be-
tween OPG and all-cause mortality among postmeno-
pausal women were similar to those in the full
population (e.g. q5 vs. q1 HR 1.35 [CI 0.93, 1.98]; piend
0.004). In the smaller group of women premenopausal at
blood collection (1n=75 deaths and 60 breast cancer
deaths), log2 OPG concentrations were not associated
with breast cancer risk.

Discussion

In this large-scale prospective study, high pre-diagnosis
concentrations of OPG were associated with an in-
creased risk of death after an ER+ breast cancer diagno-
sis, especially among women with BMI less than 25 kg/
m®  Pre-diagnosis sRANKL concentrations and the
sRANKL/OPG ratio were not associated with mortality
following a breast cancer diagnosis.

Experimental data in mouse models show RANKL
blockade using OPG-Fc reduced formation of breast
cancer metastases [20-22]. In studies in breast cancer
patients, most reported either no or an inverse associ-
ation between tumor RANKL or OPG expression and
risk of death [23-27], recurrence [23-25, 27, 28], and
metastasis [25, 29, 30], though this was not observed in
all studies [31]. Our observation of higher risk of mortal-
ity following a breast cancer diagnosis in women with
high circulating concentrations of OPG runs counter to
these findings on expression in breast cancer tissue.

Few prior studies have evaluated circulating concen-
trations of SRANKL, OPG, and prognosis-related factors
or mortality in breast cancer patients. Vik et al. evalu-
ated cancer risk and mortality in the Tromso study and
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found no association between serum OPG concentra-
tions measured a median of 13.5 years before diagnosis
and cancer-related mortality in women [11]. However,
there were too few cases to evaluate breast
cancer-specific mortality or associations by hormone re-
ceptor status (76 incident breast cancer and 7 breast
cancer deaths). Mountzios et al. found higher concentra-
tions of sRANKL and OPG, as well as a higher
sRANKL/OPG ratio, in 30 breast cancer patients with at
least one recently diagnosed osteolytic or osteoblastic
bone lesion compared to 22 healthy controls [32]. OPG
was additionally found to be higher in those with more
skeletal metastases (6—10 and > 10 lesions compared to
<6 lesions). In contrast, Mercatali et al. found lower
SRANKL and OPG concentrations in 54 breast cancer
patients who underwent surgery and had bone metasta-
ses compared to both 30 healthy controls and 49 breast
cancer patients who had ‘no evidence of disease’ after
surgery [33]. Yao et al. evaluated correlates of SRANKL
and OPG concentrations in 2401 breast cancer cases
with serum samples collected median 73 days following
breast cancer diagnosis. This study observed no associ-
ation between sRANKL, OPG, or the sSRANKL/OPG ra-
tio and ER, PR, and HER2 status, and somewhat higher
OPG concentrations among women diagnosed with
stage IV disease [34]. In the same study, both RANKL
and OPG were associated with age at diagnosis (i.e. time
at which blood was collected). This is in line with the
current study, where age at blood collection correlates
moderately with OPG (r=0.41) concentrations, though
only weakly with SRANKL concentrations (r = — 0.15). We
observed no difference in log-transformed sRANKL and
OPG concentrations, or the SRANKL/OPG ratio by ER
and/or PR status (negative vs positive; p>0.11) or by
breast cancer stage at diagnosis (localized vs
non-localized; p>0.23), nor did we observe any inter-
action by cancer stage at diagnosis in our Cox regression
models (localized vs non-localized (including regional, dis-
tant, and unspecified metastatic sites) breast cancer-specific
mortality ppe > 0.18; all-cause mortality ppe; = 0.43). In
a sensitivity analysis excluding 15 cases with distant
metastases, associations with mortality were somewhat
weakened.

The RANK-axis may be particularly relevant in BRCA
mutation carriers [35]. In the current study, we were un-
able to restrict our analyses to a high-risk population.
Information on BRCA mutation status was not available
and information on family history of breast cancer is
limited; 714 cases (40%) have any information available
and of these, only 87 (12%) have a positively family his-
tory. We observed a positive association between higher
pre-diagnosis OPG concentrations and breast cancer-
specific mortality among ER+ breast cancer patients.
Given a beneficial effect of the exogenous RANKL
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inhibitor denosumab for disease-free survival was previ-
ously shown [8], an inverse association was hypothesized
for OPG, as it is an endogenous RANKL inhibitor.
While this is challenging to reconcile, perhaps the most
plausible explanation is through TRAIL. In addition to
its role in blocking RANKL signaling, OPG inhibits
TRAIL signaling [6]. However, this effect has predomin-
antly been observed in experimental models of hormone
receptor/triple negative breast cancer [6, 36]. We were
unable to investigate OPG in triple negative breast can-
cer, as our study included insufficient numbers; 58 triple
negative breast cancer cases and 12 deaths (9 of breast
cancer). It merits noting that our study, as with most ep-
idemiologic studies, used tumor ER status from the ini-
tial primary tumor; updated tumor ER status from
recurrence or metastases was not available. Conversion
from receptor positive to negative disease from primary
tumor to recurrence [37] or distant metastases [38] has
been described. For example, among 312 cases with sys-
temic relapse, Lindstrom et al. reported 28.5% of cases
ER+ in the primary tumor converted to ER- disease at
relapse, whereas only 8.3% of patients converted from
ER- to ER+ disease [37]. Therefore, it is likely that a pro-
portion of the fatal ER+ cases in our study converted to
ER- disease during disease progression.

Our analyses showed significant interaction between
pre-diagnosis OPG and BMI, with an increased risk of
death among ER+ breast cancer cases with a normal or
underweight BMI at blood collection. We saw no appar-
ent association in those with an overweight or obese
baseline BMI. Experimental studies have shown that
both ER activation and 17beta-estradiol treatment may
downregulate OPG expression in the tumor [6]. It is
possible that estrogens produced by adipose tissue in
obese women [39] reduce OPG levels at the breast tissue
level. However, we noted no correlation between circu-
lating pre-diagnosis OPG and BMI in all cases (r=10.02)
or by menopausal status (r=<-0.03), nor a correlation
between OPG and estradiol in all cases (r=—-0.05) or by
menopausal status (r=<-0.06) in all cases. OPG con-
centrations did not differ by ever use of OCs in premen-
opausal women (pgi 0.95) or PMH use at blood
collection in postmenopausal women (pg; 0.86).

We measured pre-diagnosis concentrations of sSRANKL
and OPG a median of 4.7 years before diagnosis. We have
previously shown that OPG concentrations are reproducible
over one and 14 years (r=0.85 and r = 0.75 respectively) [9].
Reproducibility of sSRANKL was lower (r=0.60 and r=0.38
over one and 14-years, respectively) [12]. This indicates that
a single SRANKL measurement may not be representative of
longer-term exposure, and may lead to attenuation of risk es-
timates. Nevertheless, within-person stability of sSRANKL and
OPG concentrations in the current study is higher than that
of many sex steroid hormones. For example, in both pre-and
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postmenopausal women, within-person stability of estradiol,
estrone, progesterone, and prolactin, assessed using intra
-class correlations coefficients, have been reported to be
under 0.45 both over one year and twenty years [40—42]. Fur-
ther, the relatively high inter-batch CVs for OPG indicate
measurement error may have led to non-differential mis-
classification and attenuation of risk estimates.

Pre-diagnosis concentrations of OPG and sRANKL
may influence survival at a number of different stages in
the disease process—for example, impacting initiation of
a more vs. less aggressive tumor subtype and/or impact-
ing tumor progression and/or influencing survival
post-diagnosis (e.g. by interacting with treatment). It is
plausible that concentrations at diagnosis are a more in-
formative measure for breast cancer mortality. Literature
on circulating concentrations of RANKL and OPG be-
fore and after onset of breast cancer is limited. In one
study comparing serum samples taken before and after
breast cancer diagnosis in 19 women, sRANKL concen-
trations were lower and OPG concentrations were
higher after breast cancer diagnosis [10]. It would be of
interest to further investigate these differences in larger
studies that can account for e.g. tumor characteristics.
We have recently shown a positive association between
OPG concentrations and risk of ER- breast cancer (ter-
tile 3 vs. 1 RR=1.93 [95% CI 1.24-3.02]; Pirena = 0.03)
[9], whereas higher sSRANKL concentrations were associ-
ated with risk of ER+ disease (quintile 5 vs. 1 RR 1.28
[95%CI 1.01-1.63]; pgena 0.20) [12]. Results from our
current study indicate circulating concentrations of
OPG and sRANKL may impact cancer risk and mortality
differently, though further studies are required to more
fully understand the underlying mechanisms.

Conclusions

Higher pre-diagnosis endogenous concentrations of the
decoy receptor for RANKL, OPG, appear to increase risk
of death after a breast cancer diagnosis especially in
those diagnosed with ER+ disease. Further investigations
in well-defined patient cohorts are needed to confirm
these results, and to clarify whether circulating OPG
may be relevant for breast cancer prognosis.
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Additional file 1: Table S1. Circulating concentrations of OPG and risk
of death following a breast cancer diagnosis, by ER subtype and stratified
by BMI at blood collection. Table S2 The sRANKL/OPG ratio and risk of
death following a breast cancer diagnosis, by ER subtype. Table S3
SRANKL/OPG cross-classification and risk of death following a breast
cancer diagnosis, by ER subtype. (DOCX 43 kb)
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