
Genome analysis

Segway 2.0: Gaussian mixture models and

minibatch training

Rachel C. W. Chan1,2,†, Maxwell W. Libbrecht3,†,‡, Eric G. Roberts1,

Jeffrey A. Bilmes3,4, William Stafford Noble3,5

and Michael M. Hoffman1,6,7,*

1Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada, 2Engineering Physics Program, University of

British Columbia, Vancouver, BC V6T 1Z1, Canada, 3Department of Computer Science and Engineering,
4Department of Electrical Engineering, 5Department of Genome Sciences, University of Washington, Seattle, WA

98195, USA, 6Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada and
7Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada

*To whom correspondence should be addressed.
†The authors wish it to be known that these authors contributed equally.
‡Present address: School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Associate Editor: Inanc Birol

Received on June 14, 2017; revised on August 30, 2017; editorial decision on September 15, 2017; accepted on September 19, 2017

Abstract

Summary: Segway performs semi-automated genome annotation, discovering joint patterns

across multiple genomic signal datasets. We discuss a major new version of Segway and highlight

its ability to model data with substantially greater accuracy. Major enhancements in Segway 2.0 in-

clude the ability to model data with a mixture of Gaussians, enabling capture of arbitrarily complex

signal distributions, and minibatch training, leading to better learned parameters.

Availability and implementation: Segway and its source code are freely available for download at

http://segway.hoffmanlab.org. We have made available scripts (https://doi.org/10.5281/zenodo.

802939) and datasets (https://doi.org/10.5281/zenodo.802906) for this paper’s analysis.

Contact: michael.hoffman@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Segway identifies recurring combinatorial patterns in multiple genome-

wide signal datasets such as ChIP-seq or DNase-seq data (Hoffman

et al., 2012). Segway uses discovered patterns to assign a label to every

position in the genome, resulting in a semi-automated genome annota-

tion. It is commonly used to define chromatin state across the whole

genome by resources such as the ENCODE Project (ENCODE Project

Consortium, 2012) or the Ensembl Regulatory Build (Zerbino et al.,

2015). Using chromatin data, the labels might represent genomic fea-

tures such as ‘enhancer’ or ‘facultative heterochromatin’.

Since its initial publication, we have made many changes to

Segway. Release notes (https://bitbucket.org/hoffmanlab/segway/src/

default/NEWS) contain a complete list. Of the new features, we

expect the new standalone mode to interest the most users. This

mode removes the requirement for a cluster system such as Sun Grid

Engine, allowing one to run Segway easily on any Linux host. Also

of interest are new features which improve Segway’s ability to learn

more complex patterns with less configuration. Below we describe

these features and demonstrate the improvement they provide.

2 Results

2.1 Minibatch training
Segway uses the expectation-maximization (EM) algorithm to train its

statistical model. Segway previously allowed for training only on a fixed

region of the genome, such that each iteration of EM training uses the

same fixed region. Using minibatch learning, each EM training iteration

can now train on a different random region of the genome. For example,

VC The Author 2017. Published by Oxford University Press. 669

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(4), 2018, 669–671

doi: 10.1093/bioinformatics/btx603

Advance Access Publication Date: 22 September 2017

Applications Note

http://segway.hoffmanlab.org
https://doi.org/10.5281/zenodo.802939
https://doi.org/10.5281/zenodo.802939
https://doi.org/10.5281/zenodo.802906
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx603#supplementary-data
https://bitbucket.org/hoffmanlab/segway/src/default/NEWS
https://bitbucket.org/hoffmanlab/segway/src/default/NEWS
https://academic.oup.com/


using a minibatch fraction of 1%, each training iteration will now use a

different random 1% of the genome. This eliminates concerns of overfit-

ting to a fixed region, but since there is no longer any guarantee of con-

vergence, the final set of emission parameters is chosen by evaluating the

likelihood on a held-out validation set. In general, minibatch allows one

to sample the whole genome without having to use the whole genome as

the training set, which would be �100 times slower. Using a smaller

training region, however, does not affect RAM requirements. Segway

performs inference on chunks of a fixed size. Therefore, using a larger

training region amounts to simply using more chunks. Since the mini-

batch feature selects a different random region of the genome to train on

per iteration, there is also a very high variation in likelihood progression

between instances, though the overall likelihood progression is, however,

generally more positive than that for a fixed region.

To demonstrate, we trained Segway on ENCODE Project

Consortium (2012) GRCh38/hg38 ChIP-seq datasets for H3K4me1,

H3K4me3, H3K27ac, H3K27me3 and CTCF in the DOHH2 cell

line (Kluin-Nelemans et al., 1991) (Supplementary Table S1). We

did this using a single Gaussian model for a randomly selected fixed

region of size 1%, and using minibatch training with batch size 1%.

For each training round, we evaluated the posterior log likelihood of

its learned parameters on 1.5% of the genome, which we held out

from training in all cases. Minibatch resulted in a higher log likeli-

hood convergence on the validation set both on average and in the

final winning set of parameters (Fig. 1). The fixed case also suffered

from the validation set likelihood dropping from its initial peak due

to overfitting on the training set (Fig. 1).

2.2 Gaussian mixture models
Segway learns Gaussian distributions over signal values to represent

different patterns. Previously, Segway used a single-component

Gaussian to model the signal in each dataset given some label such

that there is one learned mean parameter for each track-label pair,

and one fixed variance for a given track. To enable more complex

signal distributions, we extended Segway’s model to allow for a

mixture model with k Gaussian components. Now, there are k mean

parameters for each track-label pair, and k variances for each track.

Using a mixture of Gaussians allows learning emission distributions

that can more accurately fit data distributed non-normally.

To demonstrate, we trained Segway on signal data for the histone

mark H3K27ac in the cell line DOHH2, using a one-component

Gaussian model and using a three-component mixture of Gaussians. As

previously described in Roberts et al. (2016), we trained using mini-

batch on 1% of the genome, for 10 labels and 100 EM training iter-

ations. For each label learned, we extracted all datapoints

corresponding to that label in the final annotation to generate an empir-

ical distribution. We also extracted a theoretical distribution from the

model. We measured the match between a label’s theoretical and empir-

ical distributions using the Kolmogorov-Smirnov statistic D. The

smaller the D statistic, the closer the fit between the two distributions.

For both the one- and three-component models, we identified the label

with the lowest D and compared its theoretical distribution to its empir-

ical distribution (Fig. 2). Because Segway performs unsupervised learn-

ing, the sets of labels between each case do not correspond identically.

In the single-component Gaussian case, the average D statistic

across all labels was 0.28, with a median of 0.29, and a best D stat-

istic of 0.078. In the three-component mixture of Gaussians case,

the average D statistic across all labels was 0.16, with a median of

0.10, and a best D statistic of 0.058.

The theoretical distribution for the three-component mixture of

Gaussians agreed with its multi-modal empirical distribution except

for a slight right-skew in the data (Fig. 2 and Supplementary Fig. S1).

In comparison, the theoretical distribution for the single-component

Gaussian model does not agree very well with its empirical distribu-

tion, with a strong skew in the tails of the distribution (Fig. 2).

In conclusion, the mixture of Gaussians model better captures

the empirical distribution than the single-component Gaussian

model both on average and overall.

To examine how Gaussian mixtures affect how discovered pat-

terns match biological features, we trained Segway 2.0 using one to

five mixture components on ENCODE GRCh37/hg19 data.

Specifically, we used DNase-seq data and ChIP-seq datasets for

H3K27ac, H3K27me3, H3K36me3 and H3K4me3 in the cell line

K562 (Supplementary Table S1). We used minibatch training (1% of

genome) with a held-out validation set totaling 1% of the genome.

After producing a genome-wide Segway annotation, we used it

to discriminate between active and inactive transcription start sites

(TSSs) in K562, as in Hoffman et al. (2012). We identified the seg-

ments that overlapped the most upstream TSS of each GENCODE

(Harrow et al., 2012) gene. We defined positive predictions as those

that overlapped a TSS with cytosolic poly(A)þ CAGE support in

Fig. 1. Log likelihood progression against round for a fixed 1% of the genome

and a 1% chosen fraction for minibatch. Each series shared the same set of

starting parameters and were evaluated against the same held-out validation

set. Red circles: likelihood for the final chosen set of parameters in each series

(Color version of this figure is available at Bioinformatics online.)

Fig. 2. Combined quantile-quantile plot demonstrating ability of 1 or 3

Gaussian components to capture their empirical distributions

670 R.C.W.Chan et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx603#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx603#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx603#supplementary-data


K562, and negative predictions as those that overlapped a TSS with

no CAGE support. We evaluated the precision and recall obtained

for all labels across 10 random starts for each number of mixture

components (Supplementary Fig. S2). For each random start and

number of mixture components, we identified the label with the best

precision, and we calculated that label’s recall. The one-component

mixture achieved a mean 6 SD best precision of 0.49 6 0.05, and a

corresponding recall of 0.49 6 0.21. The five-component mixture

achieved a best precision of 0.42 6 0.03, and a corresponding recall

of 0.74 6 0.15. This represents a small but significant difference in

precision (Wilcoxon rank-sum test; P ¼ 0.0009) but a large signifi-

cant increase in recall (Wilcoxon rank-sum test; P ¼ 0.003).

2.3 Comparison with other methods
Segway 2.0’s design features distinguish it from methods such as

ChromHMM (Ernst et al., 2012) and Segway 1.0 (Table 1). To

compare computational performance, we benchmarked Segway

2.0.1, Segway 1.3.0 and ChromHMM 1.12 on a dedicated host

with two eight-core Intel Xeon E5-2650v2 CPUs (2.60 GHz) with

229 GiB of memory and hyperthreading, virtualized by QEMU as

32 virtual CPUs (Table 2). We limited each program to eight proc-

esses. We performed the five-dataset training procedure outlined

earlier, without validation, and limited to 10 training rounds.

ChromHMM does not support the bigWig format we used for

Segway. Instead, we merged the Binary Alignment/Map (BAM) rep-

licates originally used to generate these bigWig files. We then used

ChromHMM’s BinarizeBam to create intermediate files before

starting the benchmark. For each program, we set the same reso-

lution (10 bp) and number of training rounds (10) to avoid perform-

ance differences solely due to these parameters.

ChromHMM and Segway 2.0 completed training in similar wall

(20–25 min) and CPU times (1–2 h). To train at 10 bp resolution,

ChromHMM required a large amount of RAM (31.0 GiB), making it

impossible on most current workstations. Segway 2.0 only required 4.7

GiB of RAM. Segway 2.0’s efficient observation storage reduces consid-

erably working disk space to only 1.2 MiB, compared with Segway 1.3

(123.0 MiB). The new storage system increases CPU time but decreases

overall wall time from Segway 1.3. It also enables minibatch training

across the whole genome and the better models that result.

Acknowledgements

We thank Carl Virtanen and Zhibin Lu (University Health Network High

Performance Computing Centre) for technical assistance.

Funding

This work was supported by the Natural Sciences and Engineering Research

Council of Canada (RGPIN-2015-03948 to M.M.H.), the Canadian

Institutes of Health Research (384410 to R.C.W.C.) and the National

Institutes of Health (U41HG007000 to W.S.N.).

Conflict of Interest: none declared.

References

Ernst,J. et al. (2012) ChromHMM: automating chromatin-state discovery and

characterization. Nat. Methods, 9, 215–216.

ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA

elements in the human genome. Nature, 489, 57–74.

Harrow,J. et al. (2012) GENCODE: the reference human genome annotation

for The ENCODE Project. Genome Res., 22, 1760–1774.

Hoffman,M.M. et al. (2012) Unsupervised pattern discovery in human chro-

matin structure through genomic segmentation. Nat. Methods, 9, 473–476.

Hoffman,M.M. et al. (2013) Integrative annotation of chromatin elements

from ENCODE data. Nucleic Acids Res., 41, 827–841.

Kluin-Nelemans,H.C. et al. (1991) A new non-Hodgkin’s B-cell line (DoHH2)

with a chromosomal translocation t(14; 18)(q32; q21). Leukemia, 5, 221–224.

Roberts,E.G. et al. (2016) Semi-automated genome annotation using epige-

nomic data and Segway. bioRxiv, doi: 10.1101/080382.

Zerbino,D.R. et al. (2015) The Ensembl Regulatory Build. Genome Biol., 16, 56.

Table 1. Major differences in design features between ChromHMM, Segway 1.0 and Segway 2.0, adapted from Hoffman et al. (2013)

ChromHMM Segway 1.0 Segway 2.0

Modeling framework Hidden Markov model Dynamic Bayesian network Dynamic Bayesian network

Default genomic resolution 200 bp 1 bp 1 bp

Handling missing data Boolean Real value Real value

Emission modeling Bernoulli distribution Gaussian distribution Gaussian mixture model

Length modeling Geometric distribution Geometric plus hard and soft constraints Geometric plus hard and soft constraints

Training set Entire genome Fixed regions Minibatch or fixed regions

Decoding algorithm Posterior decoding Viterbi Viterbi

Note: Bold text: additions in Segway 2.0.

Table 2. Time, memory and disk space used by ChromHMM, Segway 1.3 and Segway 2.0 to train 10 rounds on a single histone modification

ChIP-seq dataset at 10 bp resolution, with the default training region for each method

ChromHMM 1.12 Segway 1.3.0 Segway 2.0.1

Genomic resolution 10 bp (default 200 bp) 10 bp (default 1 bp) 10 bp (default 1 bp)

Training rounds 10 (default 200) 10 (default 100) 10 (default 100)

Training region 100% of genome 1% of genome (fixed) 1% of genome (minibatch)

Wall time (hh: mm: ss) 00: 20: 23 6 00: 00: 20 00: 24: 38 6 00: 00: 02 00: 22: 15 6 00: 00: 12

Total CPU time (hh: mm: ss) 01: 22: 26 6 00: 07: 03 01: 11: 51 6 00: 00: 49 01: 41: 40 6 00: 01: 07

Max resident set size (GiB) 31.0 6 1.2 1.6 6 0.0001 4.7 6 0.002

Max virtual memory (GiB) 59.2 6 0.07 2.3 6 0.000002 9.0 6 0

Input disk space (GiB) 2.9 3.0 3.0

Working disk space (MiB) 0.14 6 0 123.0 6 0.00007 1.2 6 0.005

Note: Reported values are mean 6 SD for three trials. SD of 0 is exact.

Segway 2.0 671

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx603#supplementary-data

	btx603-TF1
	btx603-TF2

