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Abstract: Radiographic assessment with magnetic resonance imaging (MRI) is widely used to
characterize gliomas, which represent 80% of all primary malignant brain tumors. Unfortunately,
glioma biology is marked by heterogeneous angiogenesis, cellular proliferation, cellular invasion, and
apoptosis. This translates into varying degrees of enhancement, edema, and necrosis, making reliable
imaging assessment challenging. Deep learning, a subset of machine learning artificial intelligence,
has gained traction as a method, which has seen effective employment in solving image-based
problems, including those in medical imaging. This review seeks to summarize current deep learning
applications used in the field of glioma detection and outcome prediction and will focus on (1) pre-
and post-operative tumor segmentation, (2) genetic characterization of tissue, and (3) prognostication.
We demonstrate that deep learning methods of segmenting, characterizing, grading, and predicting
survival in gliomas are promising opportunities that may enhance both research and clinical activities.

Keywords: glioma; glioblastoma; machine learning; artificial intelligence; deep learning;
neural network

1. Introduction

Radiographic assessment with magnetic resonance imaging (MRI) is widely used to characterize
gliomas, which represent a third of all brain tumors and 80% of all primary malignant brain tumors [1].
From a clinical perspective, imaging is often used preoperatively for diagnosis and prognostication,
and post-operatively for surveillance. From a research perspective, MRI assessment provides a
standardized method with which to establish patient baselines and identify endpoints for monitoring
response to therapies for patient clinical trial enrollment and participation. Unfortunately, obtaining
reliable, quantitative imaging assessment is complicated by the variegation of glioma biology, which is
marked by heterogeneous angiogenesis, cellular proliferation, cellular invasion, and apoptosis [2].

Several approaches have emerged to standardize visual interpretation of malignant gliomas for
tissue classification. For example, the Visually AcceSAble Rembrandt Images (VASARI) feature set
is a rules-based lexicon to improve reproducibility of glioma interpretation [3]. Gutman et al. [4]
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successfully implemented this analysis for routine structural images within 75 glioblastoma multiforme
(GBM) patients from The Cancer Genome Atlas (TCGA) portal and observed lower levels of contrast
enhancement within proneural GBMs and lower levels of the non-enhanced tumor for mesenchymal
GBMs. Human-designed rule-based systems such as VASARI have improved the reproducibility of
glioma interpretation [3,5,6], but a small number of numeric descriptors are inadequate to capture the
complexity of a typical MRI scan with over a million voxels, constituting a “Big Data” problem.

Machine learning approaches are uniquely suited to tackle such Big Data challenges. They utilize
computational algorithms to parse and learn from data, and ultimately make a determination given
the input variables. Machine learning has been used to train computers for pattern recognition, a
task that usually requires human intelligence (Figure 1) [7]. Classic machine learning approaches
employ human-designed feature extraction to distinguish tumor characteristics, and this has improved
the accuracy of identifying tumor features on imaging [8]. For example, Hu et al. [9] utilized
hand-crafted features derived from textural metrics to first characterize 48 biopsies from 13 patients,
which were ultimately used as input to a decision tree classifier to predict underlying tumor molecular
alterations. In Hu et al.’s example, the textural analysis takes advantage of manually identified
features reflecting a priori (pre-selected) human expert assumptions about imaging metrics relevant to
tumor biology [9]. While this exploratory study provided a framework for future studies evaluating
image-based signatures of the intra-tumoral variability, the performance of this classic machine learning
approach is limited to the ability of the a priori features alone to capture all the relevant image variance
needed to predict tumor mutations [10].
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Figure 1. Adapted from Goodfellow et al. [7]. Flowchart of the varying machine learning components
across different disciplines, increasing in sophistication from left to right. Orange boxes denote
trainable components.

By contrast, deep learning approaches do not require pre-selection of features and can, instead,
learn which features are most relevant for classification and/or prediction. Deep learning, a subset of
machine learning, can extract features, analyze patterns, and classify information by learning multiple
levels of lower and higher-order features [11]. Lower-order features, for example, would include
corners, edges, and other basic shapes. Higher-order features would include different gradations of
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image texture, more refined shapes, and image-specific patterns [12]. Furthermore, deep learning
neural networks are capable of determining more abstract and higher-order relationships between
features and data [11]. The state-of-the-art approach for image classification is currently deep learning
through convolutional neural networks (CNNs). For reference, CNN approaches represent all recent
winning entries within the annual ImageNet Classification Challenge, consisting of over one million
photographs in 1000 object categories, with a 3.6% classification error rate to date [13,14]. CNN
approaches model the animal visual cortex by applying a feed-forward artificial neural network
to simulate multiple layers of inputs where the individual neurons are organized to respond to
overlapping regions within a visual field [15]. Because it functions similarly to a human brain in
recognizing, processing, and analyzing visual image features, a CNN approach is very effective for
image recognition applications [16].

The purpose of this review is to summarize deep learning applications used in the field of glioma
detection, characterization, and outcome prediction, with a focus on methods that seek to (1) quantify
disease burden, (2) determine textural and genetic characterization of tumor and surrounding tissue,
and (3) predict prognosis from imaging information.

2. Pre and Post-Operative Tumor Segmentation: Quantification of Disease Burden

Quantitative metrics are needed for therapy guidance, risk stratification, and outcome
prognostication, both pre and post-operatively [17]. Simple radiographic monitoring with freehand
measurements of the amount of contrast-enhancing tumor in 2 or 3 planes is commonly used for
estimating disease burden; however, single-dimensional techniques may be inaccurate, and not
reflective of change in actual tumor burden [18], particularly given the propensity of high-grade tumors
to grow in a non-uniform and unpredictable fashion. Manual brain tumor segmentation represents a
potential solution and involves separating tumor tissues such as edema and necrosis from normal brain
tissue such as gray matter, white matter, and cerebrospinal fluid [19]. However, manual segmentation
is both time consuming and is subject to reader variability, making fast and reproducible segmentations
challenging. Machine learning approaches represent a potential solution to meet these challenges.
A summary of recent machine learning architectures and approaches used to segment both pre and
post-operative GBMs is listed in Table 1.

Table 1. Machine learning architectures and approaches used to segment both pre-operative and
post-operative GBMs. Dice score (Sørensen-Dice coefficient) is a statistic used for comparing the spatial
overlap of two binary images and is routinely used for tissue classification assessment. Dice scores
closer to 1 indicate stronger overlap and accuracy [20].

Author Approach Feature Training Size Results

Chen et al.
[21] Connected CNN

Necrotic and non-enhancing
tumor, peritumoral edema,
and GD-enhancing tumor

210 patients
Dice Scores—0.72 whole

tumor, 0.81 enhancing tumor,
0.83 core

Havaei et al.
[22] Two Pathway CNN Local and global features 65 patients

Dice Scores—0.81 whole
tumor, 0.58 enhancing tumor,

0.72 core

Yi et al.
[23] 3D CNN Tumor edges 274 patients

Dice Scores—0.89 whole
tumor, 0.80 enhancing tumor,

0.76 core

Rao et al.
[24] CNN

Non-tumor, necrosis, edema,
non-enhancing tumor,

enhancing tumor
10 patients Accuracy—67%

The Multimodal Brain Tumor Image Segmentation (BraTS) dataset, which was created in 2012,
has been extensively used to demonstrate the efficacy of deep learning applications in segmenting
pre-operative GBMs [25]. The BraTS dataset gave deep learning designers and programmers access
to hundreds of GBM images and has become a benchmark for GBM segmentation performance [26].
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For example, using the 2017 BraTS data [27], Chen et al. [21] developed a neural network which
hierarchically segmented the necrotic and non-enhancing tumor, peritumoral edema, and enhancing
tumor, resulting in mean Dice coefficients for whole tumor, enhancing tumor, and core of 0.72, 0.81,
and 0.83, respectively. The Dice coefficient is a statistic used for comparing the spatial overlap of two
binary images and is routinely used for tissue classification assessment [20]. It ranges between 0 and
1, where 0 indicates no overlap and 1 indicates exact overlap. In contrast to Chen et al., Havaei’s
study [22] exploits both local features and global contextual features simultaneously by using a CNN
that can extract small image details and the context of the image. Mean Dice coefficients of 0.81, 0.58,
and 0.72 for whole tumor, enhancing tumor, and core were achieved. More importantly, every winning
entry for the BraTS competition has since been a neural network implementation.

In post-operative surveillance, MRI imaging with gadolinium contrast is the standard for
determining tumor growth (denoted by increased contrast-enhanced growth) and tumor response
(denoted with decreases in CE tumor size) [3,28]. Both Response Assessment for Neuro-Oncology
(RANO) and Macdonald criteria for GBM assessment rely on two-dimensional measurements of
the contrast-enhanced area, the product of the two maximum diameters of the enhancing tissue [3].
Although this approach is simple, widely available, and requires minimal training, there are concerns
about its reproducibility and accuracy. For example, while linear measurements may be sufficient for
rounded nodular lesions, these measurements may be inaccurate for tumors with irregular margins, a
feature common in high-grade gliomas given their propensity for necrosis and eccentric growth [11].
The variegation of glioma pathogenesis and subsequent response to therapy contributes to myriad
patterns observed on imaging and may result in classifying effective treatments as ineffective or
ineffective treatments as effective, underscoring the need for reliable, reproducible, and accurate tools
of surveillance [29]. Volumetric assessment techniques have shown better accuracy in determining
tumor size when compared to linear methods in several studies [30–32]. Additionally, Dempsey et
al. [33] demonstrated that volumetric analysis of tumor size served as a stronger predictor of survival
compared to linear-based techniques. Kanaly et al. [34] demonstrated that a semi-automatic approach
to brain tumor volume assessment reduced inter-observer variability while being highly reproducible.
To obtain more accurate approximations of tumor size, quantifying the entire tumor in three dimensions
would provide more precise measurements (Figure 2) [35].

For accurate quantification, deep learning has been applied to estimate tumor volume in
post-operative GBMs. Yi et al. [23] used the 2015 BraTS dataset, which contained post-operative
GBMs [26] and implemented a CNN that combined 4 imaging modalities (T1 pre-contrast, T1
post-contrast, T2, and FLAIR) at the beginning of the CNN architecture. Yi et al. also used special
detection of the tumor edges for faster training and the performance was 0.89, 0.80, and 0.76 for whole
tumor, enhancing tumor, and core. Rao et al. [24] examined post-operative GBMs by training with the
2015 BraTS dataset and applied a deep learning network combined with a random forest for separately
classifying non-tumor tissue, necrosis edema, non-enhancing tumor, and enhancing tumoral tissue.
These studies demonstrated the capabilities of deep learning approaches to improve quantification of
disease burden.
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Figure 2. Comparison of linear 1D measurements (A) and machine learning volumetric analysis (B) in
a 64-year-old man with GBM, 11 weeks following resection. Chow et al. [35] found volumetric analysis
preferable given the irregularity of recurrence. Panel A indicates the challenges of selecting greatest
dimensions in 2D, while panel B shows how a semi-automated volumetric approach can accurately
capture greatest dimensions.

3. Characterization: Pseudoprogression

Distinguishing pseudoprogression from true tumor progression is important for identifying
appropriate treatment options for glioma patients. Presently, the only accepted methods to distinguish
true progression of disease (PD) from treatment-related pseudoprogression of disease (psPD) is invasive
tissue sampling and short interval clinical follow-up with imaging, which may delay and compromise
disease management in an aggressive tumor [36,37]. RANO criteria includes methods for psPD
evaluation but remains limited [38]. For example, Nasseri et al. [39] demonstrated that many psPD
cases were not accurately identifiable with RANO criteria. In addition, Abbasi et al.’s [40] meta-analysis
demonstrated that cases of psPD in high-grade gliomas were more frequent than most studies reported,
largely comprising 36% of all post-treatment MRI contrast enhancement-identified cases.

Classic machine learning methods have been more robustly explored than deep learning models for
characterizing psPD on imaging. Hu et al.’s [41] Support Vector Machine (SVM) approach (a traditional
linear machine learning technique) examining multiparametric MRI data from 31 patients yielded an
optimized classifier for psPD with a sensitivity of 89.9%, specificity of 93.7%, and area under ROC curve
of 0.944. Other machine learning methods explored in assessing psPD have included unsupervised
clustering [42] and spatio-temporal discriminative dictionary learning schemes [43]. Though deep
learning methods have been less often used, they are showing promise for characterizing psPD versus
true PD. Jang et al. [44] assessed a hybrid approach that coupled a deep learning CNN algorithm
to a classical machine learning, long short-term memory (CNN-LSTM) method to determine psPD
versus tumor PD in GBM. Their dataset consisted of clinical and MRI data from two institutions, with
59 patients in the training cohort and 19 patients in the testing cohort. Their CNN-LSTM structure,
utilizing both clinical and MRI data, outperformed the two comparison models of CNN-LSTM with
MRI data alone and a Random Forest structure with clinical data alone, yielding an AUC (area under
the curve) of 0.83, an AUPRC (area under the precision-recall curve) of 0.87, and an F-1 score of 0.74 [44].
This example indicates that utilization of a deep learning approach can outperform a more traditional
machine learning approach in analyzing images.
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4. Characterization: Radiogenomics

Characterizing genetic features of gliomas is important for both prognosis and predicting
response to therapy. For example, isocitrate dehydrogenase (IDH)-mutant GBMs are characterized by
significantly improved survival than IDH-wild GBMs (31 months vs. 15 months) [45,46]. Recognition
of the importance of genetic information has led the World Health Organization (WHO) to place
considerable emphasis on the integration of genetic information, including IDH status, into its
classification schemes in its 2016 update [47]. Regarding treatment response, it is becoming increasingly
evident that GBMs’ differing genetic attributes also result in mixed responses [48]. One of the early
mutations discovered was O6-methylguanine-DNA methyltransferase (MGMT) promoter silencing,
which reduces tumor cells’ ability to repair DNA damage from alkylating agents such as temozolomide
(TMZ). Hegiel et al. [49] subsequently observed that MGMT promoter methylation silencing was
observed in 45% of GBM patients and demonstrated a survival benefit when treated with a combination
of TMZ and radiotherapy versus radiotherapy alone (21.7 months versus 15.3 months).

Currently, genomic profiling is performed on tissue samples from enhancing tumoral components.
However, securing tumor-rich biopsies is challenging and a TCGA report observed that only 35%
of submitted biopsy samples contained adequate tumoral content [50]. In addition, tumors may be
surgically inaccessible when eloquent areas of the brain are involved. Furthermore, biospecimens are
typically required for clinical trial entry, which may be delayed as patients wait weeks before and after
resection for genetic results to return. The growing field of radiomics—the extraction and detection of
quantitative features from radiographic imaging through computerized algorithms—seeks to address
this problem by extracting quantitative imaging features that may lead to a better understanding of
the characteristics of a particular disease state [51–53]. Imaging features of gliomas have been linked
to genetic features [54] and are strongly correlated with particular subtypes of glioma and overall
patient survival [4,28]. This has led to the creation of tools and methods such as VASARI, which
seek to standardize glioma characterization through identification of outlined imaging features [3].
Radiogenomics, a branch of radiomics, holds particular promise as a non-invasive means of determining
tumor genomics through non-labeled radiographic imaging. This push towards utilizing MR imaging
to classify and characterize gliomas has made deep learning applications an especially appealing
means of quickly and automatically characterizing gliomas.

Levner et al. [55] was one of the earliest groups to use neural networks to predict tumoral genetic
subtypes from imaging features. Their model sought to predict MGMT promoter methylation status in
newly diagnosed GBM patients using features extracted by space-frequency texture analysis based
on the S-transform of brain MRIs. Levner’s group achieved an accuracy of 87.7% across 59 patients,
among which 31 patients had biopsy-confirmed MGMT promoter methylated tumors [55]. Korfiatis et
al. [56] compared 3 different Residual CNN methods to predict MGMT promoter methylation status on
155 brain MRIs without a distinct tumor segmentation step. Residual CNNs employ many more layers
than the traditional CNN architectures for training data [13,56,57]. It was shown that the ResNet50
layer architecture outperformed ResNet34 and ResNet18, achieving high accuracies of 94.90%, 80.72%,
and 76.75%, respectively, despite the absence of a tumor segmentation step [56]. Ken Chang et al. [58]
applied a Residual CNN to 406 preoperative brain MRIs (T1 pre- and post-contrast, T2, and FLAIR)
acquired from 3 different institutions ranging from Grade II to Grade IV gliomas to predict IDH
mutation status. Their group achieved IDH prediction accuracy of 82.8% for the training set, 83.0% for
the validation set, and 85.7% for the testing set. They noted slight increases of each when patient age at
diagnosis was included [58].

Many deep learning approaches have also managed to successfully characterize single tumoral
genetic mutations on brain imaging. Chang et al. [59] described a CNN for accurate prediction of IDH1,
MGMT methylation, and 1p/19q co-deletion status from 256 brain MRIs from the Cancer Imaging
Archives Dataset. They achieved an accuracy of 94% for IDH status, 92% for 1p/19q co-deletion
status, and 83% for MGMT promoter methylation status. In addition, they applied a dimensionality
reduction approach (principal component analysis) to the final CNN layer to visually display the
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highest ranking features for each category, an important step towards explainable deep learning
approaches (Figure 3) [59].
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Figure 3. Prototypical imaging features associated with IDH mutation status [59]. Our CNN
demonstrated that T1 post-contrast features predict IDH1 mutation status. Specifically, IDH wild
types are characterized by thick and irregular enhancement (A) or thin, irregular, poorly-margined,
peripheral enhancement (B). In contrast, patients with IDH mutations show minimal enhancement (C)
and well-defined tumor margins (D).

A variety of other deep learning methods have been employed to assess genetic and cellular
character on radiographic imaging. Several other studies in addition to those discussed have been
listed in Table 2 [55,60–66]. With the advent of these new technologies, radiogenomic characterization
of tumors continues to grow as a means of non-invasive assessment of brain tumors.
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Table 2. A summary of deep learning methods in the characterization of gliomas on MR imaging.

Deep Learning Methods for Glioma Characterization

Author Year Character Assessed Type of DL Patient
Number MRI Number Accuracy AUC AUPRC F-1

Bum-Sup Jang et al. [44] 2018 Pseudoprogression Hybrid deep and machine
learning CNN-LSTM 78 0.83 0.87 0.74

Zeynettin Akkus et al. [66] 2015 1p/19q Co-Deletion Multi-Scale CNN 159 87.70%

Panagiotis Korfiatis et al. [56] 2017 MGMT Promoter Methylation Status

ResNet50

155

94.90%

ResNet36 80.72%

ResNet18 76.75%

Ken Chang et al. [58] 2018 IDH mutant status Residual CNN (ResNet34) 406

82.8% training

83.6% validation

85.7% testing

Peter Chang et al. [59] 2018

IDH mutant Status

CNN 256

94%

1p/19q Co-Deletion 92%

MGMT Promoter Methylation Status 83%

Sen Liang et al. [60] 2018 IDH Mutant Status
Multimodal 3D DenseNet

167
84.60% 85.70%

Multimodal 3D DenseNet
with Transfer learning 91.40% 94.80%

Jinhua Yu et al. [61] 2017 IDH Mutant Status CNN Segmentation 110 0.80

Lichy Han and Maulik
Kamdar [62] 2018 MGMT Promoter Methylation Status Convolutional Recurrent

Neural Network (CRNN) 262 5235

0.62 Testing

0.67 Validation

0.97 Training

Zeju Li et al. [65] 2017 IDH1 Mutation Status CNN 151
92%

95% (multi-modal MRI)

Chenjie Ge et al. [63] 2018

High Grade vs. Low Grade Glioma

2D-CNN

285 285

91.93% Training

93.25% validation

90.87% test

1p/19q Co-Deletion 159 159

97.11 training

90.91% validation

89.39% test

Peter Chang et al. [64] 2017 Heterogeneity/ Cellularity CNN 39 36 MRI, 91
Biopsies r = 0.74

Ilya Levner et al. [55] 2009 MGMT Promoter Methylation Status ANN 59 87.70%
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5. Prognostication

Machine learning approaches are increasingly being explored as methods of automatically and
accurately grading and predicting prognosis in glioma patients. Various machine learning approaches,
including Support Vector Machine (SVM) classifiers, have been utilized in grading and evaluating
the prognosis of gliomas. These strategies predominantly rely on extracting distinguishing features
of gliomas from pre-existing patient data to build a prototype model. Both of these tasks portend
important clinical considerations such as monitoring disease progression and recurrence, developing
personalized surgical and chemo-radiotherapy treatment plans, and examining treatment response.

For example, Zhang et al. [67] explored the use of SVM in grading gliomas in 120 patients.
These investigators combined SVM with the Synthetic Minority Over-sampling Technique (i.e.,
over-sampling the abnormal class and under-sampling the normal class) and were able to classify
low-grade and high-grade gliomas with 94–96% accuracy. More recently, SVM classifiers have been
applied in evaluating glioma patients’ prognosis. In a study with 105 high-grade glioma patients,
Macyszyn et al. [68] demonstrated that their SVM model could classify patients’ survival into short or
long-term categories with an accuracy range of 82–88%. In another study with 235 patients, Emblem et
al. [69] developed a SVM classifier utilizing histogram data of whole tumor relative cerebral blood
volume (rCBV) to predict pre-operative glioma patient overall survival (OS). The sensitivity, specificity,
and AUC were 78%, 81%, and 0.79 at 6 months and 85%, 86%, and 0.85 at 3 years for OS prediction [69].
A systemic literature review by Sarkiss et al. [70] provides evidence of the many applications of machine
learning in exploring this topic. Twenty-nine studies from 2000 to 2018 totaling 5346 patients and using
machine learning in neuro-oncology were included, and for 2483 patients with prediction outcomes
showed a sensitivity range of 78–93% and specificity range of 76–95% [70]. These studies highlight
the efficacy and accuracy of machine learning-based models in determining patients’ OS compared to
human readers (board-certified radiologists), which are prone to variability and subjectivity inherent
in human perception and interpretation.

Deep learning-based radiomics models have also been proposed for survival prediction of glioma
patients. For example, Nie et al. [71] hybridized a traditional SVM approach with a deep learning
architecture. This deep learning architecture involved a three-dimensional CNN that extracted defining
features from pre-existing brain tumors. When combined with SVM, this two-step method achieved
an accuracy of 89% in predicting OS in a cohort of 69 patients with high-grade gliomas. Their findings
suggest that deep learning methods coupled with linear machine learning classifiers can result in the
accurate prediction of OS.

While still in their introductory stages, deep learning approaches are promising tools for accurate
and expeditious interpretation of complex data that minimize human error and bias.

6. Challenges

It is important to recognize that several substantive challenges for deep learning radiographic
analysis include the relative lack of annotated data [72] and limited algorithm generalizability, as well
as barriers to integration into the clinical workflow. Proper training and convergence of deep learning
algorithms currently requires a tremendous volume of high-quality, well-annotated data; however, such
datasets are difficult to aggregate in large part due to regulatory bottlenecks that limit sharing of patient
data between institutions. In addition, existing analysis of retrospective data acquired during routine
clinical care may be inconsistent (e.g., scanned at variable time intervals and/or follow-up). Finally,
even if large cohorts across many hospitals can be aggregated, annotation is a time-consuming process
requiring a high level of expertise. Given that manual annotations are often time-consuming, future
development of customized semi-automated labeling tools and iterative re-annotation strategies may
provide an effective solution by relying on machine learning techniques to provide initial ground-truth
estimates, which are then refined by human experts [15]. This may allow for faster, better-quality
annotated input data necessary to effectively train deep learning algorithms.
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Related to the problem of small datasets is the well-documented capacity of a deep learning
algorithm with millions of parameters to over-fit to a single, specific training cohort, resulting in an
artificially inflated algorithm accuracy [73]. This is especially true given the relatively limited curated
datasets currently observed in radiographic research. In addition to striving for large, heterogeneous
datasets, there have been several methods developed that attempt to address this limitation, including
the addition of feature dropout described by Srivastava et al. [73], L2 regularization [74], and batch
normalization [75].

Additional challenges relate to the deployment of deep learning applications in a clinical setting.
Challenges to employing computer-aided diagnosis (CAD) within the radiology workflow mirror
expected challenges to the integration of AI methods. Radiologists are likely to reject newer technologies
that prove disruptive to their workflow or have interfaces which are difficult to access and are not
readily available on a normal PACS viewer [76,77]. A study by Karssemeijer et al. [78] examining the
efficacy of CAD in breast mass detection on mammogram demonstrated overall lower performance of
the CAD system compared with expert readers due to the larger number of false positives recorded
for CAD. To be clinically useful, CAD (and by extension, deep learning) approaches would need to
provide improved diagnostic capabilities while also optimizing normal workflow [79]. FDA regulatory
restrictions also constrain the deployment of deep learning tools into a clinician’s toolbox. Currently
there are few acceptable regulatory pathways for approval of deep learning for clinical use. One attempt
to address this by the FDA is through the creation of the Digital Health Software Precertification
(Pre-Cert) program [80]. More recently, the FDA released a proposed regulatory framework that
seeks to allow for oversight of machine learning and other continuous learning models as medical
devices [81]. While steps are underway to address the regulatory gap between deep learning research
and clinical utility, this still exists as a barrier to effective clinical deployment.

7. Conclusions

Deep learning applications continue to provide effective solutions to problems in medical image
analysis. Radiological sciences and the growing field of radiomics are well poised to incorporate
deep learning techniques well-suited to quick image analysis. There are many opportunities rife for
exploration in deep learning analysis of gliomas on radiographic imaging, including determining
tumor heterogeneity, more extensive identification of tumor genotype, cases of progression and
pseudoprogression, tumor grading, and survival prediction. This type of imaging analysis naturally
bolsters the possibility for precision medicine initiatives in glioma treatment and management. Deep
learning methods for segmenting, characterizing, grading, and predicting survival in glioma patients
have helped lay the foundations for more precise and accurate understanding of a patient’s unique
tumoral characteristics. Better insights into both the quantitative and qualitative aspects of a patient’s
disease may help open opportunities for enhanced patient care and outcomes in the future.
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