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Protein-protein interactions support most biological
processes, and it is important to find specifically inter-
acting partner proteins among homologous proteins in
order to elucidate cellular functions such as signal trans-
duction systems. Various high-throughput experimental
methods for identifying these interactions have been
invented, and used to generate a huge amount of data.
Because these experiments have been applied to only a few
organisms, and their accuracy is believed to be limited,
it would be valuable to develop computational methods
for predicting protein-protein interactions from their
amino acid sequences or tertiary structural information.
In this study, we describe a prediction method of inter-
acting proteins based on homology-modeled complex
structures. We employed the statistical residue-residue
contact energy used in a previous study, and two types of
new scores, simple electrostatic energy and sequence
similarity between target sequences and template struc-
tures. The validity of each protein-protein complex model
was measured using their single and combined scores.
We applied our method to all the protein heterodimers
of Saccharomyces cerevisiae. To evaluate the prediction
performance of our method, we prepared two types of
protein-protein interaction dataset: a complete dataset
and high confidence dataset. The complete dataset (10,325
protein dimer models) contains all the yeast protein

heterodimers whose complex structures can be modeled.
Among them, pairs registered in the DIP database are
defined as interacting pairs, and those not registered are
defined as non-interacting protein pairs. The high confi-
dence dataset (3,219 protein dimer models) is a more
reliable subset of the complete dataset extracted using
the criteria of the common subcellular localization. Both
datasets show that sequence similarity has a much higher
discrimination power than the other structure-based
scores, but that the inclusion of contact energy results in
significant improvement over predictions using sequence
similarity alone. These results suggest that the sequence
similarity is indispensable for the prediction, whereas
structure scores can play supporting roles.
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Protein-protein interactions support most important cellu-
lar functions, such as signal transduction, enzymatic activi-
ties, replication and translation. Recently, high-throughput
screening methods, such as yeast-two-hybrid (Y2H) and
tandem affinity purification (TAP), have generated large
datasets of protein-protein interactions1–6. These interaction
data are compiled in databases such as DIP, MIPS and
BIND, which also contain data obtained by classical “low-
throughput” methods7–9.

The high-throughput genome-wide screening experiments

provide us with rich information about cellular processes.
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Because these techniques are costly and labor-intensive,
however, these experiments have been performed only for a
few organisms (e.g., Saccharomyces cerevisiae), even though

complete genome sequences for more than two hundred
organisms have been determined to date. To fill the gap
between the vast amount of genome sequence data and the
relatively smaller scope of interaction data, many research-
ers have worked to develop methods for computational pre-
diction of protein-protein interactions from their amino acid
sequences10,11.

Various approaches have been proposed to predict pro-
tein-protein interactions, such as gene fusion methods12,13,
phylogenetic profiling methods14, co-evolution methods15,16,
and homologous interaction methods17–21. Recently, several
researchers proposed prediction methods based on 3D
structures of protein-protein complexes22–26. These studies
employed a common standard procedure. First, a structure
of the two target proteins in complex is generated by
comparative-modeling methods. For example, Alloy and
Russell employed BLAST to find template structures for
homology modeling; Lu et al. used a threading program
developed by them for modeling multimers. In contrast to
the residue-level coarse-grained models in these studies,
Davis et al. used full-atomic models obtained from
MODBASE27. Second, the validity of modeled structures
is evaluated by interaction energies. Knowledge-based res-
idue-residue contact energies were employed by each of
these three studies cited above. Third, interaction energies
are evaluated by applying various statistical scores. Alloy
and Russell and Davis et al. employed the Z-score, using
randomly shuffled sequences as the reference. Lu et al. also
used the Z-score, but their reference state was a set of scores
of all the template structures in a library. The prediction
accuracies of all these studies were mainly confirmed by the
overlaps with experimentally determined interactions. False
predicted interactions have not been evaluated as exten-
sively.

In this study, we also employed a structure-based
approach, but we evaluated our predictions by discriminat-
ing between interacting and non-interacting protein pairs.
In other words, we mainly focused on the interaction speci-
ficities among homologous protein pairs. We chose to do so
because the specific interactions among similar homologous
proteins are important for many cellular functions. There
are many paralogous protein domains in eukaryotic genomes,

and each has its own set of specific interacting partners.
Proteins working in signal transduction pathways, espe-
cially protein kinases, G-proteins and transcription factors,
have many similar homologues within genomes28. Binding
specificities of these proteins are the basis of a complicated
and robust signal transduction systems within the cell29.

One of the problems for evaluating reliability and cover-
age of predictions is that there is no gold standard for dis-
criminating interacting and non-interacting protein pairs.
This problem arises in part because high-throughput experi-

ments of protein-protein interaction are believed to contain
unreliable or inaccurate data30–32. Specifically, there is no
gold standard for unambiguously defining non-interacting
protein pairs. In this study, we prepared two types of data-
set comprising interacting and non-interacting protein pairs:
the “complete” dataset and the “high confidence” dataset.
The complete dataset contains all the protein heterodimers
whose complex structure can be modeled. Protein pairs
registered in the DIP database are defined as interacting
pairs, while those not registered are defined as non-inter-
acting protein pairs. We expect these assumptions are safe
for Saccharomyces cerevisiae, because the yeast is the most
popular model organism for protein-protein interactions,
and a huge amount of experimental data has been accumu-
lated to date. However, the DIP database may contain both
false positive data (i.e., protein pairs registered as inter-
acting that do not, in fact, interact) and false negative data
(unregistered protein pairs that actually interact in the cell).
To evaluate our method more accurately, we therefore pre-
pared the high confidence dataset, which is a more reliable
subset of the complete dataset extracted using subcellular
localization data. Recently, genome-wide analyses deter-
mining subcellular localization of yeast have been pub-
lished33–35. We used data from these analyses to determine
whether the proteins in each registered interacting pair share
a common localization; if so, we regarded as interacting
pair as reliable and included it in the high confidence data-
set32,36,37. The performance of our method was evaluated by
discriminating interacting and non-interacting protein pairs,
using both the complete and high confidence dataset.

The outline of our prediction method is as follows. First,
we predict the dimer structure of two target proteins by a
homology modeling method. Sequence homology searches
for the two target protein sequences are run against the
sequence library of the component proteins of known dimer
structures. If we find a dimer template structure that is com-
posed of two proteins homologous to each target protein, a
complex structure of the target proteins are modeled based
on the template. To evaluate the validity of structure models,

we employed three kinds of scores. First, we used knowl-
edge-based residue-residue contact energy, which is used in
each of the three previous studies discussed above. Second,
because we expected long-range interaction between pro-
tein pairs and binding specificities to be provided by elec-
trostatic interactions, we introduced a simple electrostatic
energy. Third, we also employed a score based on sequence
similarity between target and template proteins. The
sequence similarity for interacting protein pairs has often
been used in sequence-based predictions17-21; to date, how-
ever, it has not been used in combination with structural
features. All three scores were transformed to a Z-score
using randomized sequences as a reference. In contrast to
previous studies, we analytically estimated the average and
variance of energies. The performance using each of the
three scores, both individually and in combination, was
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evaluated by recall-precision plots and maximum F-mea-
sure using the complete and high confidence datasets.

Materials and methods

Datasets of heterodimer structures

Datasets of heterodimer structures are required for the
library of template structures and for estimating values for
statistical contact energies. We excluded the homodimers
(pairs of identical proteins) because homodimeric crystal
structures of single proteins are less reliable due to artificial
crystal packing38. Heterodimers were defined as the proteins
whose sequence identity is smaller than 50%. These sets
comprise non-redundant representative tertiary structural
data of heterodimers obtained from the PQS server39. The
PQS server contains putative biological units of quarternary
structures determined by X-ray crystallography, which are
automatically chosen among the candidate complex struc-
tures generated by crystallographic symmetry operations of
PDB data. The heterodimers datasets were generated by the
following procedures: First, all the multimers included in
the PQS server were separated into dimers. Dimers with
fewer than five interacting residues (defined as a residue
that has at least one Cβ atom located within 7 Å of Cβ
atoms of another protein chain) were removed. Second,
these dimers were clustered by single-linkage clustering
algorithm40 according to similarities between dimers, defined

as the lower sequence of the two sequence similarities
between corresponding proteins. One representative dimer
with the largest number of interacting residues was extracted

from each cluster. We used the structural data from PQS
(version of April 14, 2006). Two types of representative
dataset were prepared using different threshold values of
similarity of complexes. The former set comprises 1,687
heterodimers generated by the threshold of 40% similarity
and is used as the dataset for calculation of contact energy;
the latter comprises 2,635 heterodimers generated by the
threshold of 95% similarity and used as the template struc-
ture library for the homology modeling.

Building complex structure models of yeast hetero

protein pairs

From the UniProt ver. 49.4 database41, which is a curated
protein sequence database with a high level of annotation,
we extracted 5,314 Saccharomyces cerevisiae amino acid
sequences. All the hetero pairs of the 5,314 yeast protein
sequences were subjected to interaction prediction. To con-
struct the sequence profile of each yeast amino acid
sequence, PSI-BLAST was run against the nr database (ver-
sion of September 22, 2006). The threshold for E-value
(expected hits) was set to 0.001, and the number of itera-
tions was set to three. Using the generated sequence pro-
files, we ran PSI-BLAST42 against the template structure
library described above. For each target protein pair, we
checked whether a dimer template structure consisting of

two homologous proteins of each target protein exists in the
database. If a dimer template structure was found for the tar-
get protein pairs, we required that the following conditions
be met: (1) In the two alignments between target protein
sequences and template complex, ratios of aligned interact-
ing residues must not be smaller than 50%. (2) The numbers
of aligned interacting residues must not be smaller than 10.
If several template dimer structures were found, we selected
the template whose lowest sequence identity is the highest
among the template dimers. In this study, because a fast
modeling method is necessary in order to allow us to deal
with a large number of protein pairs, we use the conforma-
tion of aligned residues from the template structures, ignor-
ing inserted residues, and did not build in side chain atoms
for substituted residue.

Interacting and non-interacting protein pairs

The generated complex structure models were labeled
either as “interacting” or “non-interacting” protein pairs.
We prepared two types of the dataset using different criteria
of interaction. In the “complete” dataset, if a protein pair of
complex model is registered in protein-protein interaction
databases, the pair is considered as an interacting pair. If it
is not registered, it is considered as a non-interacting pair.
Among many available protein-protein interaction data-
bases, we chose the DIP database, because it contains data
obtained via a wide range of experimental methods, such
as yeast two hybrid, tandem affinity purification, affinity
chromatography, in vitro binding, copurification, complex
structures by X-ray crytallography. We used the dataset
version of January 16, 2006. Although the DIP database
contains a huge number of protein-protein interaction data,
several latest experimental results are not yet registered. If
we found complex template structures of almost identical
(more than 95% sequence identity) proteins to target protein
pairs, we relabeled these pairs as “interacting” pairs even
if they are not registered in the DIP database, considering
these experimentally determined complex structures as suf-
ficiently well-supported to justify registration in the DIP
database.

The complete dataset assumes all the interactions are
already registered; however, high-throughput experiments of

protein-protein interaction are believed to contain unreliable
or inaccurate data, and protein pairs not registered in the
DIP database may interact in the cell. To increase the reli-
ability of the dataset, we prepared a “high confidence”
dataset, a more reliable subset of the complete dataset
extracted using subcellular localization information. Sub-
cellular localization data was downloaded from the MIPS
database (version of November 14, 2005), where one or
more localized compartment types are assigned to each
yeast protein. Localized compartment types consist of 19
types: extracellular, bud, cell wall, cell surface, plasma
membrane, inner membrane, cytoplasm, cytoskeleton, endo-

plasmic reticulum, golgi body, transport vesicle, nuclear,
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mitochondria, peroxisome, endosome, vacuole, microsome,
lipid particle, and other subcellular localization. The ratios
of localized compartment types for the 5,211 registered
yeast proteins are 34% for nuclear, 18% for cytoplasm, 18%
for mitochondria, 5% for vacuole, 5% for endoplasmic
reticulum, 4% for unknown, 2% for transport vesicle and
14% for other localized compartment types.

Protein pairs registered in the DIP database sharing at
least one localizing compartment are selected for the high
confident interacting protein pairs, those not registered in
DIP not sharing any localizing compartments are selected
for the high confident non-interacting protein pairs. The
assumption of the high confidence dataset is that two pro-
teins having different subcellular localizations do not inter-
act each other, whereas reported pairs with similar localiza-
tions certainly interact in the cell.

Residue-residue statistical contact energy for protein-

protein interaction

Residue-residue statistical contact energies were origi-
nally developed for coarse-grained models of protein fold-
ing and threading43–45. Recently, similar approaches were
applied for evaluating protein-protein interaction46,47. In this
study, we employed a typical log-odds formula for extract-
ing the value of contact energies. A statistical contact
energy econ(a, b) for contacting residues a and b in different
polypeptide chains is estimated by the form of the log-odds
score:

econ(a, b) = −log (1)

where P(a) and P(b) are the probabilities that amino acids
a and b appear on the surface, Q(a, b) is the probability that
amino acids a and b on the surface contact each other in the
protein-protein interface. Surface residues of a protein are
defined as those residues whose relative accessible surface
areas are larger than 35%. Contacting residue pairs are
defined as the residues in different chains, whose Cβ atoms
are located within 7 Å of one another. Both probabilities are
estimated using the dataset for calculation of contact energy
(see Datasets of heterodimer structures). If the interface
contacts between residues a and b are often found in the
interface, the value of econ(a, b) is large and negative.

The estimated energy values are summarized in Figure 1.
Hydrophobic residues are attractive to each other, especially
in the case of the cysteine-cysteine pair. Hydrophilic resi-
dues, however, are generally repulsive even for differently
charged residue pairs, such as the arginine-glutamic acid
pair. These features are similar to those employed in previ-
ous studies46,47.

The total contact energy Econ is the sum of the econ for all
the contacted residue pairs including both surface and
buried residues:

Econ = econ(ai, aj) (2)

where N and M are the total number of the residues of pro-
teins, and ai and aj are the amino acids of residues i and j.

Electrostatic energy for protein-protein interaction

Electrostatic interactions also play an important role in
protein-protein interactions48. To validate our dimer models,
we employed simplified electrostatic energies as proposed
by Shaul and Schreiber49. An electrostatic energy e

ele
 between

charges q1 and q2 is calculated by the following equation
based on the Debye-Huckel theory:

eele(r, q1
, q

2
) = (3)

where εr is the relative permittivity of water (=80). The
variable r is a distance between the charges q

1
 and q

2
, and

κ is Debye-Huckel screening parameter (=0.488 Å–1). The
parameter a is set to 6 Å.

The total electrostatic energy Eele is the sum of the eele for
all of the charged atom pairs:

Eele = eele(rst, qs(ai), qt(aj)) (4)

where i and j are residues included in different proteins. The
numbers N and M are the total number of residues, and Qi

and Qj are the sets of charged atoms belonging to the residue
i and j. The variable rst is a distance between atom s and t.
The variable qs(ai) is the charge of the atom s of amino
acid ai.

Formal charges are assigned to the atoms in the modeled
complex structure: charge = −1 for aspartic acid and glu-
tamic acid, and charge = +1 for lysine and arginine. To

Q a b,( )
P a( )P b( )

-------------------------

Figure 1 Residue-residue statistical contact energy in protein-
protein interfaces. In the horizontal and vertical axes, 20 amino acids
are arranged in descending order of hydrophobicity. Energy values are
represented from red (low energy) to blue (high energy).
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assign the charges for the model structures, we employed
the charge rule proposed by Shaul and Schreiber49. For a
substituted residue of the target sequence, total charges of
the residue are equally assigned to the position of the
selected atoms of the corresponding residue on the template
structure. The location of the pseudo-charge on the amino
acids is given in Table 1. For example, if the amino acid of
the target protein is glutamic acid, and the corresponding
amino acid of the template structure is threonine, a charge
−0.5 is assigned to both OG1 and CG2 atoms of the threo-
nine residue.

Normalization of the energies

A Z-score is introduced to normalize the contact and
electrostatic energies, and to remove biases of amino acid
compositions of target proteins22–25. The Z-score for energy
E is defined as follows:

Z(E) = (5)

where Mean[E] and Var[E] are the average and variance of
E respectively for randomly shuffled amino acids sequences
of the same composition. Z-score shows how many units of
the standard deviation an energy of a protein pair is above or
below the average by the random shuffling. Calculation of
the averages and variances of the contact energy and elec-
trostatic energy are described in the following sections. In
contrast to studies by other groups, we analytically esti-
mated the average and variance of energies without explic-
itly generating randomly shuffled sequences.

Mean and variance of contact energy for randomly shuf-

fled sequences

We assume that random contacting amino acid pairs are
generated by picking up two amino acids randomly from the
surfaces of different proteins. For this random set of con-
tacting amino acids, the average µcon and variance  of the
contact energy are calculated as follows:

µcon = {econ(a, b) ⋅P(a) ⋅P(b)}, (6)

= { (a, b) ⋅P(a) ⋅P(b)}− (7)

where P(a) and P(b) are the proportions of amino acid a and
b in surface residues for each protein, and A is the set of 20
genetically encoded amino acids. If we assume that the all
the contacting protein pairs are independent in the shuffling
process, the average and variance of the total contact energy
Econ are calculated as follows:

Mean [Econ] = µcon ⋅ Ncontact , (8)

Var [Econ] = ⋅ Ncontact (9)

where Ncontact is the total number of the contacting residues.

Mean and variance of electrostatic energy for randomly 

shuffled sequences

The average and variance of the electrostatic energy can
be calculated in a similar way to that of the contact energy.
We assume that random contacting amino acid pairs on the
i-th and j-th positions of proteins are generated by picking
up two amino acids randomly from the surfaces of different
proteins. The average µele(i, j) and variance (i, j) values
of the electrostatic energy for the random sets are calculated
as follows:

µele(i, j) = P(a)P(b) eele(rst, qs(a), qt(b)),
(10)

(i, j) = P(a)P(b) (rst, qs(a), qt(b))

− (i, j) (11)

where the variable rst is the distance between atom s and t.
The variables qs(a) and qt(b) are the charges of the atoms s
and t of the i-th and j-th residues when they are replaced by
amino acids a and b. P(a) and P(b) are the frequencies of
amino acids a and b in surface residues for each protein. Qi

and Qj are the set of charged atoms belonging to the residues
i and j. If we assume that the all the protein pairs are inde-

Table 1 Atoms of amino acids where charges can be assigned

Residue Atom Residue Atom Residue Atom

GLU OE1 TRP CE3 SER OG
GLU OE2 TYR OH ILE CD1
ASP OD1 PHE CZ MET CE
ASP OD2 GLN OE1 LEU CD1
ARG NH1 GLN NE2 LEU CD2
ARG NH2 ASN OD1 VAL CG1
LYS NZ ASN ND2 VAL CG2
HIS ND1 CYS SG ALA CB
HIS NE2 THR OG1 PRO CG
TRP CE2 THR CG2 GLY CA

PDB atomic names are shown. These atoms are mainly taken from Shaul and Schreiber’s charge rules (Shaul
and Schreiber, 2005). Atoms of proline and glycine have been added; OXT and the N-terminus atom have been
removed.
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pendent in the shuffling process, the average and variance
of the total electrostatic energy Eele are calculated as the sum
of average and variance of each amino acids pairs:

Mean [Eele] = µele(i, j), (12)

Var [Eele] = (i, j) (13)

where N and M are the total numbers of residues in each
protein.

Sequence similarity between target and template

We employed sequence similarity between target protein
and template protein as another feature for finding interact-
ing proteins. We expected that two proteins will interact
with each other if they have close homologues whose dimer
structures have been experimentally determined. Here a Z-
score is also introduced to measure sequence similarities. In
this case, the number of identical residues Niden in the align-
ment is normalized by average and variance values for ran-
domly shuffled sequences:

Z(Niden, Ncomp) = (14)

where Niden is the number of the identical residues, and Ncomp

is the number of compared residues in the alignment with
gaps removed. We assume that random shuffling is applied
using the uniform distribution of amino acids (p is set to
1/20), and that the number of identical residue Niden obeys
the binominal distribution. Because the other two Z-scores
of energies have negative value for probable interfaces, the
Z-score for sequence similarity was multiplied by minus
one to facilitate comparison. Because we are modeling
dimer structures, two different sequence similarities are
obtained for one protein complex. We employed the higher
score (in other words, the lower sequence similarity) for the
purposes of discrimination.

The random shuffling process for sequence similarity is
subtly different from that of contact and electrostatic energy.
For contact and electrostatic energy, two amino acids on the
surface are randomly chosen. In the case of the sequence
similarity, the sequence of the template protein is fixed, and
the sequence of the target protein is randomly generated
using a uniform distribution of amino acids.

Evaluation by recall-precision plots

To evaluate the discriminating powers between the inter-
acting and non-interacting protein pairs, recall-precision
plots were generated. Recall and precision are defined as
follows:

Recall(S) = , (15)

Pecision(S) = (16)

where Ntp(S) is the number of interacting protein pairs with
a score better than S, Nt is the number of interacting protein
pairs and Np(S) is the number of pairs with a score better
than S. Recall shows how many correct interactions are
covered by the prediction, precision shows how reliable the
prediction is. Recall and precision were calculated against
all of the observed scores and plotted as a line on the plane.
The line plotted more towards the upper right has larger
Recall and Precision values than those toward the lower left.
Generally speaking, predictions with high Recall value tend
to have a low value of Precision. Thus, the maximum F-
measure is introduced to find a good balance point between
recall and precision. F-measure F(S) is defined as the har-
monic mean of recall and precision, and the maximum F-
measure Fmax is the largest F-measure among all of the
observed scores:

F(S) =

= , (17)

F
max = [F(S)] (18)

Results and Discussion

Homology-modeled dimer structures of the interacting 

and non-interacting protein pairs

We modeled dimer structures of hetero protein pairs of
Saccharomyces cerevisiae by the homology-modeling
method. 10,325 models of protein pairs were generated;
among them, 417 pairs were regarded as interacting, and
9,908 pairs were regarded as non-interacting. We call these
pairs the complete dataset of protein-protein interaction. To
select reliable data, the complete dataset is classified into
three types of protein pairs: (i) Two proteins share at least
one common localized compartment type. (ii) Subcellular
localization of at least one protein is unknown. (iii) Two
proteins do not share any localized compartment type. The
classification is shown in Table 2. The interacting pairs in
the complete dataset sharing at least one localized compart-
ment are selected for the high confidence interacting pairs
(380 pairs), and the non-interacting pairs not sharing any
localized compartments are selected for the high confidence
non-interacting pairs (2,839 pairs). Notably, the high confi-
dence dataset contains only 37 fewer interacting pairs than
the complete dataset, but 7,069 fewer non-interacting pairs.
In other words, most of the protein pairs registered in DIP
database have a similar localization, but there are many pro-
tein pairs that have a similar localization but nonetheless are
not reported.

Network of the protein-protein interaction in

the complete dataset

In order to have a full picture of these protein pairs, we
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drew a network of protein-protein interaction in the com-
plete dataset (Fig. 2). In this network, nodes correspond to
target proteins and edges correspond to target protein pairs
whose dimer structure can be modeled. There are 1,036
nodes and 10,325 edges in the network. As there are approx-

imately twenty-four times more non-interacting than inter-
acting pairs, most of the edges are colored in blue. The
network was separated into 64 clusters by single linkage
clustering. Our network was more sparse than those appear-
ing in previous experimental studies3,6, probably because we
more stringently restricted the protein pairs that are able to
be homology-modeled.

The largest cluster (Cluster A) has 573 proteins, and the
second and third largest cluster (Cluster B and Cluster C)
have 41 and 30 proteins, respectively. We focused on the

target proteins included in Cluster A, and colored the nodes
in the network according to the major domains included in
Cluster A. Cluster A contains proteins involved in the sig-
nal transduction system. The numbers of the target proteins
which include the domain of protein kinases catalytic sub-
unit (green), WD40-repeat (cyan), G proteins (red), canoni-
cal RBD (yellow), ankyrin repeat (gray), cyclin (black) are
119, 97, 55, 50, 18 and 16, respectively. Cluster B contains
proteins associated with ubiquitination, and consists of two
major families: 17 domains of RING finger domain C3HC4
and 14 domains of ubiquitin conjugating enzyme UBC.
Cluster C contains proteins involved in the DNA replica-
tion, and there were 23 domains of extended AAA ATPase,
and 7 domains of DNA polymerase III clamp loader sub-
units C-terminal.

Table 2 The classification of interacting and non-interacting protein pairs included in the complete dataset by subcellular localization

Interacting
pairs

Non-interacting
pairs

(i) Two proteins share at least one common localized compartment 380 5,631
(ii) Subcellular localization of at least one protein is unknown 10 1,438
(iii) Two proteins do not share any localized compartments 27 2,839

Total 417 9,908

The underlined numbers are for the complete dataset; bold numbers are for the high confidence dataset.

Figure 2 The protein-protein interaction network of the interacting and non-interacting protein pairs included in the complete dataset. The
graph was visualized by Cytoscape50. The nodes correspond to the target proteins; edges correspond to interactions. The interacting protein pairs
are shown in red, the non-interacting ones in blue. The proteins including the domains of protein kinase catalytic subunit, WD40-repeat, G pro-
teins, canonical RBD, ankyrin repeat, cyclin are colored green, cyan, red, yellow, gray and black, respectively. If the target protein includes more
than two domains from the six types of domains, the node is colored according to the domain nearest to the N-terminus. The SCOP, which is the
structural classification database of proteins, was used for identifying the domains51.
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To show frequently appearing families in the network
more precisely, we show statistics for the family pairs of the
template complexes according to the interacting and non-
interacting pairs included in the complete and high con-
fidence dataset (Table 3). The family pairs of the non-
interacting protein pairs are more biased than those of the
interacting pairs, and the biases are mostly caused by the
six major families colored in the network of Figure 2. For
example, in case of the complete dataset, protein kinase cat-
alytic subunit domains and ankyrin repeat domains form as
many as 1,912 non-interacting protein pairs. Similar biases
were also observed in the high confidence dataset, although
its observed numbers of family pairs are smaller.

Recently, researchers report that a protein-protein inter-
action network is a small world network, which is a network
in which the length of the shortest path between any protein
pairs tends to be small, but also has densely connected local
neighborhood, and the number of interactions per proteins
(degree) appears to follow a power law distribution52,53. Our
non-interacting protein network was not a small world net-
work, because its average length of the shortest path was
not small (proteins are clustered into the 64 clusters), and
number of interaction per proteins of our network did not

follow a power law distribution (number of proteins with
degree = 12 was larger than that of degree = 1). The devia-
tion from the power law distribution was caused by the
biased family distribution of non-interacting network.

Score distributions of the complete dataset for each

feature

The Z-score distributions of three features (contact energy,

electrostatic energy and sequence similarity between target
and template) of the complete dataset are shown in Figure
3–5. As we assume that similar random surface amino acid
pairs are generated in Z-score calculations of both contact
and electrostatic energy, these Z-scores are comparable to
each other. Z-scores for the contact energy ranged lower,
and were distributed more widely, than Z-score for the elec-
trostatic energy. The averages of Z-score of the contact
energy for interacting and non-interacting protein pairs were
−4.6 and −2.2, respectively, whereas those for the electro-
static energy were −0.77 and −0.15. The variances of the
contact energies are 7.6 (interacting) and 4.6 (non-inter-
acting) and those of the electrostatic energies are 0.99
(interacting) and 0.67 (non-interacting). As the differences
of the averages between the interacting and non-interacting

Table 3 Family pairs frequently appearing in template complexes

Family pairs of the template structuresa PDBb
Complete dataset High confidence dataset

Interc Non-interd Interc Non-interd

Top 10 family pairs of the interacting protein pairs

1. b.38.1.1/b.38.1.1 1b34AB 33 24 33 0
2. d.153.1.4/d.153.1.4 1g65JK 30 44 30 0
3. h.1.15.1/h.1.15.1 1gl2BC 20 80 10 45
4. c.37.1.20-a.80.1.1/c.37.1.20-a.80.1.1 1sxjBC 19 95 19 15
5. d.144.1.7/a.74.1.1-a.74.1.1 1finAB 18 1662 14 559
6. c.3.1.3-d.16.1.6-c.3.1.3/c.37.1.8 1ukvGY 13 61 12 13
7. d.144.1.7/d.211.1.1 1bi7AB 10 1912 10 381
8. a.22.1.1/a.22.1.1 1id3AF 9 12 9 0
9. i.1.1.1/i.1.1.1 1s1hJN 8 16 8 9

10. a.116.1.1/c.37.1.8 1ow3AB 6 342 5 99

Top 10 family pairs of the non-interacting protein pairs

1. d.144.1.7/d.211.1.1 1g3nAB 10 1912 10 381
2. a.74.1.1-a.74.1.1/d.144.1.7 1oiuBC 18 1662 14 559
3. c.37.1.8-a.66.1.1-c.37.1.8/b.69.4.1 1gotAB 1 530 1 321
4. a.116.1.1/c.37.1.8 1ow3AB 6 342 5 99
5. j.66.1.1/d.144.1.7 1f3mAC 1 319 1 112
6. c.10.2.4/d.58.7.1 1a9nAB 2 257 1 109
7. c.37.1.8/c.10.1.2 1k5dAC 4 239 3 87
8. c.45.1.1/d.144.1.7 1fq1AB 0 204 0 59
9. a.48.1.1-a.39.1.7-d.93.1.1-g.44.1.1/d.20.1.1 1fbvAC 3 189 3 38

10. a.118.1.1/c.37.1.8 1qbkBC 4 184 4 44
a SCOP ID included in the table are following; a.22.1.1:Nucleosome core histones, a.39.1.7:EF-hand modules in multidomain proteins,

a.48.1.1:N-terminal domain of cb1 (N-cb1), a.66.1.1:Transducin (alpha subunit) insertion domain, a.74.1.1:Cyclin, a.80.1.1:DNA polymerase III
clamp loader subunits C-terminal domain, a.116.1.1:BCR-homology GTPase activation domain (BH-domain), a.118.1.1:Armadillo repeat,
b.38.1.1:Sm motif of small nuclear ribonucleoproteins SNRNP, b.69.4.1:WD40-repeat, c.3.1.3:GDI-like N domain, c.10.1.2:Rna1p (RanGAP1)
N-terminal domain, c.10.2.4:U2A′-like, c.37.1.8:G proteins, c.37.1.20:Extended AAA-ATPase domain, c.45.1.1:Dual specificity phosphatase-like,
d.16.1.6:GDI-like, d.20.1.1:Ubiquitin conjugating enzyme UBC, d.58.7.1:Canonical RBD, d.93.1.1:SH2 domain, d.144.1.7:Protein kinases cata-
lytic subunit, d.153.1.4:Proteasome subunits, d.211.1.1:Ankyrin repeat, g.44.1.1:RING finger domain C3HC4, h.1.15.1:SNARE fusion complex,
i.1.1.1:Ribosome complexes, j.66.1.1:pak1 autoregulatory domain.

b PDB code of the template complexes.
c Number of interacting protein pairs.
d Number of non-interacting protein pairs.
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interacting protein pairs were 2.4 (contact energy) and 0.62
(electrostatic energy), the discrimination power of the con-
tact energy seemed to be better than that of the electrostatic
energy. The distribution of sequence similarities for the
interacting protein pairs was not bell-shaped (as was the
case for the contact and electrostatic energies), and was
skewed toward the left. The distribution of the interacting

pairs was broader than that of the non-interacting pairs; the
variances of the Z-score distribution of sequence similarity
are 394.2 (interacting) and 20.7 (non-interacting). The high
confidence dataset also yields similar distributions (data not
shown).

Recall-precision plots

To evaluate the discrimination more strictly, we gener-
ated recall-precision plots for all three Z-scores, both indi-
vidually and in combination. To generate combined scores,
two or three Z-scores were added without any weights.
Recall-precision plots are shown in Figure 6 (complete
dataset) and Figure 7 (high confidence dataset); maximum
F-measures of the recall-precision plot are summarized in
Figure 8 (complete dataset) and Figure 9 (high confidence
dataset). We also tested various weights such as Fischer’s
discriminant method, but performance was not significantly
improved. The basic characteristics of plots using the com-
plete and high confidence dataset are similar, except that
precision values and maximum F-measure of the high con-
fidence dataset were generally higher than those of the com-
plete dataset, probably because the number of non-interact-
ing protein pairs (2,839 pairs) in the high confidence dataset
was about one forth of that in the complete set (9,908 pairs).
Similar biased results using co-localization datasets are
reported in previous studies36,37.

In both datasets, the discriminating power of sequence
similarity alone was much higher than that of the contact
and electrostatic energies. This high performance was con-
sistent with other studies based on sequence similarities17–21.
However, when the contact energy and the electrostatic
energy were combined with the sequence similarity, the
maximum F-measure was improved by 0.038 for the com-

Figure 3 Distributions of Z-scores of contact energy calculated
for protein pairs included in the complete dataset. Black and gray bars
correspond to interacting and non-interacting protein pairs respec-
tively.

Figure 4 Distributions of Z-score of electrostatic energy calcu-
lated for the protein pairs included in the complete dataset.

Figure 5 Distributions of Z-score of sequence similarity calcu-
lated for the protein pairs included in the complete dataset.

Figure 6 Recall-precision plots for discrimination between inter-
acting and non-interacting protein pairs using single and combined
scores in the complete dataset. “Con”: contact energy, “Ele”: electro-
static energy, “Seq”: sequence similarity. “Ele+Con”, “Seq+Con”,
“Seq+Ele” and “Seq+Ele+Con” correspond to the plots using com-
bined Z-scores. The purple triangle shows the performance of the
method of Davis et al.
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plete dataset. Similar improvements were observed for the
high confidence dataset. This indicates that while sequence
information is the most effective feature for detecting inter-
acting protein pairs, structural information is able to improve

prediction performance.
To validate the statistical significance of these improve-

ments, we performed bootstrap sampling tests. The maxi-
mum F-measure was recalculated using protein pairs boot-
strap-sampled from the all protein complex models. The
sampling was repeated 1,000 times to generate 1,000
different maximum F-measures. In both datasets, among the
1,000 F-measures, all of the 1,000 F-measures of sequence
similarity and contact energy (Seq+Con), and of all the
three scores combined (Seq+Ele+Con) were larger than
those of only sequence similarity (Seq). However, only 984
F-measures of sequence similarity and electrostatic energy
(Seq+Ele) were larger than those of sequence similarity for

the complete dataset. For the high confidence dataset, only
809 F-measures of Seq+Ele were larger than those of Seq.
Thus, in both datasets, the improvement in discrimination
after incorporation of contact energy was statistically signif-
icant (p<0.01), whereas, the improvement after incorpora-
tion of electrostatic energy was not. That is to say, sequence
similarity has a much higher discriminating power than
the other structure-based scores, but using contact energy
results in significant improvement over predictions using
sequence similarity alone.

The level of prediction accuracy practically required by
users depends on their purposes. If a researcher needs to
know interacting protein pairs without any confirming
experiments, we would recommend the prediction with high
Precision and low Recall. In contrast, if a researcher plans
to perform a number of experiments to confirm protein-pro-
tein interactions, and needs candidates of interacting protein
pairs, we would recommend the prediction with high Recall
and low Precision. The improvement by our contact energy
can contribute to the latter case, because Figure 6 indicates
that the difference between the sequence similarity and the
combined score is the largest in the region where Recall is
high (0.4–0.5) and Precision is low (0.3–0.6).

Performance comparison with the previously published 

method

Generally speaking, it is difficult to quantitatively com-
pare the protein-protein interaction prediction methods,
because the criteria for interacting protein pairs and the
libraries of complex structures can both differ. We com-
pare the performance of our method with the latest related
method proposed by Davis et al.25, by checking overlaps of
their predictions with our complete dataset. Their method
was based on the statistical contact energy in conjunction
with functional annotation and subcellular localization data.
The contact energy metric employed in their study was

Figure 7 Recall-precision plots for discrimination between inter-
acting and non-interacting protein pairs using single and combined
scores in the high confidence dataset. Abbreviations as in Figure 6.

Figure 8 The maximum F-measures with their recall and precision values for each recall-precision plot using single and combined Z-scores in
the complete dataset. Abbreviations as in Figure 6. Dotted line: maximum F-measure of sequence similarity alone.
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similar to ours, except that it was weighted by the ratio of
contacting atoms to total atoms, and its contacting atomic
types and threshold distance of contacts were deliberately
chosen. Because their complex models were generated by
structural alignments of monomer models to template com-
plex structures, the number of model complex structure
could be larger than ours if we employed the same structural
library. Davis et al. applied their method to all the protein
pairs of yeast, finally predicted 3,387 interacting protein
pairs. Among the 3,387 predictions, 2,520 predictions are
hetero (sequence identity is smaller than 50%) protein pairs,
and only 300 pairs are included in our complete dataset; 84
pairs are interacting, and 216 are non-interacting pairs. The
remaining 2,220 pairs are modeled by Davis et al., but not
modeled by our method. This last difference was caused by
the difference of the template structure library; we did not
use homodimer templates to avoid artificial crystal packing,
whereas they used all kinds of complex structures. We
found that most of the remaining 2,220 hetero protein pairs
were modeled using homodimer templates. Thus, by the
equations (15) and (16), the values of recall and precision of
the method of Davis et al. are,

Recall(S) = = = 0.201,

Precision(S) = = = 0.280.

Their values are plotted in Figure 6 (purple triangles). The
performance of their method is better than that of our con-
tact energy, and slightly better than that of our contact
energy combined with electrostatic energy. This is probably
due to their different estimation of contact energy and their
filter by co-localization and co-functional annotation. How-
ever, the predictive performance of Davis et al.’s method is
plotted under the line of sequence similarity (Seq in Fig. 6).

Although the comparisons in the two studies were not per-
formed on identical structural libraries and the assumption
of our complete dataset is not absolutely correct, our results
suggest that methods incorporating sequence similarity will
yield more accurate predictions than methods incorporating
only structure-based scores along with functional and local-
ization data.

Conclusions

In this study, we developed a method for predicting pro-
tein-protein interaction based on dimer structure models,
using two structural scores and sequence similarity. Because
we restricted the protein pairs whose complex can be
modeled by homology, the essence of our approach is the
discrimination of specific interaction among similar homol-
ogous sequences. Previous structure-based prediction stud-
ies of protein-protein interaction have evaluated overlaps of
predicted and experimentally observed interacting pairs, but
have not checked as carefully the overlaps of non-interact-
ing pairs. Because we believe that non-interacting protein
pairs should be also evaluated, we prepared two kinds of
datasets containing interacting and non-interacting protein
pairs. The complete dataset contains all the hetero protein
pairs whose complex structure can be modeled, and the high
confidence dataset is the reliable subset using subcellular
localization data. The two datasets have both assets and
liabilities. On the one hand, reliability of interactions of the
high confidence dataset should be higher than that of the
complete dataset. On the other hand, precision values esti-
mated from the high confidence dataset are biased to large
values, because that set ignores co-localized protein pairs
not registered in the DIP database.

Both datasets showed that the performance of a sequence
similarity-based score was much greater than scores based
on contact and electrostatic energies. Nonetheless, scores

Figure 9 The maximum F-measures with their recall and precision values for each recall-precision plot using single and combined Z-scores in
case of the high confidence dataset. Abbreviations are the same as those used in Figure 6.
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related to contact energy, as calculated from structural
models, can contribute to improvements over the perfor-
mance of sequence similarity alone. These results suggest
that sequence similarity is indispensable for the prediction,
whereas structure scores can play supporting roles. Our pre-
liminary calculation showed that a score only using number
of aligned interface residues had a high discrimination
power, although it was smaller than that of contact energy.
We suggest that the contact energy may indirectly check
whether a modeled structure has a sufficient size of inter-
face.

Electrostatic energy showed the worst performance, and
did not significantly improve the performance of sequence
similarity alone. There are several possible reasons for this
poor performance. We employed the simplified electrostatic
energy proposed by Shaul and Schreiber49. They reported
that this energy successfully predicted the change of associ-
ation rate kon, however, it may be insufficient to predict
binding free energy. This energy ignores partial charges on
polar atoms, it can not consider any polar interactions such
as hydrogen bonds. Another reason is the inaccuracy of
complex models of interacting protein pairs, which may
more affect the performance of the electrostatic energy
than that of the contact energy. It is because the electrostatic
energy depends on sidechain conformations, whereas the
contact energy does not. The omission of charges on bind-
ing ligands such as nucleotides and metal ions may be a
serious problem. Many protein interactions of signal trans-
duction systems are regulated by bindings of charged
ligands, such as GTP and GDP.

Our results showed that combined score using sequence
similarity and contact energy is the currently most accu-
rately predictive score. Using the combined score, we now
plan to apply our method to different organisms, and we
hope to obtain new biological findings through our pre-
dicted interactions. We also plan to build a WWW server in
order to make our prediction service freely available to
other researchers.
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